
Network Footprint Reduction through Data Access and
Computation Placement in NoC-Based Manycores

Jun Liu, Jagadish Kotra, Wei Ding and Mahmut Kandemir
Dept. of Computer Science and Engineering

The Pennsylvania State University
University Park, PA - 16802, U.S.A

{jxl1036, jbk5155, wzd109, kandemir}@cse.psu.edu

ABSTRACT
Targeting network-on-chip based manycores, we propose a
novel compiler framework to optimize the network latencies
experienced by off-chip data accesses in reaching the target
memory controllers. Our framework consists of two main
components: data access placement and computation place-
ment. In the data access placement, we separate the data
access nodes from the computation nodes, with the goal of
minimizing the number of links that need to be visited by
the request messages. In the computation placement, we in-
troduce computation decomposition and select appropriate
computation nodes, to reduce the amount of data sent in
the response messages and also to minimize the number of
communication links visited. We performed an experimental
evaluation of our proposed approach, and the results show
an average execution time improvement of 21.1%, while re-
ducing the network latency by 67.3%.

Categories and Subject Descriptors
H.4 [NoC-Based Hardware]: Data and Computation Place-
ment; D.2.8 [Computation Placement]: Metrics—perfor-
mance measures, energy measures

General Terms
Design, Experimentation, Performance, Energy

Keywords
NoC Based manycores, Data and Computation placement

1. INTRODUCTION
It is clear that processor performance is improving at a

much faster pace than memory performance. This makes
it very important to optimize memory system performance
using both hardware and software techniques. Most of the
compiler-based data access optimization schemes proposed
in the literature exclusively target cache behavior, largely
omitting off-chip memory accesses. While optimizing cache
behavior is of utmost importance, off-chip data accesses can
also play a critical role. This is particularly true for emerging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.Request
permissions from Permissions@acm.org.
DAC ’15, June 07-11, 2015, San Fransico, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2744876.

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

Br
ea

kd
ow

n

on-chip off-chip other

Figure 1: Execution time breakdown of applications
running on a 4× 8 on-chip network based multicore.

manycore architectures where parallel threads from data-
intensive applications can issue a lot of memory requests,
creating contention not only on memory controllers, but also
on the on-chip network. The cost of an off-chip data access in
a manycore consists of two main components: (a) time spent
by the access in the network on-chip (NoC) to reach the tar-
get memory controller and (b) time spent in accessing the
memory itself including the queuing latency and the DRAM
access latency. In a large manycore system, the first compo-
nent can be very important and is the target of this paper.
For example, Figure 1 plots the execution time breakdown
for the multithreaded applications in our benchmark suite
[12] into three parts (on a 4×8 multicore). The first, marked
as “on-chip”, captures the on-chip component of an off-chip
memory access (i.e., the time the off-chip access spends in
the on-chip network). The second, “off-chip”, is the fraction
of time spent in accessing the off-chip memory itself, includ-
ing the queuing latency in the memory controller, and the
DRAM access itself. Finally, the last part, called “other”, is
the fraction of time spent in computation as well as on-chip
cache accesses. One can observe that the time spent in the
on-chip network is quite significant (averaging on 31.4%).

Motivated by this observation, this paper proposes and
evaluates a novel “compiler-directed” data access and com-
putation placement strategy targeting on-chip network based
multicore architectures and programs composed using affine
loop nests. Our specific contributions in this work include:

• We propose a data access placement strategy that mini-
mizes the number of links visited by request messages. This
strategy assigns a separate “data access node” for each data
access to initiate the data request.

• We propose a computation placement strategy that min-
imizes the number of links visited by response messages.
This strategy determines, for each computation, a compu-
tation node that has the shortest average distance to the
related memory controllers.

• We propose a strategy that reduces the amount of data
sent in response messages. The idea behind this is to break
a computation into sub-computations (sub-operations), and

execute them directly on the data access nodes. Conse-
quently, only the generated intermediate results from the
sub-operations will be sent to the computation core, caus-
ing less traffic on the on-chip network.

• We present results collected on a 32-core system, indi-
cating that our optimization framework cuts, on average,
the network latency of off-chip data accesses by 67.3%, and
generates an execution time improvement of 21.1%.

MC

MC

MC

MC

Core

L1 Cache

L2 Cache

Router

Communication Link

Core<i, j>

Core<0, 0>

Figure 2: Target NoC-based manycore architecture
(MC denotes a memory controller).

Note that our compiler-based work is complementary to
related OS [7] and architectural based studies [6].

2. BACKGROUND AND MOTIVATION
2.1 Architecture

As shown in Figure 2, we target a network-on-chip (NoC)
based manycore system with (N × M) nodes. Each node
has a core and private L1 and L2 caches. To facilitate our
discussion, each node in this architecture is labeled by a
unique index 〈i, j〉 (e.g., the index of the upper leftmost
core is 〈0, 0〉). Further, some nodes are attached memory
controllers (MCs) that manage off-chip memory accesses.
Each MC also has an index, which is the same of the index
of the node to which the MC is attached. When no confusion
occurs, we use the terms “core” and “node” interchangeably.
Any missed data request in L1 cache is forwarded to L2
cache. If it is missed in the L2 cache too, an off-chip data
request through a memory controller is initiated. Note that,
in this architecture, the off-chip data accesses can be very
expensive for two reasons: (a) overhead of traversing over
the on-chip network and (b) overhead of accessing a memory
bank. Our footprint reduction framework aims at optimizing
the first overhead, while prior strategies to reduce the second
overhead [9] are orthogonal to our work.

Assuming a static XY-routing in the network1, we start
with an important observation: for two cores that communi-
cate with the same MC, the latencies of the messages can be
different due to the different number of network hops (dis-
tance) that need to be traversed [8]. Specifically, shorter the
distance that need to be traversed by a data access, better
from both the performance and power perspectives. We de-
fine the distance Dis(〈i, j〉, 〈m,n〉) from core 〈i, j〉 to MC
〈m,n〉 as the Manhattan Distance:

Dis(〈i, j〉, 〈m,n〉) = |i−m|+ |j − n|, (1)

which captures the number of hops that need to be traversed
from core 〈i, j〉 to MC 〈m,n〉. We say that core 〈i, j〉 is
associated with MC 〈m,n〉 ifDis(〈i, j〉, 〈m,n〉) is minimum
among all distances between core 〈i, j〉 and any MC. For
example, in Figure 2, core 〈0, 1〉 is associated with MC 〈0, 0〉.
since this reduces distance-to-data.
1There are two main reasons why we focus on XY-routing.
First, since we want to expose routing to compiler, it needs
to be static. Second, our preliminary experiments indicated
that dynamic routing in NoC can incur significantly higher
energy consumption than static routing.

2.2 Footprints
The execution of a statement in a program usually con-

sists of two steps. The first step is to load the needed data
elements from the main memory or on-chip caches into the
registers. The second step is to perform the specified com-
putation. In the first step, an off-chip access generates a
network footprint, i.e., message traffic on the on-chip net-
work. There are two types of footprints. The first type is
caused by data request messages from the cores to the MCs.
The second type is generated by the data messages (response
messages) carrying the requested data from the MCs. For
example, in Figure 3, core 〈2, 2〉 sends a request message to
MC 〈0, 0〉 and causes footprint (1). This MC sends back a
data message to core 〈2, 2〉 and generates footprint (2). We
define the footprint value F as follows:

F = L×W, (2)

where L is the length of the footprint (the number of tra-
versed links calculated using Eq. (1)), andW is the weight of
the footprint (the number of data elements in the message).
The network footprints directly affect data access latencies,
network congestions and power consumption on the commu-
nication links/message buffers. Hence, it is critical to reduce
footprints on the on-chip network as much as possible.

2.3 Data Access Placement
This section introduces our first optimization, called Data

Access Placement, to reduce the“request message footprints”.
Everything else being equal, one would prefer the sender
(core 〈i, j〉) of the request message to be as close as possible
to the receiver (MC 〈m,n〉). In a conventional execution,
for each data access, there is only one “data access node”
(i.e., the sender of the request message), which is the same
as the computation node (i.e., the node that will perform
the computation). A data access node may need to send
request messages to different MCs, in order to fetch multi-
ple data elements needed by the computation. The problem
is that, it is not possible to find a data access node that is
close to all MCs. Our solution to this problem is to sepa-
rate/decouple the data access and computation, and place
them into different cores. Further, we can have “multiple”
data access nodes to issue different request messages on be-
half of the same computation node. The advantage of doing
so is that we can decide at which node to perform a spe-
cific data access, so that the network footprint of a data re-
quest message can be reduced independently. The response
data messages will be sent from the MCs to the computa-
tion node. Hence, the data access node actually performs a
data access for the computation node, not for itself. We in-
troduce a new load operation for our NoC-based manycore
architecture (“slw dest, addr”). Specifically, this new load is
executed on the data access node and sends the request mes-
sage to the MC based on target address addr. The response
message is then sent from the MC to the destination node
dest. Figure 3 shows the footprint of request message (1)
and data message (2) when not using an explicit data access
node (the computation node is 〈2, 2〉) – this represents the
conventional data access in the manycore. In comparison,
Figure 4 illustrates the footprint when we employ 〈0, 1〉 as
the data access node, whereas the computation node is still
〈2, 2〉. The new request footprint (1) is now sent from 〈0, 1〉
to the MC, and the data read will be forwarded to 〈2, 2〉 (us-
ing our new load operation). Therefore, compared to Figure
3, Figure 4 reduces the data request footprint F from 4 to

MC

MC

MC

1

2
Core<2, 2>

Figure 3: Footprint example with-
out any data access node.

MC

MC

MC

1

2
Core<2, 2>

Core<0, 1>

Figure 4: Footprint example with
the data access node (〈0, 1〉).

MC MC

Core<1, 2>

Core<0, 3> Core<0, 0>

2

2
1

1
2

2
1

1

Figure 5: Optimal data access place-
ment for a simple example.

1, assuming that the weight W in Eq. (2) is 1.
To explain the general principle of how to select the data

access nodes, we consider the following program statement:
e = a + b + c + d. Assume, for the sake of illustration,
that a and b are mapped to MC 〈0, 0〉, and c and d are
mapped to MC 〈0, 3〉. Assume further that this computation
(statement) is to be performed on core 〈1, 2〉, that is, this
statement is scheduled to be executed on core 〈1, 2〉. For
this example, as shown in Figure 5, the optimal data access
node for variables a and b would be 〈0, 0〉, and for variables
c and d 〈0, 3〉. With this data access placement, the request
footprints (1) need not to go over any links since the MCs
are attached to nodes 〈0, 0〉 and 〈0, 3〉. We also want to point
out that, our data access placement does not affect the data
message footprints (2). Generally, one can identify for each
data element (required by a computation) the MC to which
that data is mapped, and choose a data access node that is
close to that MC (reducing L in Eq. (2)).

2.4 Computation Placement
We now introduce another optimization, called Compu-

tation Placement, to reduce the “data message footprints”.
We use the same example statement (e = a + b + c + d) to
explain our strategy. As in the previous section, we assume
that a and b are accessed through MC 〈0, 0〉, c and d are
accessed through MC 〈0, 3〉, and the computation is origi-
nally placed on core 〈1, 2〉. We further assume that the data
access placement optimization has already been performed
and the data access nodes are determined to be 〈0, 0〉 and
〈0, 3〉. The original data footprints of this example are de-
picted in Figure 6. In this figure, both a and b (footprints
marked using (1)) need to go over 3 hops from the MC (at-
tached to core 〈0, 0〉) to the computation node 〈1, 2〉, and c
and d (footprints (2)) need to traverse 2 hops.

Our initial optimization is straightforward. The basic idea
is to select a computation node that has the smallest average
distance to the MCs. For the example above, we can choose
the computation node as 〈0, 2〉 instead of 〈1, 2〉. The data
footprints with this computation node placement are shown
in Figure 7. Compared to Figure 6, a and b (footprints (1))
in Figure 7 need to traverse only 2 hops, and c and d (foot-
prints (2)) need only 1 hop. The above optimization for
computation placement actually reduces the lengths of the
data footprints (L in Eq. (2)). Our next optimization, on
the other hand, aims at reducing the “weights” of the data
footprints (W in Eq. (2)). For example, e = a + b + c + d
can be rewritten as e = f+g, where f = a+b and g = c+d.
Observing that both a and b are requested by core 〈0, 0〉,
we can choose to perform the sub-computation (f = a + b)
directly on core 〈0, 0〉 as depicted in Figure 8. As a result,
we only need to send data element f from 〈0, 0〉 to 〈0, 2〉

(footprint (2)). Even though the number of hops that need
to be traversed by the data is still the same, the number of
data elements to be sent has reduced from 2 (a and b) to 1
(f), thereby reducing the footprint weight W . Similarly, we
can perform the sub-computation (g = c+d) directly in core
〈0, 3〉 and send only one data element (g) from 〈0, 3〉 to core
〈0, 2〉 (footprint (3)). In general, the basic idea of reducing
the “weights” of the data footprints is to first identify the
“sub-operations” (sub-computations) of a computation that
access data from the same MC and decompose the original
computation accordingly (into these sub-operations). We
then execute these sub-operations directly on the data ac-
cess nodes, and send only the generated intermediate results
(which usually contain less data) from the data access nodes
to the computation node.

3. OVERVIEW OF OUR FRAMEWORK
The input to our framework is a parallelized code (cur-

rently, we employ shared memory programming model for
the multicore architecture and can handle pthreads and OpenMP
codes). Our optimization scheme consists of two phases:
data access placement and computation placement, with the
goal of reducing request footprints and data footprints, re-
spectively. The computation placement phase can be fur-
ther divided into two sub-steps, computation decomposition
and computation (node) placement, in order to reduce the
amount of data in the response messages as well as the
number of links visited. The output of our framework is
an optimized parallel code where footprints of the request
and data messages are minimized. In this work, we target
at optimizing “affine loop nests”2, and employ the polyhedral
model [5] for “pre-process” these loops. In the polyhedral
model model, each iteration (in an n-dimensional loop nest)

can be represented by an iteration vector�i = (i1, i2, ..., in)
T .

The set of computations (computation domain) can be rep-
resented as a polytope Dc of n dimensions as follows:

Dc : Dc

[
�i �n 1

]T ≥ �0, (3)

where Dc is the inequality matrix of the domain, and �n is
the vector of loop-independent parameters. To increase par-
allelism and improve data locality, the iteration space can be
divided into smaller blocks (tiles) [4, 11, 10], each of which
contains a subset of the iterations and is an “atomic” exe-
cution unit. All the necessary data needed for a tile must
be ready before its execution starts. Also, all the output
data will be available at the end of the tile execution. One
important constraint in tiling is that, after partitioning the
iteration space, the dependencies among the resulting tiles

2In these types of loops, the loop bounds and array refer-
ences are affine functions of enclosing loop indices and loop-
independent variables.

MC MC

1

Core<1, 2>

1

2

2

Figure 6: Data footprints before
the computation placement opti-
mization.

MC MC

1

Core<0, 2>

1

2

2

Figure 7: Data footprints after the
computation (node) placement opti-
mization.

MC MC

1

Core<0, 2>

1

2 1

1

3

Figure 8: Data footprints af-
ter the computation decomposi-
tion optimization.

should form a “partial order”. In other words, a legal tiling
requires that no two tiles should be mutually dependent on
each other. Note that while an application-specific data ac-
cess pattern can in theory create hard-to-predict bottlenecks
on the network, we did not observe that to happen in our
data-parallel applications i.e, network congestion was more
or less evenly distributed across the links.

4. TECHNICAL DETAILS
Recall that the execution of a statement in our approach

is divided into two phases: data access and computation.
Similarly, the execution of a tile can also be divided into such
two phases, which gives us the flexibility to map the data
access and computation phases of a given tile to different
cores. where each vertex represents a tile, and each edge
indicates a dependency relationship between two tiles. Our
compiler fetches the ready tiles from the Data Dependency
Graph (DDG) and maps the data accesses and computations
in these tiles to cores. Due to the dependency constraints
and resource limitations, it may not be possible to schedule
all the tiles at the same time step (scheduling slot). Instead,
we typically need multiple rounds to schedule the tiles. At
each round, the number of tiles to be handled equals to
either the number of currently ready tiles or the number of
cores in the target machine, whichever is smaller.

4.1 Data Access Placement
We need to consider the following factors when perform-

ing our data access placement optimization for a tiled code.
First, the data access nodes should be as close as possible to
the MCs, in order to reduce L in Eq. (2). Second, we would
like to balance the “data access workload” across all cores.
If this is not done, the nodes that are closest to the MCs
can be overloaded (become bottlenecks). Third, we need to
ensure that the different data requests originating from a
given tile will arrive at the MCs at similar time steps, i.,
the lengths of different request footprints should be similar.
Otherwise, some data requests could be excessively delayed,
which could in turn delay the computations in the tile.

We first determine how all the data elements referred in
a tile are accessed through the MCs. To achieve this, we
first need to locate the data block accessed by a given it-
eration tile. As discussed in Section 3, in the polyhedral
model, each iteration can be represented by an iteration vec-
tor �i = (i1, i2, ..., in)

T in an n-dimensional iteration space.
Similarly, each data element in an array can also be denoted

using a data vector �d = (d1, d2, ..., dm)T in anm-dimensional
space. Each data reference to an array in a loop nest can

be written as: �d = A�i+ �o, where A is the access matrix (of
m×n) and �o is the offset vector (of m×1). Therefore, given
any iteration of a tile, we can determine which parts of an

Iteration Tile Data Block

Iteration Vector i Data Vector d

Figure 9: Example mapping from an iteration tile
to a data block.
array are accessed based on the access matrix A and the
offset vector �o. Specifically, let us assume that the polytope
Dt for a tile is as follows:

Dt : Dt

[
�i �n 1

]T ≥ �0. (4)
We next obtain the data points accessed by the iteration

polytope Dt. For each data reference �d, we have �d = A�i+�o.

We first concatenate �d to the iteration vector �i in Eq. (4).
We then add columns of 0s as the coefficients corresponding

to �d in Dt to form D′
t, and obtain the following expression:

D′
t

[
�i �d �n 1

]T ≥ �0, (5)

Using this expression and the equality defining the data

access (�d = A�i + �o), we can obtain the polytope Dd of the
data block accessed by the tile. Figure 9 gives an example
mapping from iteration space to data space, indicated by an
arrow starting at the iteration tile and ending at the data
block. Each point on the left box represents an iteration
vector �i, while each point on the right space denotes a data

vector �d. A loop nest can be generated to enumerate all the
data points in Dd [2]. In the loop nest enumerating the data
elements of a data block, we introduce two loops to replace
the original innermost loop. The new second innermost loop
determines the starting address of a contiguous data chunk
that is mapped to a specific MC. The new innermost loop
iterates over all the data elements in the contiguous chunk
one by one and issues data requests to the MC. As can be
observed, by obtaining the data block accessed by a tile, we
only need to send one request for a specific data element,
even though it may be used multiple times in the tile.

Once we have determined the MCs for all the data ele-
ments of a tile, we merge the data accesses to the same MC
and schedule them together on the same data access node.
In addition, on a data access node, if several data elements
share the same cache line, we coalesce them into a single
access and issue only one off-chip request message. As men-
tioned earlier, we may not simply choose the core that is
closest to the MC, since we also want to maintain “data ac-
cess load balance”across the cores. For this reason, we assign
weights Ai to the cores based on their distances (the num-
ber of hops) to the associated MCs. Specifically, we choose

Ai to be inversely proportional to the number of hops. This
strategy turns out to be the best tradeoff between load balance
and overall traffic reduction. Thus, the shorter the distance
from the core to the MC is, the larger is the weight of the
core. If two cores have the same number of hops to a given
(associated) MC, their weights will be the same. When we
select which core to issue the data request messages, we
need to check both a core’s weight and its current workload
Ri(i.e., the number of bytes to be accessed). Specifically,
assume that a core with weight Ai currently has been as-
signed workload Ri. For a data request, we check all the
cores associated with the MC, and keep those cores as can-
didate cores which satisfy the following condition: Ri

Ai
≤ σ,

where σ is a “workload balancing threshold”. A delay in any
data access can lead to a delay of the entire computation of
the tile, which can in turn degrade the overall application
performance. Therefore, the lengths (L) of the footprints
generated by different data accesses in a tile should be sim-
ilar. Our strategy to achieve this is as follows. For each set
of data accesses Ai to an MC, we first choose its best avail-
able core Di. Among all such cores, we identify the one with
longest request footprint Max(L). Then, the data requests
to be issued by this core can be considered as the “bottle-
neck”. As a result, for the data accesses to other MCs, we
can choose any available core other than the current best
available one, as long as the length of the newly-generated
footprint is smaller than or equal to Max(L). for scheduling
other tiles, while keeping similar footprints for different data
requests coming from the current tile. We perform our data
placement for the ready tiles one-by-one based on the above
steps, until all the ready tiles are processed.

4.2 Computation Placement
To reduce data footprints, our computation placement step

should take into account the following factors. First, we
would like to reduce the distances between MCs and com-
putation nodes, which directly affects the data footprint
lengths (L in Eq. (2)). Second, we want to reduce the
amount of data (W in Eq. (2)) transferred from the MCs to
the computation node, which can be achieved through com-
putation decomposition. performed on the data access nodes
and only the generated intermediate results are sent. Third,
we want to balance the distances from different MCs to the
computation node (in order to balance the corresponding
data arrival times). Finally, we want to balance the compu-
tation workload among all the cores.

4.2.1 Computation Decomposition
The idea behind computation decomposition is to extract

some sub-operations of a computation and execute them di-
rectly on the data access nodes. Such a sub-operation should
not depend on the rest of the computation, and all the data it
needs should be requested by the same data access node. We
refer to a sub-operation that satisfies these two constraints
as independent operation. Note that an independent opera-
tion may contain multiple operators.

When applying computation decomposition to a tile, the
decomposition of the statements in the loop body may not
always be the same. One reason is that the same reference
to an array can access different MCs at different iterations.
Consequently, for each iteration of a tile, we need to identify
the set of independent operations O as much as possible by
analyzing the relative priorities (precedences) of the oper-
ations, as well as the data access placement decisions. We

Table 1: Our default configuration.

Cores/
Caches

Processor: two-issue
L1: 16 KB (per node), 64 byte lines, 2 ways
L2: 256KB (per node), 64 byte lines, 16 ways

Memory
Number of Memory Controllers: 4
Total Capacity: 4GB

On-chip
Networks

Size: 4× 8 two-dimensional mesh
Delays: 16B links, 2-cycle pipeline
Routing: XY-routing

first locate all the sub-operations that have the highest prior-
ity, and for each such sub-operation, we then check whether
its data are requested by the same data access node or not.
If so, we label this sub-operation as an independent opera-
tion and replace it with an intermediate variable in the final
computation. We then schedule this sub-operation to be
performed directly on the data access node, and send only
the generated result to the computation node.

4.2.2 Computation Node Placement
As we have already pointed out, the computation node

should have “balanced distances” to the data sources. Note
that the data source here can be either a MC, or a data
access node that executes a sub-operation. To this end, we
take into account all the data sources of the current tile. For
each data source 〈Dix, Diy〉, we assign it a weight Gi which
is the amount of data to send to the computation node.
When the data source is a data access node that executes
a sub-operation, the generated intermediate data from the
sub-operation will be counted towards the weight.

Once the weightGi is available for each data source 〈Dix, Diy〉,
we find the center 〈Cx, Cy〉 of all the data sources using the
following formula:

〈Cx, Cy〉 = 〈
∑N−1

i=0 DixGi

N
,

∑N−1
i=0 DiyGi

N
〉, (6)

where N is the number of data sources. If a data source
has more data to send compared to other ones, the selected
center node 〈Cx, Cy〉 will be closer to it. Consequently,
the center node will have balanced (similar) distances to
all the data sources. In case the center node 〈Cx, Cy〉 has
already been assigned to another tile, we check this cen-
ter node’s available neighbors (i.e., those with one-hop dis-
tance). Among these cores 〈C′

x, C
′
y〉, the one with the small-

est value of
∑N

i=0 Gi(|C′
x −Dix|+ |C′

y −Diy|) is selected as
the computation node. If none of the current neighboring
cores is available, the distant neighbors will be checked until
the computation node is decided. Therefore, in both data
access and computation placement, we have mechanisms to
maintain load balance (to prevent the nodes that are close
to MCs from being overloaded).

5. EXPERIMENTAL ANALYSIS
The compiler component of our approach is implemented

using the LLVM compiler infrastructure [1] and all the ex-
periments presented below are carried out using the GEM5
tool-set [3]. We used a set of multi-threaded applications
[12]. The “baseline” against which we compare our place-
ment schemes is the original parallel applications with de-
fault data access/computation behavior (without our foot-
print reduction optimizations).

Figure 10 plots the “percentage reductions” in off-chip
data access latency and total execution time, when both
the components of our approach (data access placement and
computation placement) are applied. The average latency
on the network for off-chip data accesses has been reduced
by 67.3% with our footprint reduction optimization. As a

0

20

40

60

80

Pe
rc

en
ta

ge

Re
du

ct
io

n

network latency execution time

Figure 10: Percentage reductions of network latency
and total execution time brought by our approach.

0

20

40

60

80

100

Br
ea

kd
ow

n
of

Sa

vi
ng

s

data access placement computation placement

Figure 11: Breakdown of savings in execution time

result, it achieves an average of 21.1% reduction in total ex-
ecution time. We observe that, even though the percentage
reductions in network latency for applications fmm and radix
are similar (66.6% vs 63.3%), the performance improvement
for fmm is much higher than that for radix (26% vs 12.2%).
This is because fmm is a highly memory-intensive applica-
tion, whereas radix is not. Figure 11 quantifies the “individ-
ual contributions”of data access placement and computation
placement components of our approach. One can observe
that, the computation placement component is responsible
for about 75.4% of our execution time improvements. The
reason is that, the size of a request message is generally much
smaller than the size of response message, which contains the
actual data to be accessed. As a result, the response foot-
prints contribute more to the network latencies for off-chip
data accesses than the request footprints.

In each experiment presented in Figure 12 we only changed
one parameter and remaining parameters are kept at their
default values given in Table 1. From Figure 12, one can
see that, when the issue width of the cores in the architec-
ture is increased from 2 to 4, we observe a reduction in our
improvements, since the latter configuration exhibits more
data access parallelism. We also see that, our approach gen-
erates better savings with a larger (8 × 8) machine config-
uration. This is mainly because a larger manycore makes
average distance-to-MC larger, rendering data access and
computation placement more critical. Finally, our approach
generates better savings with small number of MCs, as this
configuration increases the pressure on individual MCs, de-
manding better data access and computation placement. We
conducted eight experiments, and in each of them, our 4
MCs (default number) are placed differently. We observed
an average execution time improvement of 21.8% with these
MC placements.To understand how best our compiler-based
approach performs, we conducted various experiments where
the placement of data accesses and computation accesses are
performed in an ideal fashion. “ideal data access placement”
is that the data access node (for a given data access) is the
one that is closest to the target memory controller and no
load balancing problem is experienced.“Ideal computation
placement” is the one that uses the best location (node) to
perform each sub-computation. The second bar for each
benchmark in Figure 13 gives the percentage reduction in
execution time with the ideal placements. We see that the
ideal placement generates an average improvement of 27.2%,
indicating that there is scope to further optimize data ac-
cesses in NoC based manycore system.

0
5

10
15
20
25
30
35

Pe
rc

en
ta

ge
 R

ed
uc

tio
n

in

 E
xe

cu
tio

n
Ti

m
e

Figure 12: Sensitivity experiments with one param-
eter changed with others kept at their default values
given in Table 1.

-5

5

15

25

35

Pe
rc

en
ta

ge
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

Ti
m

e optimized placement ideal placement

Figure 13: Results with ideal placement.

6. CONCLUDING REMARKS
We proposed a novel compiler-directed framework to op-

timize the data latencies for NoC-based manycores. Our
proposed framework consists of two main components: data
access placement and computation placement. In the data
placement, the number of links visited were minimized while
in computation placement, computation decomposition was
proposed to reduce the amount of data sent in the response
messages. This optimization framework cuts, on average,
network latency of off-chip data accesses by 67.3% and appli-
cation execution time by 21.1%, on a 4×8 manycore system.

7. ACKNOWLEDGMENTS
This work is supported in part by NSF grants 1213052,

1205618, 1439021, 0963839, 1017882, and a grant from Intel.

8. REFERENCES
[1] LLVM. http://llvm.org/.

[2] C. Bastoul. Code generation in the polyhedral model
is easier than you think. PACT, 2004.

[3] N. Binkert et al. The gem5 simulator. ACM
SIGARCH Computer Architecture News, 2011.

[4] U. Bondhugula et al. Automatic transformations for
communication-minimized parallelization and locality
optimization in the polyhedral model. CC, 2008.

[5] U. Bondhugula et al. A practical automatic polyhedral
parallelizer and locality optimizer. PLDI, 2008.

[6] R. Das et al. Application-to-core mapping policies to
reduce memory system interference in multi-core
systems. HPCA, 2013.

[7] M. Dashti et al. Traffic management: A holistic
approach to memory placement on numa systems.
ASPLOS, 2013.

[8] E. Kim et al. Energy optimization techniques in
cluster interconnects. ISLPED, 2003.

[9] Y. Kim et al. Thread cluster memory scheduling:
Exploiting differences in memory access behavior.
MICRO, 2010.

[10] A. Lim et al. An affine partitioning algorithm to
maximize parallelism and minimize communication.
ICS, 1999.

[11] A. W. Lim et al. Maximizing parallelism and
minimizing synchronization with affine transforms.
POPL, 1997.

[12] S. Woo et al. The splash-2 programs: characterization
and methodological considerations. ISCA, 1995.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

