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Abstract—Although resistive RAM (ReRAM) technology
offers a good combination of high capacity and low-power
for cache memories, its long write latency and low endurance
are potential showstoppers to its wide commercial adoption.
In particular, its low write-endurance can cause fast wear-
out of cache lines, bringing reliability issues and leading to
capacity reduction over time. This problem is exacerbated
when ReRAM cache has dynamic NUCA structure, where each
core brings most of its data to the cache banks close to itself
and writes become localized. We propose Re-NUCA, a NUCA
architecture design for ReRAM cache to address its lifetime
problem while keeping its performance high. Re-NUCA relies
on performance-wise data criticality: if it realizes a cache line
is performance critical, it keeps it in the banks close to the
target core, like dynamic NUCA; otherwise, it maps cache lines
onto banks using static NUCA to evenly distribute writes over
cache banks. This change in mapping of cache lines to banks
relaxes the lifetime problem in ReRAM NUCA significantly
and wear-levels the lifetime of banks. Re-NUCA needs a logic
for detecting performance-wise critical cache lines and a low-
overhead changes in TLB for keeping mapping information.
Our experimental results of a 16-core chip multiprocessor with
32MB ReRAM L3 cache show that Re-NUCA improves the
lifetime of the non-volatile cache by about 42%, on average,
with almost no impact on performance.

Keywords-Resistive RAM (R-RAM) based caches, NUCA,
wear-leveling, wear-out, S-NUCA, R-NUCA.

I. INTRODUCTION

Workloads in the next generation of large-scale computing
systems are expected to be highly data-intensive and have
large working-sets. The processing power is also steadily
increasing and major manufacturers are planning to integrate
hundreds of cores on a die. To mitigate performance loss
due to increasing memory access rate in multi-core systems
running multiple workloads, computer architects tend to em-
ploy high-capacity on-chip cache hierarchies. Nevertheless,
performance is not the only efficiency metric; an important
concern in multi-core systems is total dissipated power.
It is known that large last-level cache (LLC) is a major
source of on-chip power consumption in chip multipro-
cessors (CMPs) because they occupy a large portion of
processor die and standby power is up to 80% of their total
power [5]. Recently, researchers have extensively studied
the use of non-volatile memory technologies in large cache
designs [14], [11], [8], [10], [15], in contrast to charge-based
technologies (SRAM or DRAM), non-volatile memories
have near-zero standby power. Among the available non-
volatile technologies, resistive RAM (ReRAM) has attractive
features as a replacement of SRAM in caches. Specifically,

ReRAM has fast read access latency, gives about four times
higher density than SRAM and is fully compatible with core
fabrication process. These features make it suitable to be
employed as baseline technology for LLC in deep cache
hierarchies.

Compared to SRAM, write operations in ReRAM are
slower and consume more power and prior work [12], [18]
has mainly concentrated on alleviating the write perfor-
mance and write energy issues with ReRAM. However,
little attention has been paid to the problem of limited
write endurance in ReRAM caches. Indeed, even though
ReRAM has typically higher cell endurance (about 109

writes [17]) compared to competitive technologies like STT-
RAM, it is still low for cache memories when write traffic
of the application is high. This paper studies the lifetime
problem in high-capacity ReRAM caches and proposes a
low-overhead and reasonable architecture to relax it.

Large caches in modern multicore processors are usu-
ally structured as non-uniform cache architecture (NUCA).
NUCA is a multi-bank cache where each bank is connected
to one core (the number of banks is usually kept equal
to the number of cores) and a switched network handles
data movement between banks. NUCA caches are organized
as either static NUCA (S-NUCA) or dynamic NUCA (D-
NUCA). In S-NUCA, a cache block(line) is mapped to the
cache banks using a subset of bits in address and hence bank
assignment is fixed. In D-NUCA, on the other hand, each
cache block can be in any bank and the switched network
allows data to migrate across different cache banks – that is,
if a cache block is frequently used by one core, D-NUCA
brings it to the local bank for future fast access. D-NUCA
offers lower access latency, but it may exacerbate the lifetime
problem in ReRAM caches because data migration between
banks increases the write traffic into the cache. Moreover, if
one program is highly write-intensive, it is highly probable
that cache banks close to it get higher write traffic and wear
out faster than others. Therefore, ReRAM D-NUCA caches
may have lower lifetime than S-NUCA and sometimes lower
performance in long execution of the workload.

We propose Resistive NUCA architecture (shortly Re-
NUCA) that mitigates fast wear-out of cache banks in D-
NUCA ReRAM while keeping its performance high. Re-
NUCA is designed on top of Reactive NUCA (R-NUCA)
cache [4], which is a realistic implementation of D-NUCA.
R-NUCA allows data migration in NUCA but limits it to
few banks close the target core (i.e., those that are only one-
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Figure 1: Re-RAM cell and its SET and RESET operations.

hop away from the local bank) and reduces the overhead of
metadata required for cache block mapping. Our proposed
NUCA architecture (Re-NUCA), on the other hand, uses a
“hybrid mapping function” based on criticality of the cache
block1: it maps the performance-critical data like R-NUCA
to keep the data close to the cores, and spreads-out non-
critical cache blocks to other banks (like S-NUCA). In this
way, Re-NUCA tries to reduce write intensity on cache
banks by spreading them over the entire cache space, while
it offers low latency by keeping the critical cache lines in the
banks near to the core. Having this hybrid mapping function,
Re-NUCA thus relaxes write intensity onto cache banks
(almost the same as S-NUCA) while keeping performance
high (close to that of R-NUCA).

Implementing Re-NUCA requires a mechanism to capture
the criticality of the cache blocks. Re-NUCA determines the
criticality of each cache line at the instruction level using a
simple criticality predictor which works on the heuristics
of the instruction issuing a data fetch. In addition, this
architecture needs a hardware to choose proper mapping
function when searching or allocating a cache line (either
S-NUCA or R-NUCA mapping). Re-NUCA achieves this
goal by adding few metadata bits to TLB, so (1) it reduces
the overhead of this structure by avoiding to store address
tag of the cache blocks, and (2) the controller of the ReRAM
cache knows which function has to be used prior to access
to the cache (since TLB search is performed in early cycles
of memory access and the mapping information is available
when accessing LLC).

This paper makes the following main contributions:

• We propose Re-NUCA, a novel D-NUCA implementa-
tion customized for Re-RAM cache memories. It uses
a hybrid of R-NUCA and S-NUCA mapping schemes,
with the goal of wear-leveling the last-level caches in a
performance-conscious manner. Specifically, R-NUCA is
used for critical cache blocks, and S-NUCA is used for
non-critical cache blocks.

• To capture the criticality of a given cache line, we use a
criticality predictor that determines how much a cache line
is critical to the performance of the processor based on
the heuristics of the instruction issuing a cache line fetch.
We also suggest to keep the metadata information related
to mapping function in TLB, to reduce the overhead of

1A cache block is assumed to be critical, if it contains one word (or
more words) that the core needs them in short time to avoid pipeline stall.

mapping tables and remove its access time from critical-
path latency of the processor.

• We evaluate the performance and lifetime of Re-NUCA
using a large set of multi-programmed workloads with dif-
ferent levels of memory/write intensities. Our experiments
show that Re-NUCA improves the lifetime by 42%, on
average, without loosing performance over R-NUCA.

II. BACKGROUND
A. Resistive RAM

Resistive memories, in general, refer to any technology
that uses a variable resistance to store information. However,
ReRAM in this paper refers to a subset of memories that use
metal oxides as the storage medium, also called as metal-
oxide ReRAM.

As shown in Figure 1a, a ReRAM cell consists of a
metal-oxide layer sandwiched between two metal electrodes,
named top electrode and bottom electrode. The cell can
be either in low resistance state (i.e., SET or “1”) or high
resistance state (i.e., RESET or “0”). In order to switch the
state of a ReRAM cell, an external positive voltage with
specific polarity, magnitude and duration has to be applied
to the sandwiched layer through the electrodes. The SET and
RESET operations are shown in Figure 1b and Figure 1c,
respectively. When a positive biased voltage is applied to
the top electrode, the metal ions (or oxygens) are forced
to migrate through oxide, and eventually reach the bottom
electrode. The ion-path is highly conductive, and the cell’s
equivalent resistance value is low (SET). The low-resistance
state changes again to a high-resistance state by positively
biasing the bottom electrode (RESET).

The biggest advantage of the ReRAM is its good com-
patibility with the CMOS process used in fabrication of
logic (cores). Furthermore, the voltage required for the ion-
path formation has a linear relationship with the oxide
layer thickness – that is, the required voltage will decrease
with a decrease in the thickness. This makes ReRAM a
highly-scalable and promising alternative to SRAM. The
challenging issues with ReRAM are high write latency, high
write energy and low cell endurance (in terms of number of
writes). A few prior studies target performance and power
issues related to write operations on ReRAM when used as
cache and main memory [12], [18]. This paper focuses on
the limited write endurance of ReRAM. Current prototypes
show that a ReRAM cell can have an endurance of 109 [17]
to 1011 [6], [7], [1] writes. Although this per-cell endurance
is large, it can be a source of failure in cache memories
when running applications are write-intensive.

B. NUCA Architecture for Large Caches

Because of small size of ReRAM cell, the on-chip
ReRAM caches usually have large capacity and are subject
to optimization techniques used for large caches. Large
caches are usually structured as NUCA where the entire
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cache is partitioned into multiple banks. Each bank is
connected to one core and an on-chip network for data
and address transfer between banks. NUCA exhibits varying
access latencies depending on the distance between the data
and the core requesting it. In static NUCA (S-NUCA),
mapping a cache block to banks is fixed and is determined
using the lower bits of the block’s address. This makes
redirection (finding the target bank on requesting a cache
block) in S-NUCA simple and obviates the need for any
lookup table. In D-NUCA, any given line can be mapped
into several banks, and a cache block can migrate between
banks according to the access frequency – that is, frequently
used cache lines migrate to banks closer to the core. D-
NUCA needs a table to keep the redirection data for each
cache block that is kept along with coherency information
in the directory. On a cache access, the directory is checked
for coherency issues, and if it is a hit, the associated
redirection information is also read to determine the bank
index currently holding the cache block.

Accessing D-NUCA for this metadata information in-
creases the energy consumption of the directory and in-
creases the traffic of the switched network. This clearly
complicates the implementation of D-NUCA. Considering
the overheads of migration to keep the data close to the
core requesting the data like in D-NUCA, Hardavellas, et
al. proposed Reactive NUCA (R-NUCA), [4] which tries to
combine the benefits of both S-NUCA and D-NUCA. In R-
NUCA, cache blocks for each core are allowed to be stored
in a fixed-size cluster that includes banks that are (at most)
one hop away from the core. Figure 4(a) pictorially shows
bank-level clustering in R-NUCA for a cache with 16 banks
and 16 cores. In this example, the cache blocks requested by
core are allocated in the shaded region. As can be observed,
shaded region cache banks are at most one hop away from
the requested core. Thus cache lines accessed by each core
are always close to it (at most one hop away from the target
core), which resembles D-NUCA in performance. Similar to
S-NUCA, the address redirection in each cluster is done by
simply decoding few low-order bits for the bank index. The
mapping function used by R-NUCA is:

DestinationBank = (Addr +RID + 1)&(n− 1),

where RID is the rotational ID in [4] and n is the cluster
size which in this case is 4.

III. MOTIVATION

If writes were uniformly distributed over available cache
banks, the cache banks would be wearing out at almost
the same rate, and the per-cell endurance limit of ReRAM
would result in a long lifetime for the cache. However, write
accesses as well as memory accesses can exhibit significant
non-uniformity in real workloads, especially when programs
running on different cores are different and have different
memory intensity levels. Thus, in D-NUCA or its variants

 0
 20
 40
 60
 80

 100
 120
 140

m
cf

stream
L

lbm
zeusm

p

bwaves

libquantum

m
ilc

om
netpp

xalancbm
k

leslie3d

bzip2
grom

acs

hm
m

er

soplex

h264ref

sjeng
sphinx3

dealII

astar
povray

nam
d
Gem

sFDTD

W
P

K
I+

M
P

K
I

WPKI MPKI

Figure 2: WPKI and MPKI for the studied applications.

like R-NUCA, the cache lifetime is substantially degraded
because cache banks closer to the cores running memory-
intensive programs wear out fast than those closer to cores
running memory non-intensive (or less-intensive) programs.

To demonstrate the importance of NUCA architecture
and its mapping scheme on the write count distribution
over cache banks, we performed a series of lifetime and
performance evaluation in a system with the configuration
given in Table I. The L3 cache (last-level cache) is made up
of ReRAM, has 16 banks each with 2MB size, and has the
NUCA structure with 4×4 on-chip network between cache
banks. The system has 16 cores and runs a workload of 16
single-threaded application from the SPEC CPU 2006 suite
[13]. Our multi-program workloads include applications
with diverse write intensities and the number and pattern
of writes can vary greatly from core to core, depending
on the application. Figure 2 plots the Writebacks Per Kilo
Instruction (WPKI) and Misses Per Kilo Instructions (MPKI)
for different applications used in our evaluation. As writes
to the L3 caches come from both write backs from L2 and
a cache line fetch upon a L3 miss, Figure 2 shows the LLC
write intensity of various applications when an application
runs individually with a 256KB L2 and 2MB L3 caches.

Figure 3 shows the lifetime variation between banks
of the L3 cache for different NUCA architectures, over
all evaluated workloads. We evaluated S-NUCA, R-NUCA,
private cache (each core has a 1MB private L3 cache) and a
cache architecture with perfect wear-leveling scheme (named
Naive and discussed later in this section). The numbers
presented in y-axis are the harmonic mean of lifetimes
across all the workloads that is calculated as follows: we run
10 workloads of varying memory intensities and calculate
the lifetimes experienced by the cache bank over all these
workloads. The harmonic mean lifetime of a cache bank is
the harmonic mean of these lifetimes. As discussed earlier,
S-NUCA evenly stripes the memory space across all cache
banks in the system, so that every core will access all the
banks. We expect writes being more uniformly distributed
over cache banks in S-NUCA, when compared to two
other designs (R-NUCA and Private). The results plotted in
Figure 3 confirm this finding, as all cache banks have very
similar lifetime in the S-NUCA architecture, regardless of
the memory-intensity of the workload bound to each core.
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The other extreme design is private cache for each core that
offers maximum variation in lifetime of the cache banks –
that is, the most heavily written cache bank has a lifetime of
less than 2 years in our experiments. We also observe that
R-NUCA has relatively large variation between lifetime of
the cache banks. The reason is that, in R-NUCA, since data
blocks of a core are concentrated in a cluster of four banks
(compared to a single LLC in the case of private caches), the
clusters of banks used by the memory-intensive applications
will still wear out more quickly than the clusters used by
the low memory- and write-intensive applications.

A. Perfect (Naive) wear-leveling approach

A performance-agnostic perfect wear-leveling approach
would wear-level the cache banks perfectly by ensuring that
each cache bank would receive the same number of writes.
Such a perfect wear-leveling scheme allows us to compare
how well a NUCA scheme performs with respect to cache
bank wear-leveling. This scheme needs oracle knowledge
about the number of writebacks and misses incurred for
every cache bank. Apart from the oracle knowledge about
the individual cache bank, this scheme would also require
a directory to know which cache bank contains a particular
cache line for a cache line look up after a miss in the L2
private cache. The directory overhead for a high capacity
last-level cache is significant and hence this scheme is not
a feasible option in a commerical processor and, in this
paper, we use it just for comparison. We interchangeably
use “Naive” to refer to this perfect wear-leveling scheme as

it naively accounts only for the lifetime of cache and ignores
the performance.

In our implementation, we keep track of the total number
of LLC misses and writebacks (i.e., total writes to the
cache) for each bank. When a new cache line needs to be
written into the cache, the cache controller chooses the bank
with the smallest number of writes so far. This approach
leads to near-ideal wear-leveling as shown in Figure 3, with
0% variation in lifetimes between banks. However, as this
scheme does not consider performance while wear-leveling,
it degrades the application performance by 21%, on average,
compared to S-NUCA.

B. Performance versus lifetime of various NUCA schemes

Figure 4 shows the trade-off between performance and
lifetime for various cache architectures: S-NUCA, R-NUCA,
Private and Naive. The numbers presented in Figure 4
are the harmonic mean values of 10 workloads, which
are explained in detail in Section V. In Figure 4, y-axis
represents the lifetime in years which signifies the number
of years beyond which we loose the whole cache capacity,
and therefore, a higher number on that axis is better. X-
axis represents the Instructions Committed Per Cycle (IPC).
A higher IPC value means a higher performance; hence,
a larger number on X-axis is better. As can be observed
from this figure, the Naive mapping policy, which balances
the number of writes and misses achieves a maximum
lifetime of more than 6 years, does not fare well in
terms of performance. Note also such a perfect mapping
policy is not practical as we explained above. While the
Naive mapping scheme performs best for lifetimes, private
cache banks perform best for performance. However, private
caches perform worst in terms of lifetimes as the writes
are distributed unevenly across the cache banks. The next
best scheme, as can be observed in Figure 4(b), for better
wear-leveling is S-NUCA. Since S-NUCA uses address bits
to interleave cache lines across various cache banks, it
is not a better scheme for performance as it incurs on-
chip traffic for accessing cache blocks that are interleaved
across the cache banks. Reactive(R)-NUCA proposed in [4]
perrforms close to private caches in terms of performance
and fares slightly better than private caches in terms of
lifetimes. We remark that Even though R-NUCA is good
in performance, with time, cache banks wear out and we
loose cache capacity without wear-leveling in place thereby
hurting the performance.

From above, there is a clear necessity for a new NUCA
architecture which fares well in terms of both performance
and wear-out. In the next section, we propose a NUCA
architecture and related policies to achieve this goal.

IV. RE-NUCA ARCHITECTURE

Ideally, a wear-level and performance-aware NUCA cache
should place all the important cache lines in the nearby
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cache banks, and spread out all the non-important cache
lines across various cache banks. Important data cache
blocks are often referred to in the architectural community
as critical cache blocks and loads that fetch such critical
cache blocks are referred to as critical loads. Our proposed
architecture, Resistive NUCA or Re-NUCA, allocates the
critical cache blocks closer to the core running the ap-
plication in a region called the Re-NUCA region, while
spreading out the cache blocks that are not critical to the
performance using S-NUCA mapping. By spreading out
non-critical cache blocks using S-NUCA, write-backs to
such non-critical cache blocks can also be distributed across
cache banks.

When a cache line is brought to the cache for the first
time, we assume a cache-line is not critical, hence a cache
line is mapped using S-NUCA. This presumption helps us in
prioritizing lifetime over performance for a cache line. Later,
based on the output of the criticality predictor logic, the
decides on the mapping policy used for cache line allocation.
In the following we describe data criticality and the logic
we used for criticality prediction.

A. Critical data and criticality predictor

To explain our notion of criticality better, it is important
to consider the micro-architecture of current processors.
Most of the commercial processors available in the market
currently perform out-of-order execution to achieve maxi-
mum performance. Even though instructions are executed
out-of-order in the processor, they are committed in-order.
All out-of-order processors typically employ a special hard-
ware structure called ReOrder Buffer (ROB), shown in
Figure 6(a). The ROB contains all the instructions that are
being executed, and the instructions at the head of the ROB
are committed upon execution. If the instruction at the head
of the ROB is not executed, head of the ROB is stalled until
the instruction is executed.

A load issued by a processor is considered critical if it
blocks the head of the ROB. As explained above, since out-
of-order processors follow in-order commit, all the other
instructions, which are executed and are ready to be com-
mitted, are stalled by the blocking load. As a result, a
load which stalls the head of the ROB prevents other ready
instructions from being committed thereby decreasing the
performance of the application. Such loads that block the
head of the ROB are defined as critical loads.

Every instruction executed on a processor contains a Pro-
gram Counter (PC) which is unique for a specific instruction.
Since many data-intensive applications spend considerable
amount of time executing loops, each instruction in the
program is executed multiple times in different iterations on
different data. Consequently, the PC can serve as a valuable
attribute to predict various properties of a program phase.
Prior works [3] have used this PC to predict the criticality of
a load. In this work, we employ a slightly modified version
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Figure 5: ROB stall percentage.

of the criticality predictor presented in [3], as described later
in this section.

Figure 5 shows the percentage of loads that do not stall
the head of ROB for various SPEC CPU2006 benchmarks.
For these experiments, each benchmark is executed on a 2.4
GHz out-of-order processor containing a private L1(32KB),
L2(256KB) and L3(2MB) caches with a DDR-3 memory
channel. On an average, over 80% of all loads issued by
the processor do not stall the ROB, meaning that non-
critical loads contribute to 80% of loads. These results
represent a promising direction to identify cache blocks that
do not result in performance degradation. That is, a criticality
predictor which can accurately predict the non-critical loads
is important to identify which cache blocks can be spread
over the other banks without incurring any performance loss.

B. Criticality Predictor

Our criticality predictor adapts hardware structures similar
to the Commit Block Predictor presented in [3], which
we refer to as the Criticality Predictor Table (CPT). More
specifically, it contains the following counters:

(1) a PC associated with a load instruction,
(2) a counter similar to robBlockCount in [3] that denotes

the number of times the ROB has been blocked by the
corresponding PC in the past.

(3) a counter numLoadsCount, that indicates the number
of loads that were issued by this PC up to this point.

Figure 6(b) shows the operation of the criticality predictor.
When a load is issued by the processor, the CPT is indexed
with the PC as shown in step 1, and if an entry for the
corresponding PC exists, numLoadsCount is incremented,
which is referred to in Figure 6 as step 2. If this load
results in ROB head block, the robBlockCount counter is
incremented which is referred to as step 3. If the CPT does
not contain an entry with the corresponding PC, a new
entry with the corresponding PC will be inserted into the
CPT when the load is committed. The new entry will have
numLoadsCount counter set to 1 and a robBlockCount of 1
or 0, depending on whether the load results in a ROB head
stall or not.

The difference in our criticality predictor compared to
the one proposed in [3] is that we do not need additional
information for a PC viz, LastStallTime, MaxStallTime and
TotalStallTime as proposed in [3] since we do not have to
rank the loads in terms of criticality. Hence, our scheme
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does not incur any additional overhead as it just needs an
extra bit to be sent to the mapping logic to identify if a load
being issued is critical or not and averts all the complexity
involved in tracking the stall cycles and the corresponding
storage.

When a load is issued by the processor, if the CPT lookup
results in a hit, we read the robBlockCount and numLoad-
sCount from the CPT. If the robBlockCount is greater than
or equal to a threshold, x% of the numLoadsCount, we mark
the load as a critical load. This threshold x, referred to as the
“criticality threshold” in this work, determines the accuracy
of the criticality predictor. For example, if the value of x is
100%, then we predict a load as critical if 100% of the load
instructions issued by that PC in the past have resulted in a
ROB stall. In general, our experiments reveal that a smaller
criticality threshold leads to better criticality predictions. A
criticality threshold of 100% is a stringent condition. The
accuracy of our criticality predictor for different thresholds
is plotted in Figure 7. As can be observed, a high criticality
threshold of 100% results in a lower accuracy of 14.5%,
while a criticality threshold of 3% results in an accuracy as
high as 83%, on average with the maximum being around
99% for a workload. Based on this result, we use 3% as our
criticality threshold.

Figure 8 shows the percentage of non-critical cache blocks
with various criticality threshold values. It shows that,
around 50.3% of the cache blocks are fetched from memory
are non-critical and do not result in any ROB stall. Figure 9
plots the number of writes to the non-critical cache blocks
identified through our criticality predictor. With a criticality
threshold of 3%, we observe that around 50% of the writes
go to non-critical cache blocks and, as a result, these writes
can be distributed across various cache banks to reduce the
wear-out without causing the performance to degrade. The
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showing Mapping Bit Vector for each entry.
non-critical loads shown in Figure 5 are different compared
to that in 8 as the non-critical loads in Figure 5 accounts
multiple loads to the same cache blocks as critical or non-
critical and hence will account to the on-chip cache hits
as well. However, the non-critical loads in Figure 8 just
accounts for the loads that result in a on-chip cache misses
and a memory access, which present an opportunity for
cache wear-leveling. Hence, even though Figure 5 indicates
80% non-critical loads on an average, since our mechanism
does not consider migration of cache blocks, we can only
act on 50.3% of the cache block loads, as shown in Figure 8.

C. Enhanced TLB

Since a Program Counter (PC) can change from being
non-critical to critical and vice versa over the course of
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execution, we need to store the mapping information for
the cache lines that have already been allocated using one
of either S-NUCA or R-NUCA mappings. Upon a miss in
the private L1 and L2 caches, the mapping information is
used to lookup the corresponding cache bank. We propose an
enhanced TLB architecture, which augments a conventional
TLB with this mapping information. Every load and store in-
struction go through the TLB to obtain the physical address
of the requested cache line. TLB ideally contains the virtual
address-to-physical address translation for a page (typically
4KB), and hence contains information at coarse granularity.
Assuming cache line to be 64 bytes, each 4KB page contains
64 cachelines. Since a cache line to be accessed in a page
is already part of the virtual address, we can use the same
virtual address bits to lookup the TLB entry. In our enhanced
TLB architecture, TLB is augmented with a Mapping Bit
Vector (MBV) of length 64 bits, each bit corresponding
to a cache line in the page. The proposed architecture for
Enhanced TLB is shown in Figure 10. The cache line index
bits from the virtual address are used as an index into
the MBV to update or read the mapping information of a
particular cache line.

Upon a last-level cache miss for a cache line, based
on the predicted criticality, the corresponding cache line is
allocated in cache bank. Once the data is returned to the
processor, MBV in the TLB for the corresponding cache
line is updated. If the cache line is mapped in the last-level
cache bank using S-NUCA (non-critical), then the MBV bit
is set to 0; else it is set to 1, indicating that it uses R-NUCA
(critical). In our proposal, since a cache line does not change
the criticality status in its on-chip lifetime, we do not need
to update the MBV bits for a cache line unless the cache
line is to be evicted. When a cache line is being evicted, the
corresponding MBV bit needs to be reset back to 0.

Our enhanced TLB contains 64 entries in both L1I and
L1D per core. Each of them is 8-way set-associative. As
each entry in the enhanced TLB contains an extra 64 bits in
the MBV, our proposed enhanced TLB architecture adds an
extra over-head of 1KB per core, that is 512 bytes for L1I
and 512 bytes for L1D TLBs. For a 16 core processor, our
enhanced TLB architecture requires an extra 16KB storage,
which is less than a single L1I/L1D cache size. Hence, the
overhead of our enhanced TLB architecture is negligible in
terms both area and power.

We want to emphasize that Re-NUCA tries to achieve the
best of both S-NUCA and R-NUCA by combining the per-
formance benefits of R-NUCA by allocating only the critical
cache blocks closer to the processor, and wear-leveling of
S-NUCA by spreading out the non-critical blocks.

V. EXPERIMENTAL EVALUATION

A. Evaluation Environment

In this work, we used GEM5 [2] to evaluate our Re-
NUCA. We used the system-call emulation (SE) mode

Cores 16 cores @ 2.4GHz, ALPHA ISA, out-
of-order

ROB entries 128
NoC 4x4 Mesh
L1I/L1D Cache 32KB, 4-way associative, 2-cycle la-

tency, 64 Bytes cache line
L2 Cache 256KB (private), 8-way associative, 5-

cycle latency, 64 Bytes cache line
L3 Cache 2MB per core, 32MB total, 16-way

associative, 100 cycle latency, 64 Bytes
cache line

Cache Coherence MESI Protocol
Memory JEDEC-DDR3, 16GB DRAM, 4 chan-

nels, 2 ranks per channel, 8 banks per
rank, FR-FCFS memory scheduler

Table I: Simulated architecture configuration.
of GEM5 instead of the time-consuming full-system (FS)
mode. SE mode of simulation in GEM5 is faster compared
to the full-system mode. Table I gives our target multicore
system. We fast-forward around 2 billion instructions for
each benchmark to get to the region of interest, warmup the
caches by running 100 million instructions for each bench-
mark, and then simulate the next 100 million instructions
on each core to collect the statistics. We consider ReRAM
cache line to wear out beyond 1011 writes.

We used the SPEC CPU 2006 benchmarks with their
reference inputs. Table II presents various characteristics
of these applications like IPC, last-level cache hit rates,
last-level Writes Per Kilo Instruction (WPKI), and last-
level cache Misses Per Kilo Instruction (MPKI). As can be
observed from this table, these applications exhibit quite a
variation in performance; some are memory intensive while
others are compute intensive. Based on the sum of the
WPKI and MPKI values shown in Table II, we characterize
our applications as high, medium and low write intensive.
Applications with sum of a WPKI and MPKI greater than
10 are categorized as high write-intensive ; applications with
a sum between 1 and 10 are categorized as medium write
intensive while all the applications having a sum less than
1 are categorized as low write intensive ones.

We further formed 16-core workloads by randomly choos-
ing applications from the high write-intensive ones along
with the medium- and low-intensive ones. Since the cache
endurance problems mostly occur when high write-intensive
applications are run and the imbalance in wearout occurs
when the high write-intensive applications are run with
the medium- and low-intensive applications, we choose
workloads such that we always run high memory-intensive
applications with low/medium write-intensive applications.
B. Results

We present liftime and performance results for Naive,
S-NUCA, R-NUCA, Private and compare them with our
proposed Re-NUCA scheme. We report the following results
across all the NUCA schemes: harmonic lifetime in years,
IPC, and raw minimum lifetime in years. Harmonic lifetime
in years represent the harmonic mean of lifetime in years
across all the workloads per cache bank. Harmonic mean
of lifetimes is a better compared to an average as average
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Application WPKI MPKI Hitrate IPC Application WPKI MPKI Hitrate IPC Application WPKI MPKI Hitrate IPC
mcf 68.67 55.29 0.20 0.07 omnetpp 16.22 0.61 0.96 0.78 h264ref 1.09 0.08 0.93 2.00
streamL 36.25 36.25 0.00 0.37 xalancbmk 13.17 0.76 0.94 0.89 sjeng 0.52 0.32 0.41 1.16
lbm 31.66 31.46 0.01 0.53 leslie3d 5.24 4.86 0.07 1.33 sphinx3 0.30 0.30 0.06 1.96
zeusmp 18.57 17.13 0.08 0.54 bzip2 2.89 0.69 0.76 1.63 dealII 0.33 0.12 0.65 2.27
bwaves 14.01 12.91 0.08 0.59 gromacs 1.85 0.61 0.67 1.61 astar 0.24 0.12 0.54 2.08
libquantum 11.67 11.64 0.00 0.34 hmmer 2.20 0.13 0.94 2.61 povray 0.18 0.04 0.79 1.57
milc 11.31 11.28 0.00 0.71 soplex 1.27 0.25 0.80 0.94 namd 0.04 0.05 0.21 2.34
GemsFDTD 0.00 0.01 0.00 1.81

Table II: Applications used in the experiments. IPC values shown are for a single core.

lifetime is significantly effected by the extremes. On the con-
trary the raw minimum lifetime gives the minimum lifetime
of any cache bank in all the workloads. This metric helps
us to observe how much one can improve the lifetime of a
cache bank, which is under write pressure, under different
NUCA configurations. Note that higher values of harmonic
and raw minimum lifetimes are better. We use a metric
called Instructions committed per cycle (IPC) to evaluate
the performance of processor for each NUCA scheme. IPC
is an accurate metric for multi-programmed workloads and
gives the throughput of an out-of-order processor. Higher
values of IPC are better.

Figure 12 shows the harmonic mean lifetimes for Re-
NUCA mechanism compared to the other mechanisms. X-
axis in Figure 12 represents various NUCA schemes, and Y-
axis represents the harmonic lifetime in years. Hence, higher
the number on Y-axis the better.

The Naive mechanism which does not consider perfor-
mance and tries to wear-level the cache banks result in
the best harmonic lifetime of around 7.5 years. Also, the
variation of lifetimes across all the cache banks is 0, and
thus Naive mechanism gives the best wear-leveling possible.
One can observe from Table III (Actual Results row) that
Naive scheme also has the best raw minimum lifetime of
5 years. The Naive scheme degrades the performance on
average by 21% compared to S-NUCA. Hence, all the IPC
improvements are normalized with respect to S-NUCA as
the Naive scheme performs worse even in the sensitivity
analysis. This can be attributed to the fact that the Naive
mechanism does not consider criticality of cache blocks
while choosing the destination of the cache blocks. At the
other end of the spectrum is the private cache configuration
which has the worst raw minimum lifetime of 2.3 years, as
seen in Table III (Actual Results row) for Private, and huge
variations in the harmonic lifetimes across cache banks as
can be observed in Figure 12.

The private cache configuration, as explained before,
localizes writes and misses to the corresponding cache bank
without spreading the writes/misses unlike other NUCA
schemes. Consequently, a high memory and write intensive
application like mcf wears-out its own last-level cache bank
faster than other (non-memory and non-write intensive)
applications. Also, since the private cache configuration
does not warrant on-chip traffic for last-level cache hits,
the performance for private cache configuration is the best

compared to the other NUCA schemes tested as can be
observed in Figure 11. However, the private cache configura-
tions suffer from the capacity utilization problem as the last-
level caches are not shared. This is the reason why we see
that IPC is lower in some workloads in Figure 11 compared
to R-NUCA. However, the private cache configuration does
not suffer from cache-interference, a problem with the shared
last-level caches. As a result, private caches incur high IPC
in most of the workloads compared to other NUCA schemes
and on an average achieves around 8% improvement in
IPC compared to S-NUCA and around 4% improvement
compared to R-NUCA. The improvements are as high as
16% compared to S-NUCA and 14% compared to R-NUCA
for certain workloads, as can be observed in Figure 11.

As the Naive and private cache configurations fall at the
two ends of the spectrum, the other NUCA schemes S-
NUCA and R-NUCA have mediocre IPC and harmonic/raw
lifetime compared to the Naive and Private cache con-
figurations. While S-NUCA contains better harmonic/raw
minimum lifetime compared to R-NUCA, R-NUCA gives
better performance compared to S-NUCA. On an average,
R-NUCA beats S-NUCA by 4.7% in IPC, and S-NUCA
has a better raw minimum lifetime of 3.36 years while R-
NUCA contains a raw minimum lifetime of 2.38 years. The
maximum performance difference between R-NUCA and S-
NUCA is 12.8% for a certain workload (Figure 11).

Our Re-NUCA scheme, as can be observed in Fig-
ures 11, 12 and in Actual Results row for Re-NUCA in
Table III, retains the best of both worlds from S-NUCA and
R-NUCA in terms of the raw minimum lifetime and per-
formance. By placing the critical blocks closer to the target
core in the Re-NUCA region, our Re-NUCA configuration
achieves a performance improvement of 5.2% on average,
and up to 6.9% for a workload compared to S-NUCA and
equalling the performance of R-NUCA on average. On the
other hand, by spreading the non-critical cache blocks using
S-NUCA approach, our Re-NUCA scheme wear-levels the
cache in a performance-conscious fashion. The raw mini-
mum lifetime of Re-NUCA scheme is 3.24 years bettering
the R-NUCA raw minimum lifetime by 42%, as can be seen
in Table III while retaining it’s performance. Once can see
from Figure 12 that Re-NUCA wear-levels the cache banks
in R-NUCA by increasing the harmonic lifetime of cache
banks with lower lifetime such as cache banks cb-0, 1, 2,
4, 5, 6, while reducing the harmonic lifetime of other cache

8



Application Naive S-NUCA Re-NUCA R-NUCA Private
Actual Results 4.95 3.37 3.24 2.38 2.32
L2-128KB 7.14 3.9 3.09 2.31 2.31
L3-1MB 3.64 1.67 1.67 1.38 1.38
ROB-168 7.06 3.26 3.26 2.33 2.32

Table III: Raw Minimum lifetimes.
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Figure 11: IPC Improvements. All the improvements are
normalized to S-NUCA.
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Figure 12: Re-NUCA wearout.

banks which are remarkably high such as cache banks, cb-
12, 13,14 and 15. Recall that Re-NUCA employs a hybrid
mechanism of R-NUCA and S-NUCA in a performance-
conscious manner. If a cache block is predicted as critical,
it is allocated in the Re-NUCA region close to the target
core, whereas if the cache block is predicted as non-critical,
cache blocks are spread-out across last level cache banks
using S-NUCA.

C. Sensitivity Analysis

In this subsection, we discuss how our Re-NUCA works
with varying sizes of caches in the cache hierarchy and
with the changes in the micro-architecture of the processor
especially the number of ROB entries. One of the cache
hierarchy parameters which effect the number of writes
to the last level cache banks is the sizes of L2 and L3
cache banks itself. Since reducing the size of L2 increases
the number of L2 misses and hence the write-backs, we
evaluated the impact of Re-NUCA by decreasing the size
of L2 to 128KB while our default system had 256KB.
Figure 13 and the L2-128KB row in Table III show the
harmonic and raw minimum lifetime of Re-NUCA compared
to the other schemes. As can be observed, Re-NUCA reduces
the variation in harmonic lifetimes across the cache banks
compared to R-NUCA, while managing the performance
degaradation of only 1.5%, on an average, compared to R-
NUCA as can be observed in Table III in L2-128KB row.
The raw minimum lifetime of Re-NUCA with 128KB L2
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Figure 13: Wear-leveling with an L2 size of 128KB.
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Figure 14: IPC improvements with L2 size of 128KB.
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Figure 15: Wear-leveling with an L3 size of 1MB.
is 3.10 years compared to R-NUCA with 2.3 years thereby
improving the raw minimum lifetime by 34.8%.

As our next sensitivity experiment, we reduce the size
of L3 Re-RAM cache bank to 1MB while our baseline
consists of 2MB per cache bank. With the decreased L3
cache bank size, the memory-intensive application incurs
more L3 cache misses, which results in fetching more cache
blocks and thus increasing the writes to the L3 cache bank.
The harmonic mean and lifetime improvements are plotted
in Figures 15 and in L3-1MB row in Table III, respectively.
As can be observed, Re-NUCA wear-levels the lifetimes
similar to L2 with 128KB case. Re-NUCA improves the raw
minimum lifetime compared to R-NUCA from 1.38 to 1.67
years improving it by 21%. On average, Re-NUCA improves
performance compared to R-NUCA by around 1.8%. It also
increases performance by 4.11% compared to S-NUCA on
an average. However, the maximum improvements acheived
by Re-NUCA compared to R-NUCA and S-NUCA observed
are 8.2% and 6.81% respectively.

The other micro-architectural characteristic that influence
the impact of Re-NUCA is the number of entries in the
ROB itself. With the increased number of entries in the
ROB, some of the loads might endup not stalling the
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Figure 16: IPC improvements with L3 size of 1MB.
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Figure 17: Wear-leveling with an ROB of 168-entry size.

ROB, thereby effecting the criticality predictor. Next, we
conducted experiments by increasing the number of entries
in ROB to 168, while in our baseline configuration ROB
contained 128 entries. With increased ROB size, as can be
observed in Figure 18, IPC improves by 5.2% compared
to S-NUCA, while it is slightly better than R-NUCA by
0.5%. However, the raw minimum lifetime improves from
2.33 years to 3.26 years compared to R-NUCA, improving
its lifetime by around 39.9%, as opposed to 42% with an
ROB containing 128 entries.

VI. RELATED WORK

EqualChance by Mittal and Vetter [9] moves write-
intensive cache blocks to a different set in a cache. It keeps
track of the writes per set and redirects write to another
clean or invalid location if the number of writes goes over a
threshold. i2wap (Wang et al.) [16] is a cache management
strategy that balances writes between sets and within a
set. They combine a main memory wear-leveling technique
for addressing variations between sets using a technique to
reduce variation within a set.

In our work, we target inter-cache bank wear-leveling
while the works mentioned above try to wear-level a cache
bank at a finer granularity at inter-set and intra-set level.
Though our approach is orthogonal to their approaches, their
approaches can be complementarily implemented on top of
our proposed approach to reap higher benefits in terms of
wear-leveling in a performance-conscious fashion.

VII. CONCLUSION

This paper tries to wear-level ReRAM last-level cache
banks in a perform-conscious manner. We proposed a novel
Re-NUCA mechanism, which is a hybrid of R-NUCA and S-
NUCA schemes, to wear-level the caches without degrading
performance. We also proposed a low overhead criticality

-5

 0

 5

 10

 15

 20

 25

W
L1

W
L2

W
L3

W
L4

W
L5

W
L6

W
L7

W
L8

W
L9

W
L10

Avg

IP
C 

Im
p

ro
ve

m
en

t [
%

]

R-NUCA Private Re-NUCA

Figure 18: IPC improvements: with an ROB size of 168.
predictor which keeps the performance critical cache lines
closer to the processor in the Re-NUCA region using R-
NUCA while spreading out all the non-critical cache lines
using S-NUCA. Our Re-NUCA scheme improves the min-
imum lifetime by 42% over R-NUCA and bettering the
performance by on an average, 0.5% over R-NUCA, thereby
achieving the best of both performance and lifetime.
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