
Cache-Aware Approximate Computing for Decision
Tree Learning

Orhan Kislal
The Pennsylvania State University

University Park, PA, USA
omk103@cse.psu.edu

Mahmut T. Kandemir
The Pennsylvania State University

University Park, PA, USA
kandemir@cse.psu.edu

Jagadish Kotra
The Pennsylvania State University

University Park, PA, USA
jbk5155@cse.psu.edu

Abstract—The memory performance of data mining appli-
cations became crucial due to increasing dataset sizes and
multi-level cache hierarchies. Decision tree learning is one of
the most important algorithms in this field, and numerous
researchers worked on improving the accuracy of model tree
as well as enhancing the overall performance of the learning
process. Most modern applications that employ decision tree
learning favor creating multiple models for higher accuracy by
sacrificing performance. In this work, we exploit the flexibility
inherent in decision tree learning based applications regarding
performance and accuracy tradeoffs, and propose a framework
to improve performance with negligible accuracy losses. This
framework employs a data access skipping module (DASM)
using which costly cache accesses are skipped according to the
aggressiveness of the strategy specified by the user and a heuristic
to predict skipped data accesses to keep accuracy losses at
minimum. Our experimental evaluation shows that the proposed
framework offers significant performance improvements (up to
25%) with relatively much smaller losses in accuracy (up to
8%) over the original case. We demonstrate that our framework
is scalable under various accuracy requirements via exploring
accuracy changes over time and replacement policies. In addition,
we explore NoC/SNUCA systems for similar opportunities of
memory performance improvement.

I. INTRODUCTION

Decision tree learning is a well-studied predictive modeling
approach that is widely used in data mining and related fields.
While prior research [36], [32], [18], [19] has investigated
different implementations of decision tree learning, evaluating
and optimizing its performance in the context of emerging
multi-level on-chip cache hierarchies and modern main mem-
ory systems took much less attention. Most decision tree learn-
ing implementations, like many other data mining algorithms,
are memory-bound since they typically apply computationally-
trivial operations to large amounts of data. In doing so, they
require multiple accesses to the same data in order to create
the tree levels. This increases the dependency on memory
performance and, consequently, on the effectiveness of data
access optimizations.

Prior work suggested different strategies to handle costly
memory accesses in data-intensive applications, including
memory request scheduling [20], [21], [34], on-chip network
optimizations [28], [9], and aggressive cache optimizations (at
both architectural and software levels) [10], [23], [8], [31].
While these optimizations are successful in certain cases, their

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500 600 700 800 900

F
ra
c
ti
o
n
o
f
to
ta
l
a
c
c
e
s
s
e
s

Delay (cycles)

Fig. 1. The data access distribution for our decision tree learning implementa-
tion used in this work on the NoC/SNUCA system (details of our experimental
platform will be given later in Section IV). We see that some data accesses
are much costlier compared to others.

effectiveness is ultimately limited as they try to preserve the
correctness of execution. Approximate computing [12], [33],
[37], [39], an emerging research area, instead suggests that, by
relaxing the exact correctness requirement, it may be possible
to reach a faster (and possibly more energy efficient) execution
in certain applications.

An important question then, in the context of decision
tree algorithms, is whether approximate computing can be
employed to reduce their memory access latencies without
significantly affecting the correctness of the original applica-
tions. Focusing on one particular implementation of decision
tree learning [19] and skipping some portion of costly data
accesses (as our approximate computing strategy), this paper
starts with two critical observations:

• The inaccuracy resulting from skipping data accesses
depends more on the number of data accesses skipped,
rather than which specific data accesses are skipped.

• In contrast, the performance benefits achieved through
data access skipping depends strongly on which specific
data accesses are skipped.

The reason for the first observation is the fact that every
data point is accessed multiple times throughout the execution.
Even if a data point is skipped and replaced with a (possibly
incorrect) prediction, there is a very high probability that the
same point will not be skipped again, and it will eventually

1

for every level do
for every node do

for every attribute do
for every point do

Load class value
Calculate gini impurity

end for
end for

end for
Branch into new nodes

end for

Fig. 2. Pseudo-code of the data intensive section of our decision tree learning
algorithm. Note that the dataset has to be sorted for every attribute beforehand.
Traversing the data points in order makes it possible to keep track of the
impurity of any given branch.

contribute to the decision tree. The reason for the second
observation is the fact that costs of different data accesses
(even in the case of data-parallel applications) are not uniform
in current multicore and manycore systems. Specifically, a data
access may hit at any level in the on-chip cache hierarchy
(composed of L1, L2 and L3 in modern systems), or miss in
all of them. In the latter case, a main memory request is made,
whose cost depends on the on-chip network latency, memory
queuing latency, and whether we hit in the row-buffer or not.
A distribution of data access latencies in a typical execution
of our target decision tree application is plotted in Figure 1
(note that according to prior research, such patterns are not
unexpected [41]). One can observe from this graph that, data
accesses exhibit a great deal of variations in their latencies.
Consequently, when considering the two observations above,
two alternate approximate computing strategies (for a given
algorithm) that skip the same amount of data accesses are
expected to result in similar inaccuracies but significantly
different performance improvements. Motivated by this result,
our goal in this work is to explore the potential performance
improvements that can be achieved via data access skipping.
Specifically, our proposed approach tries to skip a fraction of
costly data accesses (last-level cache misses) in an attempt to
maximize the performance benefits under a given inaccuracy
bound. Our detailed experiments with this approach applied
to a sample decision tree learning implementation show that:

• A small portion of the data accesses has a negligible im-
pact on accuracy but a significant impact on performance.
Specifically, skipping 3% of the data accesses reduces the
accuracy by only 4% – 6%, but improves the memory
performance by 50% – 55%. These savings translate to
an average execution time improvement of 15%.

• Randomly skipping data accesses (i.e., without consid-
ering their latency costs) offers considerably smaller
improvements compared to our scheme. For example
skipping 3% of the data points “randomly” improves the
memory performance only by 4% – 5%.

• Our cache miss skipping scheme is applicable for both
uniform and non-uniform cache hierarchies. In fact skip-
ping 3% of the data points improves the memory perfor-
mance by 45% – 48% and the overall performance by

13% – 14% on the NoC/SNUCA based system.
The remainder of this paper is structured as follows. A

general overview of decision tree learning is provided in
Section II. Section III explains the details of our data ac-
cess skipping strategy and discusses potential (hardware and
software based) implementation options. The results from
our experimental evaluation are presented in Section IV. We
discuss prior work relevant to our study in Section V, and we
conclude the paper in Section VI with a summary of our main
observations and a brief discussion of the planned future work.

II. DECISION TREE LEARNING

Classification via decision tree is achieved by traversing the
tree from the root to a leaf node. Each level represents a test
for one of the attributes of the data point, and each branch
represents one of the classes available for the aforementioned
attribute. One of the most important factors related to the
accuracy of the decision tree is the way the branches are
created. The algorithm evaluates every attribute via a statis-
tical test, and calculates how accurate the model will be by
assuming that the algorithm is completed at that point. While
there are a number of different tests, such as information
gain and variance reduction, that are designed to determine
the most beneficial branch, studying the accuracies of these
methods is beyond the scope of this study. The test chosen
for our baseline algorithm is a test to find the branches with
minimum gini impurity [6]. Gini impurity considers all of the
possible classes for a given set and calculates the probability
of “wrongly classifying” a random data point if its class is
selected randomly from the available set. The most accurate
case is when the gini impurity reaches zero, in which case
all data points have the same class. A pseudo-code of the
standard decision tree learning algorithm implementation is
given in Figure 2. It is important to note that, after the
initial sorting step, the values of the attributes are irrelevant
to the calculation of the gini impurity; they will be required
only as the end points of the branches for the testing phase.
Since each attribute operates on a different list of class
values, parallelizing this implementation is straightforward.
Synchronizing at the end of every level to find the best possible
branches for every node is enough to ensure the validity of the
results.

Decision trees are employed in a wide variety of scenarios
due to various factors. The basic algorithm can be improved to
operate with real values instead of a fixed set. The model may
have real-value outputs as well, even though the most common
cases involve Boolean classification. The algorithms’ robust
nature allows them to tolerate errors or missing attributes in
the training data, which is quite common when considering
real-world scenarios.

The specific decision tree learning implementation used in
this work is ScalParC [19] from the MineBench benchmark
suite [44]. This formulation of decision tree based classifi-
cation process is developed to address the scalability issues
exhibited by the SPRINT classifier [40]. ScalParC uses a
distributed hash table to reduce the memory requirements

2

Fig. 3. The accuracy of models after skipping varies through repeated
experiments due to the randomized nature of the optimization. The baseline
accuracy values for this dataset (small) can be found in Figure 12.

and to ensure that the algorithm is scalable in terms of both
runtime and memory requirements. We decided to use the
implementation from the MineBench suite because the original
implementation employs MPI to parallelize the workload,
whereas the MineBench version provides a more suitable
parallelization option for our target system via openMP.

III. CACHE MISS SKIPPING

Data access latency is not constant in modern multicore
and manycore architectures. Most existing systems include a
multi-layer cache hierarchy involving L1, L2, and possibly
L3 caches. In addition, a data access missing in the cache
can cause a variable latency based on parameters such as
row-buffer locality, bank parallelism, memory queue length,
and memory (DRAM) access latency. Consequently, if it is
permissible to skip a certain number of data references, it
makes sense (from a performance viewpoint) to skip the “most
costly” ones. Motivated by this observation, the data access
skipping strategy employed in this work skips a fraction of
the last-level cache misses (L2 in our case). That is, in our
optimization, a data access that misses in the last-level cache
is called a costly access, whereas a data access that hits
in one of the on-chip caches is called a cheap access. Our
approach selects a subset of the costly accesses to skip, thereby
trading off accuracy for performance benefits. It is to be noted,
however, that one could also adopt a different costly/cheap
model, e.g., memory accesses that miss in the row-buffer
could be considered costly (with the rest of the misses being
considered cheap) and our approach would still be applicable.
Our choice in this paper is driven by the observation that
there are various techniques based on compiler or hardware
support for predicting/identifying cache misses, making it easy
to distinguish between the costly and cheap accesses.

In its original form, a decision tree algorithm traverses the
entire input dataset in order to train the model for future use.
The nature of this process is imprecise, and while creating
deeper decision trees can increase the accuracy in most cases,
such an approach may also lead to overfitting the model for
training data, thereby reducing the overall accuracy. Instead

of spending more time on developing a single model, most
modern applications create multiple models and compare the
models’ accuracies to identify the best one. This approach
overcomes the overfitting problem, and also leads to shorter
decision trees, thereby reducing traversal time in future in-
stances. Since these applications already have mechanisms
to help them achieve their target accuracies, each individual
model’s level of accuracy loses importance in contrast. To
support this claim, we conducted multiple experiments with
varying degrees of data access skipping and measured their
accuracies. A skip ratio of X% means that, for each data
access, there is a X% chance that this particular access will
be skipped (i.e., that the access will not be issued to the off-
chip memory). Note that a skipped data access will not incur
a memory access cost and it will assume a value based on
a prediction scheme (how this prediction is implemented is
discussed later in this section). Figure 3 plots the accuracy
values of 20 experiments for each skip ratio (1% to 5%).
Experiments using other datasets yield similar results. Our
experiments show that the accuracy variance among various
runs of a given skip ratio is fairly limited. The discrepancy
becomes more noticeable as the percentage of skipped points
increases, but even using the most aggressive policy (skip
ratio: 5%), the accuracy gap between the best and the worst
case scenarios is less than 8%. These results form the basis of
the question we want to address: If skipping a certain number
of data points can be considered acceptable, how should
we choose which data points to skip in order to maximize
performance improvement?

As mentioned earlier, the memory accesses in our decision
tree learning algorithm take up a significant portion of the
overall execution time, and skipping some of the costly data
accesses (last-level cache misses) might result in a consider-
able boost in performance. The goal of this study is to establish
a performance/accuracy tradeoff framework by which the user
can explore various levels of aggressiveness in cache miss
skipping optimization. In doing so, he or she can decide to
sacrifice a limited amount of accuracy per model in order
to obtain shorter execution times and in the end efficiently
identify a satisfactory model.

At a high level, we employ a Data Access Skipping Module
(DASM), which is configured to skip a certain fraction of L2
misses (off-chip memory accesses). A pseudo-code of the de-
cision tree learning algorithm that employs DASM is given in
Figure 4. First, the user identifies the target memory accesses
and marks them for the compiler. For our decision tree learning
algorithm, we mark the loads for the class values of the points
since the attribute values are used only during the initial sorting
phase. This is necessary because a blanket approach in which
every memory access is considered a candidate for skipping
may lead to serious accuracy and performance problems. In
addition, most of the memory accesses involving temporary
variables are not costly enough to be considered for skipping.
Throughout the execution, if a memory access from the set
of marked memory accesses is missed at the L2 cache, the
data access skipping module will intervene. Depending on the

3

for every level do
for every node do

for every attribute do
for every point p do

Load p.class with DASM
if p.class is NaN then

p.class = (p− 1).class
end if
Calculate gini impurity

end for
end for

end for
Branch into new nodes

end for

Fig. 4. Pseudo-code of the decision tree learning algorithm with DASM. The
last point heuristic is used for replacement. Reading the class information for
the point is achieved through a special command that enables DASM. If the
access is skipped the value will not be in the expected range of classes which
will force the approximation heuristic to replace the value.

Fig. 5. DASM implementation at the hardware level.

“skip ratio” employed, DASM will decide to either let the
access proceed or return a predicted value.

DASM employs a hardware-based implementation that is
able to intercept the requests for costly memory accesses and
replace them when skipping is deemed beneficial. Similar
techniques have been investigated for different optimization
goals [25]. As shown in Figure 5, DASM is implemented as an
addition to the cache controller. When a marked load operation
is executed, the cache controller checks if the access is a hit or
miss. A cache hit will proceed as expected, but a cache miss
will alert DASM while waiting for the actual value from the
memory. In this case, DASM might force the cache controller
to return an invalid value based on a probability (skip ratio)
defined by the user beforehand. Handling the invalid value will
be left to the user based on the specifics of the use case. Please
note that this operation does not have any effect on the cache
coherency; the actual value of the skipped data is not changed
in the memory or non-shared caches. In fact, our motivation
relies on the fact that a skipped point will be accessed again in
the subsequent iterations and will contribute its actual value,
thus reducing the effect of the skip on the accuracy of the final
model.

Even though we have argued that the value of a particular

skipped data point has a negligible impact on accuracy, an
accurate prediction would further reduce the negative effect
of skipping. While assuming a “random” value from the
variables’ possibility space is a valid solution, it would likely
be more beneficial for the accuracy of the model to use a
simple heuristic. It is important to note that this heuristic
should be light-weight and should not result in extra memory
accesses. To this end, we employ a heuristic based on the
observation that a leaf in a perfect decision tree has a group
of variables with the same target values. Since the decision
tree algorithm dissects the dataset into pieces with higher
uniformity, it is plausible that an unknown variable located
anywhere within the dataset has a value similar to that of
the previous data point. The sequential traversal of the points
increases the probability that this study’s point of inspiration
(the replacement for our skipped value) has been accessed
recently and still exists at an easy-to-access location (L1
cache). Thus, our last-point heuristic predicts that a skipped
data point will have the same class value as the previous point
in the same attribute order. The last-point heuristic is designed
with the assumption that data points are traversed sequentially.
While this is a widely used method, we acknowledge that not
every algorithm will adhere to this principle; thus, we have
extensively explored the performance and accuracy of random
replacement to provide a baseline for any potential application.

Please note that the logic behind DASM and both of the
replacement policies is independent of gini impurity testing.
Our incorrect predictions after skipping a data point are
practically indistinguishable from an erroneous entry or an
outlying case in the dataset. Since similar occurrences are
common for data mining applications, testing algorithms such
as the gini impurity are developed and employed with that
assumption in mind. To the best of our knowledge, the gini
impurity test do not exhibit any specific tolerance for incorrect
data points; it has been selected only because of its ubiquity.

IV. EXPERIMENTAL EVALUATION

We used the ScalParC application from the MineBench suite
as a baseline [44] for our experiments to show the viability
of the data access skipping module. We employed the same
synthetic datasets as MineBench does (those generated by the
IBM Quest Data Generator) for the sake of fairly evaluating
our proposed technique. There were 125,000, 250,000, and
500,000 points with 32 dimensions per point grouped into
small, medium and large datasets, respectively. These datasets
are divided into training and testing sets. The training set
is created by selecting 80% of the dataset randomly, and
the testing dataset consists of the remaining points unless
otherwise noted. We used two different simulated systems for
our analysis. The first one is based on Intel Nehalem Xeon
X5550 with a uniform cache architecture. The second one
is a Network-on-Chip (NoC) based system with static non-
uniform cache access policy (SNUCA [17]). The cache hit
rates were collected using the GEM5 [2] simulation tool. We
also employed the Sniper full system simulation tool [5] to
collect data to be used in our motivation section as well as to

4

TABLE I
EXPERIMENTAL SETUP.

Flat-Cache NoC/SNUCA
Hierarchy Based System

Processor 4 in-order cores 4x8 out-of-order cores
L1 Caches Private (data and instruction)
L1 Cache Size 32 KB
L1 Cache Latency 3 cycles
L1 Block Size 64 Bytes
L2 Caches Private
L2 Cache Size 256 KB 512 KB
L2 Cache Latency 15 cycles 10 cycles
L2 Block Size 64 Bytes
Memory DDR-800, Memory Bus Multiplier: 5, Bank
Configuration Busy Time: 22 cycles, Rank Delay: 2 cycles,

Read-Write Delay: 3 cycles, Memory CTL
latency: 20 cycles, Refresh Period: 3120

Cache Coherency MOESI CMP
Protocol DIRECTORY
NoC Parameters 5-stage router,

flit size: 128 bits,
buffer size: 5 flits,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1 L2

C
a
c
h
e
H
it
R
a
te

Small

Medium

Large

Fig. 6. Breakdown of the L1 and L2 cache hit rates for each dataset.

verify our results from our earlier experiments. The specifics
of our simulated systems are given in Table I. For the majority
of our experiments, we use the first system. The memory
performance results for the SNUCA based system are also
explored fully, but the detailed accuracy analysis is omitted,
since the effect of DASM on accuracy is not dependent on the
architecture.

A. Performance Analysis

1) Uniform Chip Architecture: To begin our analysis on
the memory performance improvements DASM provides, we
collected the cache hit rates for the baseline implementation
(see Figure 6). It should be noted that, all of the datasets
that we used during these experiments are larger than the
total L2 cache specified in the simulator. The increase in
the L2 hit rates as the dataset size increases may appear
counterintuitive; however, the L2 hit rates were not computed
using the total number of accesses but the number of accesses
that reach the L2 cache (L1 misses). These cache hit rate
values are not outside the expected ranges for memory-intense

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Random Worst Best

S
a
v
in
g
in
M
e
m
o
ry

C
o
st

1%

2%

3%

4%

5%

(a) Savings in data access cost for the small dataset.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Random Worst Best

S
a
v
in
g
in
M
e
m
o
ry

C
o
st

1%

2%

3%

4%

5%

(b) Savings in data access cost for the medium dataset.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Random Worst Best

S
a
v
in
g
in
M
e
m
o
ry

C
o
st

1%

2%

3%

4%

5%

(c) Savings in data access cost for the large dataset.

Fig. 7. The increase in memory performance when using data access skipping
under three different datasets. DASM follows the best case. Note that 5% of
the small dataset will be large enough to cover all L2 misses in that dataset.

data mining applications. Using these values and the cache
access latencies given in Table I, we compute the number of
cycles the application spends on memory accesses. This forms
our baseline, and indicates in a sense how many cycles could
be saved by skipping data accesses.

We explored 5 different skip ratios (1% - 5%) and 3 different
skip scenarios (see Figure 7). The random case (the first group
of bars) assumes that the data accesses to be skipped are
chosen randomly, with no respect to the cache hit/miss status.
The worst case (the second group of bars) assumes that every

5

0

0.05

0.1

0.15

0.2

0.25

0.3

Small Medium Large

S
a
v
in
g
in
E
x
e
cu
ti
o
n
T
im

e

1%

2%

3%

4%

5%

Fig. 8. The improvement in execution time via data access skipping for
various datasets.

MC MC

MCMC

 MC Page 1

Fig. 9. A 4x4 NoC based multicore system. Every rectangle represents a
core, L1 and L2 caches and a router. MC denotes memory controller.

skipped access is an L1 cache hit. The best case (the last
group of bars) assumes that every skipped access is an off-
chip memory access. The skip ratios represent the number of
skipped points as a fraction of the total dataset size. Using
the aforementioned cache hit rate values and latencies; we
estimated how the memory access costs will be reduced for
every skip ratio and scenario compared to the baseline case.
The results were similar across the various dataset sizes; thus,
we discuss our findings in general terms. As expected, the
worst case offered very little increase in performance. On
the other hand, the disparity between the random and best
cases underlines the importance of skipping more costly data
accesses. We see that the time spent on data accesses gets
reduced by 45% – 50% when there is a moderate amount of
skipping (at 3%), and by up to 76% when there is a high
amount of skipping (at 5%).

To complete our analysis of the effect of DASM on perfor-
mance, we calculated the savings in execution time for various
skip ratios and datasets. The results plotted in Figure 8 indicate
that skipping 3% of the costly data accesses improves the
overall performance by 15% on average for all 3 database
sizes. Further, the savings in performance rise up to 25% with
a 5% skipping ratio.

2) Non-uniform Chip Architecture: Our second target ar-
chitecture is a network-on-chip (NoC) based multicore system.

An example of such a system is shown in Figure 9. This NoC
system employs a number of nodes, memory controllers and
connections in between. Each node represents an out-of-order
core, L1 caches for instruction and data, an L2 cache, and
a router to handle the communication with the neighboring
nodes. These nodes are connected in a 2D grid fashion. Since
DASM focuses on off-chip memory accesses, the details of the
L2 cache and memory controllers are of utmost importance.
The L2 cache employs a banked organization scheme and our
target cache mapping scheme, static non-uniform cache access
(SNUCA [17]), maps every cache bank to an equal sized
memory statically. The memory controllers handle the transfer
of data to-and-from the main memory and are traditionally
placed at the periphery of the grid. Each of the memory
controllers is tasked with a memory channel which might
include one or more group of memory banks (ranks). The
memory banks provide multiple simultaneous access, but the
address and data busses are shared.

Using the SNUCA mapping scheme provides a unique
opportunity to utilize DASM. Even if a data access can be
found in L2 cache, the cost of retrieving it might be very
high if the distance (on NoC) between the two nodes involved
is too large. On the other hand, if the skip ratio is not high
enough to cover all of the off chip memory accesses, it might
be beneficial to skip the accesses mapped to further memory
controllers rather than closer ones. We explored both of these
options in our experiments by calculating the distribution of
the data access latencies and skipping the most costly ones.
The distribution is provided in Section I (Figure 1). We omit
the L1 and L2 cache hit rates for the baseline algorithm as
they are effectively the same (within some small margin of
error) as the previous system. Our experiments with various
skip ratios and different datasets show that DASM is just as
effective with NoC/SNUCA system as with the uniform (flat)
cache system discussed in Section IV-A1 (see Figure 10). A
medium level of aggressiveness in skipping policy (skip ratio
of 3%) is sufficient to reduce the overall cost of memory
accesses by 45% to 48%. Further, we studied the effect of
variable cost accesses at higher and lower skip ratios. The
impact of skipping only 1% of data accesses is still significant
by itself. The next three segments (2%, 3%, and 4%) are not
as effective since the data accesses with the highest costs have
already been eliminated. The effects of these three segments
are similar to each other, as misses with similar costs can
be found at various distances from a given core. However,
this trend does not extend to more aggressive policies. The
performance improvement gained by increasing the skip ratio
from 4% to 5% is not as significant, since most of the costly
accesses have already been eliminated by skipping 4% of the
data accesses.

Now, we discuss the effect of our savings in memory
performance on the overall execution time. Figure 11 shows
that a moderate skip ratio such as 3% offers 13% - 14%
decrease in execution time. The performance can be improved
by up to 20% via skipping 5% of the data accesses.

6

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Average Worst Best

A
c
c
u
r
a
c
y

Baseline

1%

2%

3%

4%

5%

(a) Accuracy comparison for small dataset.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Average Worst Best

A
c
c
u
r
a
c
y

Baseline

1%

2%

3%

4%

5%

(b) Accuracy comparison for medium dataset.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Average Worst Best

A
c
c
u
r
a
c
y

Baseline

1%

2%

3%

4%

5%

(c) Accuracy comparison for large dataset.

Fig. 12. The accuracy of the decision tree models for the baseline algorithm under various skip ratios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Small Medium Large

S
a
v
in
g
in
M
e
m
o
ry

C
o
st

1%

2%

3%

4%

5%

Fig. 10. The memory performance improvement via data access skipping
on a 4x8 NoC based multicore system with various datasets.

Fig. 11. The improvement in execution time via data access skipping on a
4x8 NoC based multicore system with various datasets.

B. Accuracy Analysis

1) Model Accuracy: As we discussed before, the accuracy
of the decision tree models is not affected by the inherent
random element of DASM drastically. To show this effect,
we performed experiments with different skip ratios and skip
scenarios similar to Section IV-A. We repeated the experiment
20 times and collected the best and worst accuracy values in

addition to the average for every skip ratio. The graphs in
Figure 12 indicate that our framework offers a viable selection
of optimizations for any target dataset size and accuracy.
Medium level of skipping (3%) offers a reasonable balance in
the performance/accuracy tradeoff, The memory performance
is improved by approximately 47%, while the accuracy is re-
duced by approximately 5%. These results clearly demonstrate
the intrinsic flexibility of decision tree learning algorithm, as
the user can set his or her expected accuracy and find the ideal
level of skipping for maximum performance.

Due to the iterative nature of our decision tree learning
algorithm, interim trees are valid and viable classification
models. These models are especially important for decision
tree learning as some pruning techniques remove some of the
branches from the final model, resulting in a leaf node that
is similar to an interim model. Hence, it is important that
the accuracy of interim models using DASM do not diverge
significantly from the baseline algorithms’ results. We present
the accuracy of the decision tree models at every level to
understand the impact of our approximation over iterations
in Figure 13. These values are collected by taking a snapshot
of the model at the end of every level and evaluating the test
dataset using these partial model snapshots. Our results suggest
that the accuracy with the skipping module follows the same
trajectory as our baseline model. While variations from the
baseline become more prominent as the skip ratio increases,
towards the final iterations of the model, the accuracy values
stabilize for every case. These results suggest that, even if
a pruning technique is applied to the tree, our accuracy
predictions from Figure 7 will still be valid for the models
constructed using our approximation technique.

2) Replacement Accuracy: Even though the decision tree
learning algorithm compensates for most of the errors in
predicting the skipped data access values thanks to its inherent
mechanics, it is still beneficial to have a more accurate way
of predicting the skipped values than selecting a replacement
randomly. Figure 14 plots how accurate the decision tree
models use random and heuristic replacement using various
skip ratios. We conducted 20 separate experiments for each

7

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
c
c
u
ra
c
y

Time (Iteration)

Baseline

1%

2%

3%

4%

5%

(a) Accuracy over time for small dataset.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
c
c
u
ra
c
y

Time (Iteration)

Baseline

1%

2%

3%

4%

5%

(b) Accuracy over time for medium dataset.

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
c
c
u
ra
c
y

Time (Iteration)

Baseline

1%

2%

3%

4%

5%

(c) Accuracy over time for large dataset.

Fig. 13. The accuracy of the interim models created by the decision tree
learning algorithm and various skipping policies.

ratio, and sorted them to better show the discrepancy among
them. The most accurate experiments were close in accuracy
for random and heuristic schemes, but the deviation between
experiments is significantly higher in the random case. These
figures show that our heuristic not only offers a higher
average accuracy; it also provides more consistent results over
iterations.

Up to this point we explored the accuracy of overall
models with DASM from different angles. These experiments
obfuscate most of the inaccuracies stemmed from incorrect
replacements. To give a better overall understanding of the

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
cc
u
ra
cy

Experiment

1%

2%

3%

4%

5%

(a) Accuracy of the heuristic selection.

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
A
cc
u
ra
cy

Experiment

1%

2%

3%

4%

5%

(b) Accuracy of the random selection.

Fig. 14. The accuracy of the models after skipping depends on the
replacement policy. While there are a number of sophisticated techniques
to alleviate this problem, our lightweight approach stabilizes the output
considerably. The baseline accuracy values for this dataset (small) can be
found in Figure 12.

optimization, we measured the accuracy of individual approx-
imated values throughout the entire program. Figure 15 plots
the accuracy of random and heuristic replacement techniques
using various policies (skip ratios). Our experiments show that
our heuristic predicts the correct class for the skipped point
with 82% accuracy. The random replacement accuracy is at
50% as predicted for a model with two classes. While the
improvement of our heuristic over the random replacement is
clear, it is important to note that both of the accuracy values
are well below the accuracy of the overall models we reported
in Figure 14. These experiments support our aforementioned
claim on the inaccuracy tolerance of our target algorithm.

V. RELATED WORK

Decision tree learning algorithms have been the subject
of extensive research. Rokach and Maimon have explored
the creation and evaluation of decision trees, including their
splitting criteria, feature selection, and hybridization [36].
Quinlan has proposed the top-down induction of decision trees,
which remains one of the most common strategies for creating
decision tree models [32]. Hyafil and Rivest have proven that
constructing an optimal binary decision tree is an NP-complete
problem, paving the way for the development of heuristic

8

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1% 2% 3% 4% 5%

A
c
c
u
ra
c
y

Skip Ratio

H Small

H Medium

H Large

R Small

R Medium

R Large

Fig. 15. The accuracy of individual cache miss skips approximations. The
results of heuristic and random replacement are denoted by ”H” and ”R”
prefixes, respectively.

schemes [18]. Joshi et al. have proposed a parallel and scalable
formulation of the decision tree algorithm using a parallel hash
table [19]. A number of variations on the standard algorithm
such as boosted trees and rotation forrest have been proposed
to adapt decision tree learning to specific purposes [14], [16],
[35], [3].

In recent years, approximate computing research has led to a
number of interesting optimizations. Grigorian and Reinman
have developed a platform-agnostic technique, called Light-
Weight Checks that exploits the imprecision tolerance of
inverse kinematics [15]. Sui et al. have explored fine-tuning
options for approximate computing via a machine learning
algorithm [42]. Esmaeilzadeh et al. have proposed a neural
network accelerator for transforming certain code regions, as
well as architectural support for aproximate computing [12],
[11]. The load value approximation technique by Miguel et al.
has revealed the viability of such optimizations for a number
of different workloads [27]. Research by Sampson et al. has
shown that both DRAM cells’ lifetimes and performance
may be improved through approximate storage [39]. Samadi
et al. have developed SAGE, a compiler with approximate
computation optimizations for GPUs [38]. Alvarez et al. have
focused on power consumption in their work, introducing an
instruction memoization technique based on the fuzzy compu-
tation paradigm [1]. Yetim et al. have focused on streaming
applications, developing a technique to enable error-tolerant
communication [43]. Fang et al. have evaluated the error
tolerance of various GPGPU applications [13]. Approximate
computing has also been used to improve other performance-
related metrics such as synchronization overhead [33].

Various prediction-based optimizations have been proposed
to solve problems similar to ours. Checkpoint-assisted value
prediction has been proposed by Ceze et al. in order to conceal
L2 cache misses [7]. Lipasti et al. have introduced value
locality, offering a load-value prediction model that exploits
this concept [22]. Burtscher has created a compact and high-
performing load value predictor entirely at the software level
[4]. Value prediction has been shown by Liu and Gaudiot to
be useful for reducing communication latency within many-

core systems [24]. Martin et al. have explored the effects
of erroneous value prediction on multithreaded systems and
have discussed how to counter such problems [26]. Ozturk et
al. have developed a method for analyzing the source code
at run-time for branch prediction [30]. Odaira has explored
hardware transactional memory and its implications for thread-
level speculation [29].

Our proposed optimization differs from these prior tech-
niques in a number of ways. First, DASM is less intrusive
than most of the techniques discussed in this section. With
its simple module for redirecting some data accesses, DASM
is easy to implement and use in conjunction with other op-
timizations. This is especially important for problems requir-
ing large datasets and/or a large number of approximations.
Such constraints would invalidate most of the approximations
employing history tables, buffers, or similar constructs. While
prediction-based models are useful for a variety of algorithms,
they are unsuitable for our purpose (eliminating costly data
accesses). It is important to note that the values of the data
points never change during the execution; this means that
predicting a given value might increase the cost of accessing
a data point unless the prediction algorithm can ensure that
it will never (or only in rare circumstances) incur costly data
accesses. To the best of our knowledge, a value prediction
algorithm that accounts for such a strict restriction does not
currently exist. Broadly speaking, our approach is the first
one that employs approximate computing paradigm in an
architecture-aware fashion.

VI. CONCLUDING REMARKS

Targeting decision tree learning applications, this study
proposes architecture-aware approximation. Our optimization
framework has two key components: a data access skipping
mechanism, and a user assist for various levels of aggres-
siveness in optimization. We evaluate the proposed opti-
mization using various metrics. Our experiments reveal that
the proposed framework yields significant improvements in
memory performance (up to 76%) and consequently in overall
performance (up to 25%), with a limited reduction in accuracy
(up to 8%) with respect to the unoptimized case.

Our future work will focus on investigating the interaction
between our proposed technique and various other approxima-
tion heuristics. Work is also underway in testing our algorithms
with other datasets.

REFERENCES

[1] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Transactions on Computers,
vol. 54, no. 7, pp. 922–927, July 2005.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
Aug. 2011.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and regression trees. Wadsworth & Brooks/Cole Advanced Books &
Software, 1984.

[4] M. Burtscher, “Improving context-based load value prediction,” Ph.D.
dissertation, University of Colorado, Department of Computer Science,
2000.

9

[5] T. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov 2011, pp. 1–12.

[6] L. Ceriani and P. Verme, “The origins of the gini index: extracts from
variabilit e mutabilit (1912) by corrado gini,” The Journal of Economic
Inequality, vol. 10, no. 3, pp. 421–443, 2012.

[7] L. Ceze, K. Strauss, J. Tuck, J. Torrellas, and J. Renau, “Cava: Using
checkpoint-assisted value prediction to hide l2 misses,” ACM Transac-
tions on Architecture and Code Optimization (TACO), vol. 3, no. 2, pp.
182–208, Jun. 2006.

[8] M. Chaudhuri, “Pagenuca: Selected policies for page-grain locality
management in large shared chip-multiprocessor caches,” in IEEE 15th
International Symposium on High Performance Computer Architecture,
Feb 2009, pp. 227–238.

[9] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intecon-
nection networks,” in Proceedings of the 38th Annual Design Automation
Conference, ser. DAC ’01. New York, NY, USA: ACM, 2001, pp. 684–
689.

[10] W. Ding and M. Kandemir, “Improving last level cache locality by
integrating loop and data transformations,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Nov 2012, pp. 65–72.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” SIGPLAN Not.,
vol. 47, no. 4, pp. 301–312, Mar. 2012.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceler-
ation for general-purpose approximate programs,” in Proceedings of the
45th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-45, 2012.

[13] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-qin: A
methodology for evaluating the error resilience of gpgpu applications,”
in IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), March 2014, pp. 221–230.

[14] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics
& Data Analysis, vol. 38, no. 4, pp. 367–378, Feb. 2002.

[15] B. Grigorian and G. Reinman, “Improving coverage and reliability in
approximate computing using application-specific, light-weight checks,”
First Workshop on Approximate Computing Across the System Stack
(WACAS), 2014.

[16] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical
learning : Data mining, inference, and prediction. Springer Verlag,
2001.

[17] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. Keckler, “A nuca
substrate for flexible cmp cache sharing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 18, no. 8, pp. 1028–1040, Aug 2007.

[18] L. Hyafil and R. L. Rivest, “Constructing Optimal Binary Decision Trees
is NP-Complete,” Information Processing Letters, vol. 5, pp. 15–17,
1976.

[19] M. Joshi, G. Karypis, and V. Kumar, “Scalparc: a new scalable and
efficient parallel classification algorithm for mining large datasets,”
in Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing
(IPPS/SPDP), Mar 1998, pp. 573–579.

[20] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scal-
able and high-performance scheduling algorithm for multiple memory
controllers,” in 16th International Conference on High-Performance
Computer Architecture (HPCA), 2010, pp. 1–12.

[21] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,” in Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’43. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 65–76.

[22] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and
load value prediction,” in Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS VII. New York, NY, USA: ACM,
1996, pp. 138–147.

[23] J. Liu, Y. Zhang, W. Ding, and M. Kandemir, “On-chip cache hierarchy-
aware tile scheduling for multicore machines,” in 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
April 2011, pp. 161–170.

[24] S. Liu and J.-L. Gaudiot, “Potential impact of value prediction on com-
munication in many-core architectures,” Computers, IEEE Transactions
on, vol. 58, no. 6, pp. 759–769, June 2009.

[25] K. Malkowski, G. Link, P. Raghavan, and M. Irwin, “Load miss predic-
tion - exploiting power performance trade-offs,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), March 2007,
pp. 1–8.

[26] M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and M. H.
Lipasti, “Correctly implementing value prediction in microprocessors
that support multithreading or multiprocessing,” in Proceedings of the
34th Annual ACM/IEEE International Symposium on Microarchitecture,
ser. MICRO 34. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 328–337.

[27] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 127–139.

[28] A. K. Mishra, “Design and analysis of heterogeneous networks for chip-
multiprocessors,” Ph.D. dissertation, University of Colorado, Department
of Computer Science, University Park, PA, USA, 2011, aAI3483797.

[29] R. Odaira and T. Nakaike, “Thread-level speculation on off-the-shelf
hardware transactional memory,” in IEEE International Symposium on
Workload Characterization (IISWC), Oct 2014, pp. 212–221.

[30] C. Ozturk, I. Karsli, and R. Sendag, “Automatic source code analysis of
branch mispredictions,” in IEEE International Symposium on Workload
Characterization (IISWC), Oct 2014, pp. 82–83.

[31] X. Pan and B. Jonsson, “A modeling framework for reuse distance-based
estimation of cache performance,” in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2015.

[32] J. R. Quinlan, “Induction of decision trees,” in Readings in Machine
Learning, J. W. Shavlik and T. G. Dietterich, Eds. Morgan Kaufmann,
1990, originally published in Machine Learning 1:81–106, 1986.

[33] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener, “Program-
ming with relaxed synchronization,” in Proceedings of the 2012 ACM
Workshop on Relaxing Synchronization for Multicore and Manycore
Scalability, ser. RACES ’12. New York, NY, USA: ACM, 2012, pp.
41–50.

[34] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in ACM SIGARCH Computer Architecture
News, vol. 28, no. 2. ACM, 2000, pp. 128–138.

[35] J. Rodriguez, L. Kuncheva, and C. Alonso, “Rotation forest: A new
classifier ensemble method,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 10, pp. 1619–1630, Oct 2006.

[36] L. Rokach and O. Maimon, Data mining with decision trees: theory and
applications. World Scientific Pub Co Inc, 2008.

[37] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
based approximation for data parallel applications,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 35–50.

[38] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:
Self-tuning approximation for graphics engines,” in Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-46. New York, NY, USA: ACM, 2013, pp. 13–24.

[39] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: ACM, 2013, pp. 25–36.

[40] J. C. Shafer, R. Agrawal, and M. Mehta, “Sprint: A scalable parallel
classifier for data mining,” in in Proceedings of the 22th International
Conference on Very Large Data Bases, ser. VLDB ’96. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1996, pp. 544–555.

[41] A. Sharifi, E. Kultursay, M. Kandemir, and C. Das, “Addressing end-to-
end memory access latency in noc-based multicores,” in 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec 2012, pp. 294–304.

[42] X. Sui, A. Lenharth, D. Fussell, and K. Pingali, “Tuning variable-fidelity
approximate programs,” Second Workshop on Approximate Computing
Across the System Stack (WACAS), 2015.

[43] Y. Yetim, M. Martonosi, and S. Malik, “Parallel streaming computation
on error-prone processors,” First Workshop on Approximate Computing
Across the System Stack (WACAS), 2014.

[44] J. Zambreno, B. Ozisikyilmaz, G. Memik, and A. Choudhary, “Perfor-
mance characterization of data mining applications using minebench,” in
9th Workshop on Computer Architecture Evaluation using Commercial
Workloads (CAECW), 2006.

10

