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Abstract—Observing that large multithreaded applications
with irregular data access patterns exhibit very low memory
bank-level parallelism (BLP) during their execution, we propose a
novel loop iteration scheduling strategy built upon the inspector-
executor paradigm. A unique characteristic of this strategy is
that it considers both bank-level parallelism (from an inter-core
perspective) and bank reuse (from an intra-core perspective) in
a unified framework. Its primary goal is to improve bank-level
parallelism, and bank reuse is taken into account only if doing so
does not hurt bank-level parallelism. Our experiments with this
strategy using eight application programs on both a simulator
and a real multicore system show an average BLP improvement
of 46.8% and an average execution time reduction of 18.3%.

I. INTRODUCTION

To maximize the performance of multithreaded applications

mapped to multicores/manycores, one needs to consider end-

to-end data access performance, not just the cache perfor-

mance. In fact, trying to maximize LLC (Last-Level Cache)

hit rates (which is the main goal of many compiler schemes)

does not guarantee good, let alone being optimal, end-to-end

data access performance [1], [2], [3]. This is because off-chip

accesses can consume a lot of cycles, but more importantly,

latencies they experience are not uniform, being dependent

on several factors such as bank-level parallelism, row-buffer

locality, memory scheduling policy, etc. Therefore, an end-to-

end data access optimization strategy should consider cache

performance as well as performance of the LLC misses.

Unfortunately, while there are some recent hardware-based

works targeting off-chip accesses [4], [5], [6], software works

targeting off-chip accesses are still in their infancy.

One of the important factors that influence the performance

of LLC misses is ”bank-level parallelism” (BLP), which refers

to the number of concurrently-served memory accesses by

different memory banks in the system. Note that BLP is

a measure of memory-level parallelism since in the ideal

case one would want all the banks to be busy in serving

memory requests (LLC misses). Note also that, in order to

have high BLP, one needs (1) a large number of concurrent

LLC misses and (2) a balanced distribution of these misses

over the available memory banks. To achieve (1), LLC misses

need to be clustered and, to achieve (2), misses should be

reorganized either through code transformations or data layout

transformations. While these tasks are not trivial and have not

received much attention so far from the compiler and runtime

system communities, they are even harder in the context of

irregular applications, i.e., applications whose data access

patterns cannot be completely analyzed at compile-time (e.g.,

index array-based calculations in scientific codes).

This paper presents a novel strategy to optimize BLP of

index array-based irregular programs. Our strategy, built upon

the inspector/executor paradigm [7], reorganizes LLC misses

at runtime to maximize BLP. To our knowledge, this is the first

compiler work that targets improving BLP in irregular appli-

cations. The contributions of this work can be summarized as

follows:

• It presents experimental evidence, using eight multi-

threaded irregular applications, showing that (1) the BLP

of the original versions of these irregular applications are

very poor in general, (2) simply maximizing memory-level

parallelism (by clustering misses) does not bring significant

improvements, and (3) maximizing bank-level parallelism on

the other hand can bring significant performance benefits.

• Drawing insights from this motivational data, it next

proposes a compiler/runtime based loop iteration scheduling

strategy to maximize BLP. A unique characteristic of this

strategy is that it considers both bank-level parallelism (from

an inter-core perspective) and bank reuse (from an intra-core

perspective) in a unified framework. Its primary goal is to

improve bank-level parallelism, and bank reuse is taken into

account only if doing so does not hurt bank-level parallelism.

• It gives experimental evidence showing the effectiveness

of the proposed strategy. We evaluate the proposed approach

in both simulator (to collect detailed off-chip statistics and

compare it against hardware-based memory schedulers) and

real multicore hardware. Our results indicate that the proposed

strategy reduces execution time by 18.3% on average.

II. BACKGROUND ON DRAM AND BLP

DRAM in modern systems is composed of various compo-

nents like ranks, banks, and sub-arrays. Cores in a multicore

access the data from off-chip DRAM through a component

called Memory Controller (MC). Upon a last-level cache

(LLC) miss, read/write requests are mapped to a specific

MC based on the address mapping which we describe below.

Requests to a DRAM are queued in a buffer at the MC,

and are issued to the DRAM by MC. Figure 1 shows the978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



basic organization of a DRAM and how it is connected

to a multicore. Each MC manages a DRAM module also

referred to as DIMM by issuing commands over address/data

buses, also referred to as channel. Internally, each module

is organized hierarchically as ranks, banks, and sub-arrays.

We do not consider sub-arrays in our hierarchy as they are

less common. Each DIMM is made up of multiple ranks.

Each rank consists of multiple banks and all the banks in

a rank share the timing circuitry. Each bank consists of a

set of sense-amplifiers, referred to as row-buffer, where the

memory row is loaded to before the data corresponding to the

request is sent back over the channel. In an open-row policy,

the row previously accessed is left open in the row-buffer.

Consequently, if there is a request to the same row in the

row-buffer, it need not be activated again, and hence incurs

low latency resulting in a row-buffer hit. If there is a request

to a different row, the current row in the row-buffer needs

to be precharged and the new row has to be activated before

the data is accessed and such a scenario is widely referred

to as row-buffer conflict. Many works in the past proposed

hardware-based schedulers that take advantage of the open-

row policy. One such scheduler, FR-FCFS [8], [9], prioritizes

accesses that target the current row in the row-buffer over other

accesses.
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Fig. 1: DRAM organization and DRAM-multicore interfacing.

Address mapping, also referred to as interleaving, governs

how data are distributed across various components in the

DRAM. This mapping (from physical addresses to memory

banks) is decided statically (at hardware design time), and

depending on the mapping scheme employed by the hardware,

a request to a physical address can result in an access to a

channel/rank and bank. Various interleavings are possible at

each level in the memory hierarchy like caches, channels and

banks. Two widely-employed interleavings are cache line level

and page level. Address mapping plays an important role in

determining the performance of the system as it effects both

the locality and parallelism in the memory hierarchy. Figure 2

shows how a physical address is mapped to a channel/rank and

bank based on page-level interleaving. The least significant

12-bits represent the page offset for a 4KB page. Assuming

there are 4 MCs, the next 2 bits (bits 12 and 13) represent

the channel id where this physical address is mapped. In a

corresponding channel, assuming there are 4 ranks, the next

2 bits (bits 14 and 15) represent the rank where this physical

address is mapped. Once the rank is determined, assuming

there are 8 banks in a rank, the next 3 bits (bits 16, 17 and

18) are the bank bits and determine which bank this physical

address is mapped to.
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Fig. 2: Page interleaved address mapping.

Ideally, consecutive requests to different pages in time

domain should be mapped to different banks such that these

independent requests are served in parallel. This is commonly

referred to as bank-level parallelism (BLP). In this paper, we

define BLP as

the average number of requests being served in

parallel by all the banks in the DRAM when at least

one request is being served by any bank.

This definition for BLP is same as the one used in [6]. There

exist various hardware-based schemes to improve BLP, and

we compare our work to a few of them in this paper.

III. MOTIVATIONAL RESULTS

The curves marked as “Original” in Figure 3 give BLP

values for a period of 2 billion cycles for our applications

on a 12-core, 64-bank system. One can make two critical ob-

servations from these results. First, most of these applications

do not perform well from a BLP angle. In fact, the average

BLP values for applications HPCG and GMR are 19.7 and

16.6, respectively, as given in Figure 4. Second, as far as

BLP is concerned, each of these applications exhibits a quite

repetitive pattern. This is primarily because these index array-

based irregular applications have an outermost “timing” loop

that iterates either for a fixed number of iterations or until a

convergence criterion is met. In fact, this repetitiveness (not

just in terms of BLP, but also in terms of access patterns and

cache statistics) is the main reason why the inspector/execution

paradigm (explained later) works well for irregular applica-

tions.

To illustrate the influence of these low BLP values on per-

formance, we present in Figure 5, the execution times collected

using our simulator. The first bar for a benchmark in this

bar-graph plots the execution time of the original application

in seconds. We see that, without performing anything special

regarding BLP, the execution times of our applications vary

between 55.6 seconds and 124.4 seconds. At this point, one

may suggest that optimizing memory level parallelism (MLP),

that is, simply increasing the burstiness of off-chip memory

requests can help us improve BLP and ultimately reduce

the overall application execution times. To check the validity

of this, we implemented in our simulator a strategy where

the off-chip accesses originating from each core have been

clustered as much as possible, subject to data dependences.

Note that clustering memory requests does not necessarily
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Fig. 3: BLP values (y-axis) for our applications over a period of 2 billion cycles in a 12-core, 64-bank system.
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Fig. 4: BLP results with different schemes.

mean delaying all of them. It is true that some memory

requests are delayed due to clustering but also some other

requests are moved to an earlier point. Actually, what this

strategy (called MLP Ideal) implements in the simulator is the

hardware-equivalent of the compiler technique proposed by Pai

and Adve [10] that aims to increase memory-level parallelism.

MLP Ideal incurs around the same number of LLC misses as

the original case (within 1% in our experiments), but incurs

them at different points in execution. Clearly, MLP Ideal can

increase BLP, depending on the target banks of the misses

clustered. The second bar for an application in Figures 4

and 5 give the resulting BLP values and execution times with

MLP Ideal. On an average, maximizing MLP (instead of BLP)

improves BLP by 21.2%, and reduces application execution

time by 6.5%, both compared to the original case. In other

words, while optimizing for MLP brings some BLP benefits,

it is not very effective, and leaves a lot of performance on the

table.
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Fig. 5: Execution time results with different schemes.

To show what the potential of an ideal scheme that max-

imizes BLP (as opposed to MLP) would be, we performed

another set of experiments. It needs to be observed that,

at any given period of time, there could be two reasons

why an application can experience less than maximum BLP.

First, there may not be enough number of off-chip memory

references (e.g., if we have only 16 outstanding memory

references in a period of execution, we can have a maximum

BLP value of 16). Second, even if we have enough off-chip

accesses, those accesses may not get distributed evenly across

available memory banks. In our implementation of the ideal

scheme, we ensured that, if there are sufficient number of off-

chip accesses, they are always distributed across the banks

evenly. Therefore, the only reason this ideal scheme could not

achieve maximum BLP is the lack of sufficient number of

memory accesses. The results with this ideal scheme (called

BLP Ideal) are given as the last bar for each application, in

Figures 4 and 5. As compared to the original execution, this

ideal scheme brings an average BLP improvement of 69.8%,

resulting in an average execution time saving of 27.8%.
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Fig. 6: BLP and execution time improvements brought by BLP

Ideal, with different bank counts on a system with 4 MCs and

8 ranks per channel.

Our last set of experiments in this section quantifies the

potential of this ideal scheme in a system with a large number

of banks. In Figure 6, a bar marked “a(b)” indicates that the

system has “a” banks per rank, giving a total of b=2x4xa

banks, (8(64) is the default configuration used so far). The

y-axis represents the average value across all applications. We

see from these results that the effectiveness of the BLP-optimal

scheme increases as we increase the number of banks, which

is the current trend in system design.

Overall, the results plotted in Figures 3, 4, 5, and 6 clearly

show that simply maximizing MLP does not bring signifi-

cant BLP improvements, and instead, maximizing BLP can

bring significant performance benefits, especially with larger

configurations. However, BLP Ideal sets an upper bound for

potential execution time improvements and cannot be directly

implemented. Thus, we propose a practical BLP optimization

strategy that approximates BLP Ideal.

IV. TECHNICAL DETAILS

A. High Level View of Our Approach

The high-level view of our approach is illustrated in Figure 7

for a system with 4 cores and 4 banks. Each circle in this figure



represents a slab, a set of loop iterations, which is the unit for

scheduling computations in our framework. In Figure 7(a),

the default execution order is shown, where accesses from

different cores are clustered into the same bank (at a given

period of time), resulting in a BLP of 1. For example, in

the first period, requests from all cores access the first bank.

Figure 7(b) depicts the execution order after our approach is

applied. In this case, at any given time, all banks are accessed,

giving a BLP of 4, which is much better than the default case.
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Fig. 7: High level view of a system with 4 cores and 4 banks.

Each core executes its slabs from left to right.
Our approach works at the granularity of a parallel region.

For the purposes of this paper, a parallel region represents

a region that starts with an assignment to index arrays and

ends with another assignment to them, as shown on the left

side of Figure 8, for an example extracted from one of our

application programs. The total set of iterations that will be

executed by all cores in parallel region i is denoted using

Ci(1 ≤ i ≤ N), where N is the number of parallel regions.

After the parallelization of Ci, the set of iterations assigned

to core j is referred to as Li,j , with 1 ≤ j ≤ P , where P

is the total number of cores. Each Li,j is divided into nearly

equal sized slabs, Si,j,kt
, where we execute Si,j,kt

(from Li,j)

at scheduling slot (time) t.

X[…]  …
Y[…]  … 

parallel-loop:

…  A[X[…]] + E[Y[…]]
…  F[Y[…]] + D[X[…]]

X[…]  …
Y[…]  … 

parallel-loop:

… A[X[…]] + B[X[…]]
… C[Y[…]] + D[Y[…]]

…

C1

C2

X[…]  …
Y[…]  … 

Sch  BLP-scheduling()

/* Algorithm I */

parallel-loop using Sch:

…  A[X[…]] + B[X[…]]
…  C[Y[…]] + D[Y[…]]

C1

Inspector

Executor

(a)

(b)

Fig. 8: (a) A code fragment with two parallel regions and (b)

Modified version of the first parallel region in (a) based on

the inspector-executor paradigm.

B. Optimization Goal

The main goal behind our loop iteration scheduling al-

gorithm is to optimize BLP. In mathematical terms, at each

scheduling slot t, we need to select and schedule a slab for

each core (i.e., Si,j,kt
from Li,j) such that we cover as many

memory banks as possible. Clearly, to figure out the bank(s)

accessed by a given slab, we first need to be able to predict

the LLC misses, which is quite hard in the case of irregular

applications. Therefore, in our default implementation, we

conservatively assume that all data accesses in the parallel

region will miss in the LLC, and schedule loop iterations based

on this assumption. Later, we also explain how one can relax

this assumption. To determine the bank to be accessed by an

LLC miss, we also need support from the architecture and

the OS. Operating systems have APIs that allocate a physical

page for a given virtual address using page-coloring algorithm.

There is also an API called page-create-va(.) in Solaris (and

similar calls in other operating systems) that can accept hints

from the user such that the physical pages allocated by the OS

honor these hints. We modified this call to allocate physical

addresses such that the kernel uses the same bank bits from the

virtual address for the physical address. As a result, the bits

specifying the bank (e.g., bits 16, 17 and 18 in Figure 2) are

not changed during the virtual-to-physical address translation,

and for a given slab, we can determine the set of bank(s)

that hold the data that slab will access, and this allows the

compiler to optimize for BLP using virtual addresses and

expect the corresponding improvements when the hardware

uses physical addresses. We observed during our experiments

that the number of page faults did not increase after our

optimization. That is, while our approach changes the virtual

address-to-physical address mapping, doing so does not lead

to any observable change in the virtual memory performance.

Each slab Si,j,kt
can be associated with a bitmap, called

bank-map ∆i,j,kt
, of the form:

< B1, B2, · · · , BQ >,

where Bz (1 ≤ z ≤ Q) is set to 1 if Si,j,kt
accesses memory

bank z, and 0 if it does not (Q is the total number of banks

in the system). Consequently, ∆i,j,kt
in a sense represents the

“bank access pattern” of Si,j,kt
in a compact fashion. Now,

one can try to maximize the value of the following expression

to optimize BLP at scheduling slot t:

⊙{
∨

1≤j≤P

∆i,j,kt
},

where ∨ denotes “bitwise OR” operation and ⊙ is an operator

that returns the number of 1s in a bit-map.

While the objective function given above can be used to

maximize BLP, it does not consider row-buffer locality at all.

One option to take into account row-buffer locality would be

defining another type of bitmap (row-map) where each entry

(position) captures whether we access a certain memory row

or not. These vectors, which represent data access patterns

at a memory row granularity, can then be used to develop a

scheduler that can account for row-buffer locality. However,

the sheer number of rows makes this approach infeasible to be



implemented in practice as a part of dynamic scheme. Instead,

we propose a strategy that works with the bank-maps defined

earlier.

Our strategy is to maximize the value of the following target

function, if doing so does not create a conflict with the BLP

optimization goal discussed above:
∑

1≤j≤P

∑

1≤t≤T

⊙{∆i,j,kt−1
⊗∆i,j,kt

},

where ⊗ refers to the “bitwise Exclusive-NOR” operation. It

is important to note that what this function tries to capture is to

ensure that the bank-maps of two successively scheduled slabs

from the same core (∆i,j,kt−1
and ∆i,j,kt

) have the same bit

values (0 or 1) in as many positions as possible. That is, this

function is oriented towards achieving bank reuse across the

successively-scheduled slabs from the same core. It is also to

be noted that, while bank reuse does not necessarily guarantee

memory row reuse, it increases the chances for the latter (in

our experiments, we quantify the impact of our approach on

row-buffer hit rate).

Overall, our approach tries to optimize BLP across the cores

in a given scheduling step (horizontal dimension), while con-

sidering row-buffer locality, for each core, across successive

scheduling slots (vertical dimension). The rationale behind this

can be explained as follows. First, given sufficiently large

slabs, careful selection of slabs from different cores (at the

same scheduling slot) can be expected, in most cases, to cover

all the memory banks in the system. If, for some reason, one

wants to work with small slabs (each with fewer iterations)

however, one needs to consider not just a single scheduling

slot but multiple neighboring slots to make sure that all

banks are covered. This generalized formulation will be given

in the next subsection. On the other hand, the reason why

we consider only intra-core bank reuse instead of inter-core

bank reuse is the observation that sharing (at a memory row

granularity) across cores is not as frequent as sharing within a

core (especially in carefully-parallelized scientific codes where

inter-core data sharing is minimized).

C. Generalization

There are two generalizations that we discuss. First, in

optimizing BLP, we can consider multiple scheduling steps,

and second, in considering row-buffer locality, we can consider

inter-core bank reuse, in addition to intra-core bank reuse.

The target function to maximize for BLP when considering

q successive schedule slots instead of only the current slot t

can be expressed as follows:

⊙{
∨

1≤j≤P ; t−q≤r≤t

∆i,j,kr
}.

Clearly, q is a parameter that can be tuned to strike a balance

between BLP and runtime overheads (due to working with

small-sized slabs). The objective function that considers both

intra-core and inter-core bank reuse (row-buffer locality) can

be expressed as:
∑

1≤j≤P

∑

1≤v≤P ; 1≤t≤T

⊙{∆i,v,kt−1
⊗∆i,j,kt

}.

This function can be further enhanced to capture the bank

reuse across multiple scheduling steps as well. Our experi-

ments with this generalized scheme revealed that, considering

2 steps (instead of 1) in making scheduling decisions brought

an additional 1.8% improvement (over the 1 step case) but

increasing it to 3 or 4 steps did not bring any additional im-

provement. Consequently, in this paper, we focus exclusively

on the case where 1 scheduling step at a time is considered.

D. Algorithm and Example

To implement the objective function discussed in Sec-

tion IV-B, our algorithm employs an iterative strategy. More

specifically, to select the entries Si,j,kt
in scheduling step t,

our approach considers each core in turn, starting with the first

one. For the first core, it selects a slab (as will be discussed

shortly, bank reuse is taken into account for this). For the

second core, it selects a slab such that this new slab covers

as many banks as possible that have not been covered by the

first slab. Similarly, for the third core, it picks up a slab that

covers (if possible) the banks that have not been covered by

the first two slabs, and so on. The row-buffer locality aspect

on the other hand is taken into account as follows. Whenever

we have multiple candidates (for a given core) to select from

(i.e., candidates that cover exactly the same set of additional

banks), we give priority to the one that maximizes bank reuse

with the slab that has been scheduled on the same core in the

previous step. In this way, row-buffer locality (actually, bank

reuse) is considered only if doing so does not prevent us from

reaching the best candidate from a BLP viewpoint.

Our approach is implemented using the inspector-executor

paradigm. Specifically, for each parallel region, the compiler

inserts the scheduler code right after the values of the index ar-

rays are known (the index array assignments and the scheduler

code together constitute the inspector). The main parallel loop

that follows (known as executor) uses the schedule determined

by the scheduler (see the right side of Figure 8). The formal

algorithm for the scheduler is given as Algorithm I. The

asymptotic complexity of this algorithm is O(N ∗ M ∗ P 2),
where N , P , M are respectively the total number of parallel

regions, number of cores and number of slabs per core. This

algorithm goes over cores one by one, and for each core,

selects a slab from the remaining ones. In selecting a slab for

a core j at schedule slot t, two rules are observed. First, the

slab that contributes to most 1s when it is ORed with the slabs

selected for cores 1 through j − 1 in the same schedule slot

(t) is selected. Second, if there are multiple such candidates,

we give priority to the one that reuses most banks with the

slab scheduler in the previous slot (t − 1) on the same core.

We also implemented a slightly modified version of this slab

selection strategy, where cores (at a given schedule slot) are

not visited in order, but based on the flexibility they have at

that point. For example, if a core has only 1 potential slab

that can enhance the current BLP, it is given priority over

the others. This is because the others are less constrained and

we may still find suitable slab candidates for them when they

are visited. However, we observed in our experiments that, the



Algorithm 1 BLP scheduling

INPUT: Number of parallel regions (N); number of cores (P); number of slabs per core
(M);

1: //Initialization
2: for i from 1 to N do

3: for j from 1 to P do

4: Li,j ← {Si,j,1, ..., Si,j,k, ..., Si,j,M}
5: end for

6: end for

7: for Ci from C1 to CN do

8: for Li,j from Li,1 to Li,P do

9: t← 0

10: while Li,j 6≡ ∅ do

11: schedule← ∅

12: if t 6≡ 0 then

13: Search Si,j,k in Li,j

14: choose Si,j,k makes
15: ⊙{∆i,j,kt−1

⊗∆i,j,kt
}maximum

16: else

17: Random choose Si,j,k from Li,j

18: end if

19: delete Si,j,k from Li,j

20: schedule← schedule ∪ Si,j,k

21: //Use iterative method to search for candidates
22: for l from j + 1 to P do

23: Candidate← ∅

24: Search Si,l,k in Li,l

25: Candidate← all Si,l,k makes
26: ⊙{

∨

1≤r≤l

∆i,r,kt
} maximum

27: if t 6≡ 0 then

28: Search Si,l,k in Candidate
29: choose Si,l,k makes
30: ⊙{∆i,l,kt−1

⊗∆i,l,kt
}maximum

31: else

32: Random choose Si,l,k from Candidate
33: end if

34: delete Si,l,k from Li,l

35: schedule← schedule ∪ Si,l,k

36: end for

37: schedule set is the set of slabs to schedule
38: t← t + 1 //Time increased
39: end while

40: end for

41: end for

difference between these two alternate implementations is less

than 1%.

We want to emphasize that our approach is capable of

handling a wide variety of indexed array applications. This

includes applications where each index array is assigned only

once in the program, as well as the applications where an

index array is updated in multiple points in the program. Since

our compiler analysis detects index arrays automatically, if no

index array is used in the program, our optimization is simply

not applied. We also believe that our implementation can be

extended to work with a set of pointer codes where, once the

pointer-based data structure is built, it is visited multiple times

(e.g., many decision tree algorithms fall into this category).

In such cases, we can collect the bank access patterns (or

conservatively assume that every data access will be an LLC

miss and go to main memory) after the data structure (e.g.,

tree) is built, and use this information in scheduling the chunks

of computations that go over the data structure.

We focus on a small system with 4 cores and 4 memory

banks. Each core is assumed to have been assigned 4 slabs.

Figure 9(a) depicts the initial state of the cores at the first

scheduling slot (t = 1). We randomly pick one slab (slab 1)

from core 1. For core 2, to maximize the BLP, we have

three choices (slab 1, slab 2 and slab 3). Our selection is

still random at this point since no bank reuse is possible for
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Fig. 9: An example of BLP optimized scheduling with 4 cores

and 4 banks. Each core is assigned 4 slabs.

the first schedule slot. At the end, we have the schedule set

({S1,1,1, S1,2,1, S1,3,1, S1,4,2}), giving the maximum BLP of

4 for this schedule slot. Figure 9(b) illustrates the case when

time moves to the next scheduling slot (t = 2). Now, we have

three choices for core 1 (slab 2, slab 3 and slab 4). Taking

memory bank reuse into consideration, we pick slab 4 as this

slab reuses the memory bank 4 from the previous schedule

slot (0001⊗ 1001). Similarly, for core 4 at this schedule slot

(t = 2), we pick slab 4 to achieve memory bank reuse without

hurting BLP. Therefore, the complete schedule for the second

schedule slot is ({S1,1,4, S1,2,2, S1,3,2, S1,4,4}). Figure 9(c)and

Figure 9(d) illustrate the results for the subsequent schedule

slots (t = 3 and t = 4). Our algorithm ends when all the slabs

are scheduled with maximum BLP while also exploiting bank

reuse as much as possible.

E. Handling Regular Accesses

In determining the schedule (within the inspector code), the

regular accesses are taken into account along with irregular

accesses. Essentially, once the index arrays are assigned, we

have all the information we need, and regular accesses along

with irregular ones contribute to the determination of the

schedule. Note also that the first job of the inspector is to

determine the bank access pattern of a slab. As long as there

is at least one regular or irregular reference from a slab to

a bank, it is captured in the bank-map; repeated occurrences

of the same irregular reference will not add anything more.

However, if the same irregular reference is touched by two

slabs, the bit of the corresponding bank is set in both the

bank-maps. Also, if the same index array is updated multiple

times, it is possible that the same reference in one place will

point to a bank, and in another place to another bank. This is

fully captured in our implementation.

F. Discussion

We now want to discuss a couple of important points. First,

there is the question of why we consider BLP as the main

optimization target and consider row-buffer locality only if

doing so does not hurt BLP. The reason for this is two-fold.



First, our framework operates with bank-maps and row-buffer

locality optimization using them is a speculative one, i.e.,

its deemed benefits may or may not be realized at runtime.

Second, memory schedulers employed by current architectures

(e.g., FR-FCFS) compensate, to some extent, not-so-good row-

buffer locality by prioritizing memory requests that hit in the

row-buffers of DRAM banks over other requests, including

older ones. So, even if the row-buffer locality is not optimized

perfectly, the memory scheduler can still achieve some locality

at runtime.

Second, while we assumed so far that the slabs in Ci can

be executed in any order, our approach can be modified to

work with the scenarios where we have inter-slab dependences

(intra-slab dependences are taken naturally into account as

the iterations in a slab are executed in their default order).

To capture such dependences, we build a dependence graph

at the slab level, where nodes correspond to slabs and an

edge from one slab to another represents a data dependence

between them. With this representation, our approach can be

modified to consider (at each scheduling step) only the slabs

that are “schedulable” and select, if dependences allow, one

slab for each core to maximize BLP while considering bank-

level reuse.

The third issue is regarding the validity of our conservative

assumption which states that all data accesses will miss in

the LLC. Clearly, this assumption does not hold in practice.

By making this assumption however, capture a scenario where

we put the maximum pressure on the main memory system.

Clearly, depending on the actual misses at runtime, the relative

success of our iteration scheduling strategy may vary. Also, in

many irregular applications, a given slab is executed multiple

times (once in each iteration of the outermost loop of the

application). Consequently, it is possible to predict the banks

that will be accessed by a given slab based on its previous

executions. Current Intel processors like Xeon E5-E7 series

[11] already provide uncore performance counters which can

be read by a Unix performance tool like perf to understand the

row-buffer hit rates in the DRAM banks. With all the physical

address information already available in the MSHRs (Miss

Status Handling Registers, which keep track of outstanding

LLC misses), we assume that new ISA instructions which can

capture bank accesses would be a logical extension to these

performance counters. These ISA instructions could easily

read the physical addresses in the MSHRs and identify the

bank bits by performing a simple right shift bit-level operations

and a modulo operation. With this hardware support, it would

be possible to learn which bank(s) a given slab accessed in its

previous executions, and accordingly, predict which banks it

will access in its future executions.

Fourth, note that the scheduling problem we have is NP-

hard, and our greedy algorithm may not work well in some

cases because it makes a (local) slab selection decision at each

step, and that decision binds the scope for future decisions

(for other cores). To reach the optimal BLP, slabs for all

cores should be selected considering all cores at the same

time (instead of one-core-at-a-time). However, we decided

against such a scheme because of two factors. First, this would

increase the complexity of our algorithm. Second, we also

formulated an ILP problem for the optimal slab selection

and found that the additional execution time improvements

it brought over our greedy scheme was only 2.5% on average

(per parallel loop, after 7 hours of execution of the ILP solver).

V. EXPERIMENTAL EVALUATION

A. Setup and Applications

We implemented our scheme using LLVM 3.5.0 [12] as

a source-to-source translator. The original source code and

the resulting optimized code are then compiled for simulator

and actual hardware using different node compilers with

the highest optimization level available, thereby activating

all cache optimizations as well. We observed the following

increases in compilation time (over the compilation time of the

original applications): Moldyn:41%, STUN:26%, HPCG:36%,

miniFE:39%, GMR:19%, Carey:14%, Equake:51%, and GS-

Solver:67%. The longest compilation time we observed when

using our approach was about 57 seconds. We evaluated our

approach over a set of eight application programs described in

Table I. The third column shows the total input size (in MBs),

and the last column gives the MPKI values of the original

codes under our default simulation platform (described below).

GMR, STUN and Carey are three codes written by our group.

TABLE I: Benchmarks used in evaluation.
App Description Input MPKI

Size

Moldyn Generalized program for the 336.2MB 81.3
[13] evaluation of molecular

dynamics models
STUN Parallel sparse direct solver 1.25GB 66.6
HPCG High performance precondit- 210.8MB 87.4

[14] -ioned CG solver benchmark
MiniFE [15] Finite element mini application 654.1MB 26.5

GMR Generalized minimal residual 308.6MB 91.2
based iterative sparse solver

Carey Epidemic diffusion simulation 1.10GB 12.5
on large social networks

Equake [16] Earthquake simulation 487.7MB 14.1
GS-Solver Gauss-Seidel based iterative 390.2MB 9.1

[17] sparse solver

We used both simulation-based evaluation (using GEM5

[18]) and commercial hardware-based evaluation in this work.

The reason for the former is three-fold. First, we wanted to get

detailed BLP statistics to measure the impact of our approach.

Unfortunately, we are not aware of any way of measuring

BLP in real systems. Second, we also wanted to conduct

a sensitivity study where we change the values of critical

system parameters/policies. Third, we wanted to compare

our compiler-based scheme to existing hardware-based BLP

optimization schemes and this comparison could only be done

using a simulator. However, in addition to this simulation

based study, we also collected execution time results on an

Intel Ivy Bridge based multicore system. Note that, the default

parameters used in our simulation closely follow those of the

Intel architecture.

Table II gives the important features of the default system

we modeled in our simulator. Note that the default memory

scheduler in GEM5 is FR-FCFS, and later when comparing



TABLE II: Major platform parameters.
Parameter Default value

Cores 12 Xeon E5 (3.4GHz)
Cache Line 64 bytes (for all caches)
L1 Cache 32KB per core (private), 8-way, 4 cycle-latency
L2 Cache 256KB per core (private), 8-way, 12 cycle-latency
L3 Cache 10MB shared, 32-way, 32 cycle-latency
Data TLB Two-level; L1: 64 entries, 4-way,

L2: 512 entries, 4-way
Main Memory 4 DDR4-2933 MCs, 32GB capacity

(tCL, tRCD, tRP) = (20cycles,20cycles,20cycles)
8 ranks/DIMM, 2 banks/rank, 2KB row size

FR-FCFS (64 max requests/MC)

our approach to other memory schedulers, we changed this de-

fault scheduler. Our results are collected when both hardware

and software prefetchers are ON (in both the simulation-based

experiments and real-hardware executions). In the simulator,

we implemented a state-of-the-art stride-prefetcher. In all the

experiments presented below, the slab size is set to 1/50th of

the iterations assigned to a core. Our sensitivity analysis with

different slab sizes generated similar results, as long as the

slab size chosen is large enough.

We define a metric called “coverage ratio” which captures

the percentage of original executor iterations that use the new

schedule after the optimization (in the ideal case, this ratio

would be 100%). The coverage ratios for our benchmarks

varied between 73% and 91%, averaging on 86%, indicating

that our compiler was able to optimize a very large fraction

of each application.

B. Simulation Results
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Fig. 10: BLP results with different schemes.

The curves marked “BLP Optimized” in Figure 3 give

the BLP results when our scheme is applied. Comparing

these results to those of the original executions shown in the

same figure, one can see that our scheme brings significant

improvements in BLP. The third bar for each benchmark in

Figure 10 gives the average BLP value with our scheme.

The first two bars of the same graph reproduce results from

Figure 4 for ease of comparison. When averaged over all

application programs in our experimental suite, the proposed

approach achieves an average BLP of 44.5, which is much

better than the average BLP of the original benchmarks (30.3),

and not too far from the BLP Ideal case (51.5).
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Fig. 11: Variations in LLC and row-buffer hit rates as a result

of our approach (BLP Optimized).

We now quantify the impact of our approach on execution

times of our applications. Note that BLP is only one part

of the big performance equation, and there are at least two

important factors to consider here, in addition to BLP values,

which may influence execution times: LLC behavior and row-

buffer hit rates. On the positive side, recall that our approach

tries to improve bank-level reuse, if doing so does not conflict

with the BLP optimization goal. We can expect this to have

a positive effect on both LLC performance and row-buffer hit

rates. On the negative side, we have two issues to consider.

First, since our approach changes the execution order of

loop iterations, this can negatively affect the cache behavior.

However, we do not expect this to be a major issue, as our

approach works at a slab granularity and, since once a slab

is scheduled all its iterations are executed in their original

order, the impact on cache behavior will be quite limited.

The second issue is due to the inherent conflict between BLP

optimization and row-buffer locality optimization. Since our

approach is primarily driven by the former, it may negatively

affect the latter, though we expect the bank-reuse optimization

to compensate for it. Further, the FR-FCFS memory scheduler

used by the hardware is also expected to help with the negative

impact of our approach on row-buffer locality. Figure 11 gives

the variations on LLC hit rate and row-buffer hit rate when

our approach is applied. We see from this plot that overall

BLP Optimized improves row-buffer locality in 3 of our 8

applications, and distorts it in the remaining ones. One can also

observe that the improvements in the LLC hit rates brought

by our approach vary between 2.2% and 8.8%, averaging

on 5.6%. It is also important to note from Table I that our

applications have relatively high MPKI values, that is, they

are memory intensive. With such high MPKI values, even after

the optimization (and the reduction in LLC misses), there are

still enough misses that allow BLP to play an important role.

Further, comparing the last column of Table I and Figure 10,

we see that our approach achieves better BLP improvements

with applications that have higher MPKI values, as there are

more memory accesses to schedule for different banks.
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Fig. 12: Execution time results (simulator).

The execution time results with BLP Optimized are pre-

sented in Figure 12, as the third bar for each benchmark.

These results capture the impact of our approach on BLP,

row-buffer locality and LLC misses. We see that our approach

improves the execution times of all the applications. These

improvements range between 4.1% (GS-Solver) and 22.6%

(STUN), averaging on 18.3%. The relative improvements

are lower in applications Carey and GS-Solver, which align

well with the relatively lower BLP improvements observed

in Figure 10. We want to emphasize that these execution

time results also include all the runtime overheads incurred

by our approach, which includes the execution of the code

that determines the new scheduling as well as any impact on

caches and on-chip network. Figure 13 zooms in this overhead

for each benchmark, and quantifies it as a fraction of the



total execution time. On an average, the contribution of the

overheads amounts to 4% of the execution time. Actually,

scheduling costs can be considered from two aspects. First,

note that our optimization target is a parallel region, not loops.

Therefore, if there is a large loop body, loop fission can be

applied before our approach. Second, our approach actually

uses a sliding window-based implementation. The reason is

that searching all candidates to maximize BLP is not feasible

in practice. Therefore, at any given time, our algorithm only

considers the candidates in a window. Further, some portion

of the overheads are also probably hidden during parallel

execution. This is why in practice the overheads we observe

are not very high.
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Fig. 13: Contribution of the runtime overheads to the total

execution time.

C. Results with Intel Ivy Bridge
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Fig. 14: Execution time results (Ivy Bridge).

Next, we quantify the execution time improvement on our

Ivy Bridge based multicore platform, which is equipped with

4 DDR3-2133 memory controllers (14 cycles for each of tCL,

tRCD, and tRP). It is important to note that in the Ivy Bridge

platform, there is no way to measure BLP directly. However,

we are able to measure LLC misses, row-buffer hits and con-

flicts, and execution time. Due to space concerns, we present

only execution time results but want to mention that the impact

of our approach on LLC and row-buffer statistics were similar

to the simulator case. In particular, compared to the original

execution, our approach distorted row-buffer locality by 1% on

average (generating, though, better row-buffer hit rates in three

applications – STUN, miniFE, and GS-Solver), and improved

LLC hit rates by 6.6% on average (improvements range from

1.8% to 9.2%). The execution time results given in Figure 14

indicate similar trends to those plotted in Figure 12. The

average improvement brought by BLP Optimized is 15.7%.

Clearly, there may be other factors in the real system that

influence the execution times but cannot be captured by the

simulator; however, our results indicate that applying our BLP

optimization improves execution time significantly in the real

system as well. As a point of comparison, when we modeled

the same DDR3-2133 system in our simulator, we observed

BLP improvements (over the original version) ranging between

18.8% and 56.3%, averaging on 30.7%. As indicated above

however, there is no way to collect such BLP statistics from

the real hardware.

D. Sensitivity Experiments

We now report, with the help of our simulator, the BLP and

execution time results under different values of the system

parameters. Each group of bars in Figure 15 represents the

average values from a single sensitivity experiment, that is, the

value of only one system parameter is varied, and the values

of the remaining parameters are kept at their default values

shown in Table II. These results indicate that the effectiveness

of our approach increases as we increase the number of banks,

L3 (LLC) capacity, and number of cores. When we increase

the number of banks (while keeping the number of memory

requests the same), the number of idle banks in any given

period of time increases, leading to a drop in the relative

BLP (not in absolute BLP, as the absolute BLP increases

with the increased bank count, but the relative BLP [the ratio

between the observed BLP and maximum possible BLP] gets

reduced). Consequently, there is more scope to optimize (more

gap between the maximum BLP and observed BLP), and this

in turn increases the potential impact of our BLP optimization.

One can also see that, although the effectiveness of our

approach gets reduced with the increased L3 capacity, even

with 12MB L3 cache it achieves 29% BLP improvement and

13.7% execution time improvement. On the other hand, it

is not easy to predict the impact of increasing the number

of cores on BLP. In the case of our benchmarks, we found

that our optimization scheme generates better savings with

the increasing core count, except for STUN and GMR. This

is probably because increasing the number of cores creates

more bank-level conflicts, which presents more opportunities

to our approach. In addition to these three parameters, we also

gauged the sensitivity of our approach to the row-buffer size,

the number of memory controllers (keeping the total number

of banks the same), slab size, and the size of the memory

queue. Our results showed that the percentage performance

improvements brought by our approach were less sensitive to

these two parameters (within 2%). We also tested our irregular

applications (in their default form) under both open-page

and closed-page policies, and found that the former results

in 4% better performance than the latter, due to primarily

data locality/sharing across different threads (which may be

more pronounced than in the case of commercial workloads).

This observation plus the fact that we have more scope for

optimization in the case of open-page policy motivated us to

use the open-page policy as our baseline.

Our next experiment focuses on increasing the dataset sizes,

and reports both simulation and Ivy Bridge results. In only two

of our benchmarks (HPCG and GMR), we were able to change

the input size safely. The results plotted in Figure 161 indicate

that, as we increase the input size, the improvement brought

by our approach increases but to a certain point. Beyond

that point, the relative savings slightly reduce. This can be

explained as follows. When the dataset size is increased, we

incur more misses, which makes it even more important to

1On the x-axis, “x” corresponds to the default input size of the benchmark
(210.8MB for HPCG and 308.6MB for GMR).
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Fig. 15: Results from the sensitivity experiments. (a) BLP improvements, and (b) execution time reduction. In each experiment,

all versions use the same hardware configuration, specified by the x-axis.
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Fig. 16: Execution time reduction for HPCG and GMR with

different input sizes.

exploit BLP. However, beyond a certain point, the outstanding

misses start to fill all banks, and the original code starts

to exhibit high levels of BLP. Since Figure 16 gives the

relative improvements over the original version, we observe

a reduction in savings.

E. Comparison against Alternate Strategies

We are not aware of any compiler scheme that tries to

optimize BLP for irregular applications. Pai and Adve [10]

improve MLP in the context of single-core machines by clus-

tering cache misses, and Ding et al [19] enhance BLP for mul-

ticore systems. However, both of these work with regular loop

structures with affine accesses and do not have any runtime

component, and consequently, they cannot handle irregular

codes. In this subsection, we compare our approach, using

GEM5, against five alternate schemes (one software based and

four hardware based). The software scheme is GPART [20],

which is a hierarchical graph clustering algorithm designed

to re-organize data layout in irregular applications to improve

cache performance (in our implementation, we adjusted the

cluster sizes to maximize GPART’s performance). The reason

why we perform experiments with GPART is to gauge the im-

pact a pure cache-locality oriented compiler scheme can have

on BLP. The hardware schemes against which we compare are

(1) PAR-BS [6], (2) TCM [21], (3) the critical region-aware

parallel application memory scheduling scheme [22] (called

CRA henceforth), and (4) the scheme described in [4] (called

PAR henceforth). Note that CRA is a memory scheduling

scheme designed exclusively for multithreaded workloads,

whereas the remaining three hardware schemes are originally

designed for multiprogrammed workloads. For each scheme

we compare, we run that scheme alone as well as when it is

coupled with our BLP Optimized.

The results presented in Figures 17(a) and (b) are normal-

ized with respect to FR-FCFS and use the default system

parameters given in Table II. We see from Figure 17(a) that

GPART degrades BLP (with respect to the original case) in

all eight applications. This is mainly because it does not do

anything special for BLP and clustering data accesses (for

better cache performance) tends to distort BLP, compared to

the original case. Although not presented here due to space

concerns, our experiments also showed that, while GPART

improves the cache performance by 9.6% on average, it has

little impact on row-buffer performance. These cache/row-

buffer results combined with the BLP results generated, on

average, 9.4% execution time improvement for GPART, as

plotted in Figure 17(b).

Regarding the hardware schemes, we start by observing that

TCM does not improve much over the FR-FCFS, primarily

because TCM exploits the differences in memory intensities

of different cores to improve system throughput, which makes

a lot of sense in multiprogrammed workloads where one runs,

for example, one application in each core. In a multithreaded

application however, all threads normally have similar memory

intensities. Consequently, except for two applications (miniFE

and GS-Solver), TCM does not improve performance, and

BLP Optimized generates an average BLP (resp. execution

time) improvement of 32% (resp. 16.8%) over it. CRA priori-

tizes the threads holding locks over the others to reduce serial-

ization; it improves over the default scheduler (as expected) in

terms of the execution time, but it is orthogonal to our scheme

(as it does not do anything specific for BLP). Consequently,

our approach improves further over CRA; specifically, CRA

and CRA + BLP Optimized generate average execution time

savings of 11.5% and 26.7%, respectively, over the original

execution.

PAR-BS tries to process the requests from a thread as a

batch. Our approach generates better BLP results than PAR-

BS in all programs except two (Carey and Equake). This

is because, while PAR-BS can only take advantage of the

potential BLP in memory queues, BLP Optimized can perform

BLP-aware scheduling at a much larger scope (parallel region

level). These trends translate to execution times, and we

generate 6.9% improvement, on average, over PAR-BS, when

all benchmarks are considered. When the two schemes (PAR-

BS and BLP Optimized) are combined, we observe further

improvements in application performance (23.4% on average

over the original execution). Finally, PAR is a scheme orig-

inally designed for exploiting the potential MLP of prefetch

requests. It has two components: the first one issues prefetch

requests to MSHRs in a BLP-aware fashion and, the second

one tries to preserve BLP exhibited by individual cores by

removing interferences. We observe that, while PAR improves

over FR-FCFS, our approach generates much better savings.

This is mainly because PAR in a sense tries to improve BLP
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Fig. 17: Comparison of our approach against alternate strategies: (a) BLP improvement and (b) Reduction in execution time.

in a similar fashion to PAR-BS (in fact, as stated in [4], the

benefits of the two schemes can partially overlap). The results

in Figure 17(a) indicate that PAR and PAR+BLP Optimized

generate average BLP (resp. execution time) improvements of

23.2% (resp. 13.7%) and 51.5% (resp. 26.7%), respectively.

To sum up, BLP Optimized outperforms, in most cases, all

four hardware-based schemes tested and more importantly it

can be used in conjunction with any BLP-aware scheduler

(such as PAR-BS and PAR) to generate additional execution

time savings. Also, it is orthogonal to schemes such as CRA

(which improves aspects of execution other than BLP) and can

be combined with them to obtain higher performance savings.

F. Scheduling with Dependences

Recall that, so far, if a code region has inter-slab depen-

dences, we did not execute it in parallel. We also performed

a set of experiments where such code regions are also ex-

ecuted in parallel, using the dependency graph discussed in

Section IV-F. Although we do not present the detailed results

due to lack of space, we want to say that 7 of our codes

had at least one inter-slab dependence (miniFE did not have

any), STUN having the largest number of such dependences

(17 in total). Our approach generated an additional 3.3%

(average) execution time improvement in this case, compared

to the sequential execution of the code regions with inter-slab

dependences (in STUN and Equake, the additional gains were

8.4% and 6.3%, respectively).

VI. RELATED WORK

Software approaches to improve MLP: Liu et al. [23]

proposed an OS based bank-level partitioning scheme, where

OS allocates pages to cores (threads) from a particular bank,

thereby reducing the interference from the other applications.

Pai and Adve [10] introduced the concept of clustering cache

misses to improve memory level parallelism. Ding et al.

[24] proposed iteration space tile scheduling to improve BLP.

Targeting regular codes with affine references, they predict

last-level cache misses per tile in a loop nest in the first step,

and in the second step, they identify which banks are accessed

by the corresponding indices and schedule the tiles such that

they increase the BLP.

Hardware approaches to improve MLP: Several techniques

[25], [26], [27], [28], [29], [30] are proposed to improve

memory parallelism. Lee et al. [4] proposed two schemes (1)

MSHR issuing policy which prioritizes prefetch requests to

different banks ahead of prefetch requests to the same bank to

increase the BLP. (2) a BLP preserving scheme that allocates

the requests in to memory controller such that the BLP across

an application is preserved minimizing the interference from

the other applications running on different cores. Mutlu and

Moscibroda [6] proposed a scheduler which provides fairness

and higher MLP.

Irregular applications: There exist many compiler works that

target irregular applications. Most of those works focus on

data layout optimizations to improve cache locality [31], [32],

[33], [34], [35], [36], [37]. The other body of work in this

area focus on parallelizing irregular applications [38], [39],

[40], [41]. [20] presented a hierarchical clustering method

(GPART) to improve cache locality in irregular applications.

Han and Tseng [42] employed graph partitioning to improve

locality in irregular applications. Zhong et al. [43] described

how an affinity-based hierarchical partitioning of data can

improve cache locality. Das et al. [7] are the first one to

propose inspector-executor model to identify parallelism in

irregular applications. Ding et al. [19] proposed trading cache

hit rate for memory performance to improve performance. All

these studies aimed at either improving cache performance or

parallelism. Our main focus on the other hand is on BLP.

VII. CONCLUDING REMARKS

This paper proposes and evaluates a novel loop iteration

scheduling strategy to improve memory bank-level paral-

lelism (BLP) of irregular application programs. The proposed

scheduling strategy uses bank-maps to capture bank access

patterns and reorganizes groups of iterations, called slabs,

across cores to increase the number of concurrently-accessed

banks. It also considers bank reuse, in an attempt to im-

prove row-buffer locality, if it does not conflict with the

BLP optimization. Our detailed evaluations of this scheduling

strategy indicate significant improvements in terms of both

BLP (46.8% on average) and execution times (18.3% on

average).
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