
SOML Read: Rethinking the Read Operation
Granularity of 3D NAND SSDs

Chun-Yi Liu

Pennsylvania State University

cql5513@cse.psu.edu

Jagadish B. Kotra

AMD Research

Jagadish.Kotra@amd.com

Myoungsoo Jung

Korea Advanced Institute of Science

and Technology, KAIST

mj@camelab.org

Mahmut T. Kandemir

Pennsylvania State University

mtk2@cse.psu.edu

Chita R. Das

Pennsylvania State University

das@cse.psu.edu

Abstract
NAND-based solid-state disks (SSDs) are known for their

superior random read/write performance due to the high

degrees of multi-chip parallelism they exhibit. Currently, as

the chip density increases dramatically, fewer 3D NAND

chips are needed to build an SSD compared to the previ-

ous generation chips. As a result, SSDs can be made more

compact. However, this decrease in the number of chips

also results in reduced overall throughput, and prevents 3D

NAND high density SSDs from being widely-adopted. We

analyzed 600 storage workloads, and our analysis revealed

that the small read operations suffer significant performance

degradation due to reduced chip-level parallelism in newer

3D NAND SSDs. The main question is whether some of the

inter-chip parallelism lost in these new SSDs (due to the re-

duced chip count) can be won back by enhancing intra-chip

parallelism. Motivated by this question, we propose a novel

SOML (Single-Operation-Multiple-Location) read operation,

which can perform several small intra-chip read operations

to different locations simultaneously, so that multiple re-

quests can be serviced in parallel, thereby mitigating the

parallelism-related bottlenecks. A corresponding SOML read

scheduling algorithm is also proposed to fully utilize the

SOML read. Our experimental results with various storage

workloads indicate that, the SOML read-based SSD with 8

chips can outperform the baseline SSD with 16 chips.

CCS Concepts • Hardware→ External storage.

Keywords SSD, 3D NAND, parallelism, request scheduling

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’19, April 13–17, 2019, Providence, RI

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00

https://doi.org/10.1145/3297858.3304035

ACM Reference Format:
Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, Mahmut T. Kan-

demir, and Chita R. Das. 2019. SOML Read: Rethinking the Read

Operation Granularity of 3D NAND SSDs. In 2019 Architectural

Support for Programming Languages and Operating Systems (ASP-

LOS ’19), April 13–17, 2019, Providence, RI, USA. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3297858.3304035

1 Introduction
Solid-state disks (SSDs) are an industry preferred storage

media due to their much better random read/write perfor-

mance compared to hard disks. However, as the NAND cell

technology node becomes smaller, 2D NAND-based SSDs

encounter severe performance and reliability issues, limiting

the rate at which the overall SSD capacity increases. The

NAND manufacturers addressed this capacity scaling prob-

lem by stacking the layers of NAND cells vertically in a 3D

fashion.

3D NAND chips [16, 19–21, 28, 33, 45] achieve much

higher density by stacking 32, 64, or even 96 layers of cells

with an acceptable reliability. For example, the capacity of a

64-layer 3D NAND chip can be as high as 512Gb, requiring

only 8 chips to build a 512 GB capacity SSD. As a result, 3D

NAND-based SSDs employ fewer chips compared to their

2D-based counterparts. However, such 3D NAND SSDs with

fewer chips suffer from reduced chip-level parallelism, i.e.,

reduced number of requests that can be processed in paral-

lel at a given period of time. Unfortunately, this decreased

chip-level parallelism can cause severe degradation in per-

formance.

To demonstrate this performance degradation, we com-

pared the IOPS between two generations of 3D NAND SSDs:

(1) a Samsung 950 pro SSD [35] using 16 32GB chips and

(2) a newer generation Samsung 960 pro SSD [36] using 8

64GB chips. Figure 1 shows the performance comparison

between these two SSDs under 4 well-known SSD micro-

benchmarks.
1
The higher density SSD fails to outperform

the previous generation 950 pro SSD in three read-intensive

1
These benchmark results are from benchmarkreviews.com, but the similar

results can be found in other performance benchmark websites as well.

https://doi.org/10.1145/3297858.3304035
https://doi.org/10.1145/3297858.3304035

0

0.6

1.2

1.8

4K QD 30
(50/50 read

write)

Read: 4K
queue-Depth

32

Write: 4K
queue-Depth

32

Read 4K 64-
Thread

Write: 4K 64-
Thread

Peak read Peak write

iometer crystalDiskMark 3.0 AS-SSD ATTO Disk

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t

Samsung 950 Pro (512GB) Samsung 960 Pro (512GB) 3.2

Figure 1.Normalized SSDs’ throughput of varying densities.

benchmarks (Iometer, CrystalDiskMark, and AS-SSD), due to

the lower multi-chip parallelism.
2
Clearly, this degradation

in the overall throughput can prevent 3D NAND SSDs from

being widely adopted in the read-intensive applications, such

as large graph processing [13, 22–25, 30, 39, 40, 47, 50] and

Memcached on SSD [1]. Note also that the write performance

is not affected by the reduced chip-level parallelism. This is

because the write requests are often buffered in a DRAM in

SSD and are generally not critical for performance.

To further quantify the degradation on read performance,

we analyzed 600 workloads from a repository [27], employ-

ing a high-density SSD similar to a newer generation Sam-

sung 960 pro SSD. Our analysis reveals that the sizes (4KB

or 8KB) of a majority of read requests are smaller than that

(16KB) of a read operation. This disparity between granulari-

ties results in low intra-chip read parallelism, where multiple

requests wait to be serviced, while an ongoing small request

exclusively uses all chip resources. Hence, we rethought the

reason behind providing a large read operation granularity

in NAND flash, and realized that such large granularity can

highly improve the density of 2D NAND. However, this rela-

tionship between operation granularity and cell density does

not exist in 3D NAND, due to the fundamental differences

between 2D and 3D NAND micro-architectures.

Motivated by the results and observations above, we pro-

pose a novel SOML (Single-Operation-Multiple-Location)
read operation, which can read multiple partial-pages from

different blocks at the same time, and improve the intra-chip

read parallelism significantly. To the best of our knowledge,

this is the first work that investigates finer granular read

operations for 3D NAND, starting from the circuit-level to

evaluating its architectural ramifications. Our main contri-
butions in this work can be summarized as follows:

•We analyzed 600 storage workloads to quantitatively show

that the read operation is severely degraded due to low

multi-chip parallelism in high-density newer generation

SSDs. More specifically, most workloads issue small granu-

lar reads, which could potentially be executed in parallel in

older-generation lower-density SSDs with more number of

chips.

• Observing that improving intra-chip parallelism can miti-

gate the negative impact of the reduced inter-chip parallelism

2
This relationship between chip parallelism and throughput will be estab-

lished later through our simulation based study. Also, in some benchmarks,

such as sequential read/write, the next generation SSD outperforms the

previous generation SSD, as expected.

in newer 3D NAND SSDs, we explain the need for reducing

the read granularities, and why it is feasible to do so in 3D

NAND flash, as opposed to 2D NAND flash.

•Motivated by our observations, we propose to employ finer

and more versatile SOML read operation granularities for 3D

NAND flash, which can process multiple small read requests

simultaneously to improve intra-chip parallelism.

• Building on the SOML read operations, we further propose

a read scheduling algorithm, which can coalesce multiple

small read operations into one SOML read operation. From

our evaluations on an 8-chip high-density SSD, we observed

that the proposed SOML read operation and the correspond-

ing algorithm improve throughput by 2.8x, which is actually

better than that of a 16 chip SSD of the same capacity.We also

compare our approach with three state-of-the-art schemes,

and the collected results indicate that our approach outper-

forms all three.

2 Background and Motivation
2.1 Background
2.1.1 SSD Overview:
A NAND-based SSD (shown in Figure 2) is composed of

three main components: (a) an SSD controller, (b) a DRAM

buffer [38], and (c) multiple NAND chips. The SSD con-

troller executes flash-translation-layer (FTL) [14, 17], which

receives the read/write requests and issues the read/program

(write)/erase operations to the NAND chips. The DRAM

buffer in an SSD stores meta-data of the FTL and temporarily

accommodates the data being written into the NAND chips.

The NAND chips are organized into multiple independently-

accessed channels. There can be 4, 8 or more channels in an

SSD. Each channel contains several flash chips (packages),

where they compete for the channel to transfer read/written

data. Each chip further consists of 2D NAND or 3D NAND

dies, which comply to the sameNANDflash standard, ONFI [2].

Although the exposed interface of 2D and 3D NAND are the

same, their micro-architectures are quite different. For both

the NAND types, one die consists of multiple planes, and

each plane contains thousands of blocks. Each block hosts

hundreds or thousands of pages, depending on the density

of the block. Note that a page is the unit for read/write op-

eration, whereas an erase operation is performed at a block

granularity. The main difference between 2D NAND and 3D

NAND is the block-page architecture, which can be observed

in Figure 2. Specifically, the 2D NAND blocks are squeezed

side by side on a plane, and the pages in a block are serially-

connected. On the contrary, blocks in 3D NAND consist of

several vertical slices, whose organization is similar to a 2D

NAND block. In 3D NAND SSD, multiple slices share the

same set of thick cross-layer signals to overcome the diffi-

culty of transferring high voltage throughput this cross-layer

signals. This block-page architecture in 3DNAND introduces

both performance and lifetime issues [32, 48].

SSD
controller

SSD

DRAM

Flash Chip Y

Die 0
...Pl 0 Pl 1

Ch 0 Ch 1 Ch X

…

P-0
P-1

P-Z

Block 0

…

P-0
P-1
P-2
P-3

Bit 1 Bit n…
…

…

…
…

…

…

2D NAND Block

P-0
P-4
P-8
P-12

Bit 0 Bit n

3D NAND Block

…

…

…

…
…

123

567

9
13

…

…1011

1415

…

…

P: page Pl: plane ch: channel

…

… …

Pl 1

P-0
P-1

P-Z

Block W

… Slice 0
Slice 3

Figure 2. SSD overview and 2D/3D NAND block Organiza-

tion.

2.1.2 NAND Read Operation:
Due to the short-latency of a read operation, the SSDs are

widely used for read-dominant applications, such as large

graph processing [50], crypto-currencies [3], and machine

learning [11]. As a result, understanding the variations of

the read operations is crucial to arrive at techniques that

can mitigate the read performance degradation in 3D NAND.

Figures 4a and 4b show the granularities and access latencies

of various read operations, respectively. As depicted in Fig-

ure 4, four types of read operations include: (1) baseline read

operation, (2) multi-plane read operation, (3) cache read op-

eration, and (4) random-output read operation. The latency

of the (baseline) read operation contains both (1) chip read

latency and (2) channel transfer latency. The chip latency is

the time taken to read data from the cells (in pages) to the

chip internal buffer, while the channel transfer latency is the

time elapsed in transferring data from chips’ internal buffer

to error correction coding (ECC) engines or DRAM buffers

in the SSD. Secondly, a multi-plane read operation improves

the read throughput by reading the pages in multiple planes

at the same time, thereby resulting in a high chip throughput.

Thirdly, a cache read operation hides the channel transfer

time by employing two sets of internal buffers where one

is used for cell data reading and the other is used for data

transfer; hence, two operations can be performed in parallel.

Lastly, a random-output read operation is used to reduce the

data transfer time by only transferring the data required by

the requests, not an entire page, thereby causing less traffic

on the channels.

Although 3D NAND chips support the advanced read op-

erations, the read performance of a single chip still degrades

substantially as the chip density increases. This is because,

as the chip density increases, a longer cell sensing time (chip

read latency) is needed to read the cell data. In fact, the read

latency can be as high as 90µs [44]. In contrast, the channel

transfer latency can be highly shortened by a faster data

clock-rate, but this enhancement can only slightly reduce

the overall read latency. Therefore, the chip read latency is

the bottleneck for the read performance.

2.1.3 Additional Read Operations by ECC:
Due to high-density and advanced multi-bit-cell technology,

the reliability of 3D NAND cells is an important issue; hence,

strong error-correction-coding (ECC) techniques, such as

low-density-parity-checking-code (LDPC), are required to

guarantee data integrity. Modern ECCs use the parity in-

formation in the page and the additional sensing (re-read)

operations to correct data. Such re-read operation employs a

read-retry operation to re-adjust the chip sensing voltage, so

that different values can be read from the page. Then, using

the original and re-read values, the ECC can correct more

erroneous bits, which can extend the overall SSD lifetime by

up to 50% [4]. Those additional read operations prolong the

latency of the read requests, degrading the read performance.

2.2 Motivation: Workload Analysis
As explained in Section 1, the read performance of higher

density (lower multi-chip parallelism) SSDs is not good for

several well-known benchmarks. To understand the perfor-

mance degradation better and address it effectively, we used

the SSDSim [15] simulator and evaluated over 600 storage

workloads from OpenStr [27]. The behaviors of the vari-

ous evaluated workloads are plotted in Figures 3a and 3b,

and the parameters of the simulated SSDs can be found in

Table 1. In these experiments, we used three iso-capacity

SSD configurations, denoted by (number of chips, capacity

per chip), namely: (A) (32, 16GB), (B) (16, 32GB), and (C) (8,

64GB). The detailed parameters of the various density chips

evaluated are taken from papers [16, 19, 20]. Note that, to

have a fair comparison, the number of channels across these

three configurations is set to 4, so that the configurations

have the same channel parallelism. Note also that we use

the same read/write latency to illustrate the low multi-chip

parallelism issue.

Figure 3c shows the read/write throughput of our work-

loads, which are sorted by throughput
3
. As the number of

chips decreases, the performance drops significantly. On av-

erage, SSD (C) is about 1.5x slower than SSD (A). This is

because, in SSD (C), fewer chips can process the read/write

requests simultaneously, resulting in reduced chip-level par-

allelism. To acquire more specific information, the average

read and write latencies of the workloads are presented in

Figure 3d. It can be observed from this figure that, the write

latencies of most workloads are really low compared to their

read latencies, as the number of chips is reduced from 32 to

8. This is due to the presence of a large DRAM buffer in SSD.

More specifically, the DRAM buffer, which is set to 128MB

in our simulation, can temporarily cache the write requests,

and drain them to NAND chips later during the idle periods.

Therefore, the latency of write requests can be as short as the

DRAMaccess latency, provided that the DRAMbuffer is large

enough. One should note that the current 1TB 3D NAND

SSDs are equipped with more than 1GB DRAM buffer [36];

however, we used 128MB of DRAM buffer, conservatively.

3
Note that the figures in this section are sorted by the correspondingmetrics,

to clearly show the trends across workloads.

0

0.2

0.4

0.6

0.8

1

0 200 400 600

read unique
access percentage
write unique
access percentage

(a) Read/write unique ac-
cess.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600

<=1K <=2K <=4K
<=8K <=16K <=32K

(b) Granularity break-

down of read requests.

1

10

100

1000

0 100 200 300

Th
ro

u
gh

p
u

t
(K

IO
P

S) 32 chips (A)

16 chips (B)

8 chips (C)

0

0.2

0.4

0.6

0.8

1

300 400 500 600

Th
ro

u
gh

p
u

t
(K

IO
P

S) 32 chips (A)
16 chips (B)
8 chips (C)

(c) Throughput comparison.

0

1

2

3

4

0 100 200 300

La
te

n
cy

 (
m

s)

R(8 chips) W(8 chips)
R(16 chips) W(16 chips)
R(32 chips) W(32 chips)

0.001

0.1

10

1000

100000

300 400 500 600

La
te

n
cy

 (
m

s)

(d) Average read and write latencies.

Figure 3. Results of our analyses of over 600 workloads (the x-axes represents individual traces sorted in an increas-

ing/decreasing order).

(1) Baseline

Pl 0

P-n

…
.

..
..

(2) Multi-plane (4) Random data

Pl 1

…
.

..
..

Pl 0

P-n

…
.

..
..

Pl 1

…
.

..
..

(3) Cache read

Pl 0

P-n

…
.

..
..

Pl 1

…
.

..
..

P-m

..

.. ..

P: page Pl: plane

Pl 0

P-n

…
.

..
..

Pl 1

…
.

..
..

..

(a) Read granularity.

(1) Baseline read operation
chip

channel

time

(2) Multi-plane read operation
chip

channel
(3) Cache read operation

chip
channel

(4) Random data output
chip

channel

0 30us
(b) Read latency.

Figure 4. Overview of read operations.

On the other hand, as can be observed from Figure 3d,

the average read latency increases as the number of chips

decreases, due to increased contention for the chips. Different

from thewrite requests, the DRAM can only provide a limited

read performance improvement. This is because the DRAM-

induced read improvement comes primarily from the cached

recently-read data, which is rarely re-read in a short time.

Figure 3a plots the fraction of addresses that are only read

once for each workload. As can be observed from the figure,

over 80% of the addresses are read only once in the first 400

workloads; so, the DRAM cannot reduce the read latency by

caching the read data. The main reason behind such poor

temporal locality for reads is that the frequently-read data

are typically cached in the upper layers.

To further understand and improve the performance of

read requests, we analyzed the following two metrics: (1) the

average number of read requests queued per chip (Figure 5a),

and (2) the granularity of the read requests itself (Figure 3b).

Figure 5a shows the queued read requests for 3 systems under

600 different-strength trace-based workloads. In the figure, 3

systems may queue different numbers of read requests based

on the system throughput. For example, due to its higher

throughput, the 32-chip system can keep the queue length

lower than 5, while the 8-chip system experiences longer

request queues. To compensate for the parallelism lost due to

the reduced number of chips, the intra-chip parallelism needs

to be improved. Figure 3b shows the possibility of process-

ing multiple read requests at a time by breaking down the

read request granularity across the workloads. Note that the

current 3D NAND pages are at least 16KB, which is the min-

imum unit (granularity) for a read operation. As can be seen

from this figure, there are only few workloads dominated

by 1K or 2K read requests. However, plenty of workloads

are dominated by 4K and 8K read requests. Specifically, over

300 and 480 workloads mainly contain read requests that

are smaller than 4K and 8K, respectively. Only a handful of

workloads warrant large granularities, such as 16K and 32K.

To that end, the large amount of smaller read requests, viz.

4K and 8K, can be serviced by the larger page sizes, which

can be 16K or 32K.

To summarize, the performance degradation caused by

the fewer number of chips only impacts the read requests,

not the writes. Also, a majority of the workloads issue read

requests which are much smaller than the 16KB reads.

3 Overview
The read-dominated workload characteristics, as presented

in Section 2.2, clearly indicate that the read request granu-

larity is much smaller than the size of a baseline page read

operation supported in 3D NAND. This observation moti-

vated us to rethink the granularity of basic read operation in

NAND flash. We want to emphasize that, the page-granular

read operation in 3D NAND is inherited from 2D NAND. As

shown in Figure 5b-(2), the page-granular read operation

in 2D NAND stems from the uni-direction selector, which

can only select one page at a time. On the contrary, in NOR

flash (shown in Figure 5b-(1)), a bi-directional selector can

be used to index and access a single data cell. However, such

fine-granular operations require larger space between NOR

data cells; as a result, the cell density of NOR flash is sparser

than that of NAND flash. Consequently, current high dense

SSDs only use NAND flash as their storage media.

Enabling fine-granular read operations via bi-directional

selectors (like 2D NOR flash) in 2D NAND flash is infeasi-

ble. This is because, additional selectors need to be practi-

cally added between all the blocks in 2D NAND to enable

bi-directional selector; but, doing so would reduce the overall

cell density significantly. In contrast, 3D NAND, shown in

Figure 5b-(3), can enable such fine-granular operation, since

it employs a completely different block-page architecture,

where the control transistors reside in the top and bottom

layers, and not between blocks. Therefore, by inserting ad-

ditional selector layers (depicted in Figure 5b-(4)) between

the top and data-cell layers, we can enable the fine-granular

1

3

5

7

0 100 200 300

A
ve

ra
ge

 n
u

m
b

e
r

o
f

q
u

e
u

e
d

 r
e

ad
s

8 chips (C)
16 chips (B)
32 chips (A)

0

10

20

30

300 400 500 600

A
ve

ra
ge

 n
u

m
b

e
r

o
f

q
u

e
u

e
d

 r
e

ad
s

8 chips (C)
16 chips (B)
32 chips (A)

(a) Average number of queued reads across dif-

ferent workloads.

Memory
cells

selectors

se
le

ct
o

rs

se
le

ct
o

rs

Memory Cells

(1) 2D NOR flash

(3) 3D NAND flash

(2) 2D NAND flash (4) SOML proposal

Bit 0 Bit 1 Bit 2 Bit 3
R0

R1

R2

C0 C1 C2 C3

P-0

P-1

P-2

Bit 0 Bit 3
UST

LST

…
Memory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory Cells

Memory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory Cells

Memory Cells Selectors Control transistors SOML

(b) Architecture differences between various flash memories.

Figure 5

read operation in 3D NAND, without reducing the cell density

of 3D NAND.

In this paper, we propose “single-operation-multiple-locations

(SOML)" read operation to boost the intra-chip read perfor-

mance without reducing the NAND chip’s storage density.

The basic idea behind our SOML read operation is to ex-

ecute multiple small read requests simultaneously with a

single SOML read operation. The latency of a SOML read

is slightly higher than that of the baseline read operation.

Our SOML read operation, which encompasses small read

requests, imposes two constraints. The smaller read requests

should share (1) the same bit-lines and (2) block-decoders.

The density of highly-condensed bit-lines cannot be doubled

to enable multiple concurrent read accesses; as a result, the

read requests in our SOML read operation must share the

existing bit-lines. On the other hand, the block-decoders

are shared across different blocks, even with the duplicated

block-decoders. Besides those two constraints, our SOML

read operation warrants additional control layers and periph-

eral circuits to be added to the 3D NAND chip. The hardware

changes required by our SOML read operation are discussed

in Section 4. Figure 6a depicts an example working of our

SOML read operation, compared to the baseline read. The

baseline read can only read a whole page (16KB) in a block at

a time, agnostic to the read-request granularity. In contrast,

our SOML read can read two half pages at the same time,

where the first half page-1 of block-0 and second half page-0

of block-M are read together. In this example, read perfor-

mance is nearly doubled, provided that these two requests

only need the data in the read half pages.

To fully utilize our SOML read operation, the SSD manage-

ment software (FTL) needs to further include an algorithm to

find and combine the multiple small read requests into a sin-

gle SOML read operation. Clearly, this algorithm should be

able to select the multiple small read requests which satisfy

the hardware constraints mentioned before.

4 SOML Read: Hardware Modifications
In this section, we discuss the peripheral circuitry modifi-

cations, overheads involved, and command formats of our

proposed SOML read operation. We also cover the alternate

design options along with other concerns.

4.1 Peripheral Circuit Modifications
To enable SOML read, 3D NAND has to support the follow-

ing two mechanisms: (1) partial-page read operation and (2)

simultaneous multiple partial-read operations across blocks.

Partial-page read operation: A partial-page read oper-

ation reads only part of a page, typically half or quarter of a

page, and transfers the read data to the NAND internal buffer

via the bit-lines. Before describing our circuit changes, let us

discuss the baseline read operation in 3D NAND (shown in

Figure 6c). Only one page can be read across all the blocks in

a plane. While reading a page in a block, the chip un-selects

all the other blocks via the block-decoder (BD) (shown in

Figure 6c-(2)), so that only one block receives the control

signals from corresponding page-decoder (PD). The page

decoder indexes the read page by a layer signal and a cor-

responding slice signal. Note that the other layer and slice

signals would be set to appropriate values to indicate "Off,"

so that only the corresponding page is read. Figure 6c-(3)

shows how to correctly set the control signals to read the

data in one of the cells in page-4, which resides in slice-0

of block-0 in Figure 6c-(1). The voltage of page-4 (layer-2)

signal is set to Vr ead , while the voltages of page-0 (layer-

1) and page-8 (layer-3) are set to Vpass , to ensure that only
the value stored in page-4 is drained out via the bit-lines

to the sensing circuits. The lower select transistor (LST) is

set to Vcc in the case of read operation, while the upper se-

lect transistor (UST) is used as the slice signal in 3D NAND.

More specifically, the UST of the selected slice is set to Vcc ,
while the USTs of other slices in the same block are set to

0V. Therefore, although other slices receive the same set of

layer signals, the data will not drain out and interfere with

the read operation, thereby inhibiting reading from other

slices, as shown in Figure 6c-(4).

In our SOML read, to enable the partial-read operation,

all pillars (shown in Figure 6d-(3)) need to accommodate

additional SOML select transistors (SOML ST), which reside

between the UST and the first cell. That is, the additional

SOML ST layers are inserted between the UST layer and

the first cell layer. The usage of SOML STs can be found in

Figure 6d-(1), where the first-/second-half pages of SOML

STs across multiple slices in a block can be selected by dif-

ferent control signals (the red lines). Hence, adding these

two additional signals to the page decoder, we can enable

Baseline SOML read

P-0
P-1

P-Z

Block M

P-0
P-1

P-Z

Block 0
…

…

P-1

P-Z

Block M

P-0

P-Z

Block 0

…

…

P-1

P-0

(a) Overview of our SOML read op-

eration.

Start Address Address Address EndCommand
Page Index Block IndexPage-Read (baseline)

Partial Read

1 byte 24 bits 1 byte

RSV
Page Index Block IndexPPI

SOML Read ….

Last partial-readPartial-read

Start code for last partial-readStart code for partial-read
End code for both partial-read and last partial-read Address

RSV: Reserved PPI: Partial-Page index

(b) Partial-page and SOML read command format.

B-1

P-3

P-7

P-11

LST

UST

P-0

P-4

P-8

Slice 0
LST

…

…

…

…

UST …

Slice 3

B-0

Bit 1 Bit 2 Bit n
…

BD & PD

P-0

P-8

P-4 (read cell)

UST

LST

VRead

VPass

VPass

Vcc

Vcc

On

On

On
On

P-3

P-11
P-7

UST

LST

VRead

VPass

VPass

0V Off

On

On

OnVcc

Current, cell=“1”
Ground, cell=“0.”

Sensing No
currentSensing

Slice 0 Slice 3

(1) (2)

(3) (4)

P-0

P-11

B-M

…

P-1 P-0

P-11

B-1

…

P-1P-0

P-11

B-0

…

P-1

P: page
B: block

(c) Baseline read circuit.

Bit 1 Bit n/2 Bit n

P-0

P-4

P-8

LST

…

…

…

…

UST

…

…

…

…

…

SOML
ST

… …

…

B-M BD & PD
(B%2=1)

BD & PD
(B%2=0)

P-0

P-4

P-8

Slice 0
LST

…

…

…

…

UST

…

…

…

…

…

SOML
ST

… …

…

B-0

P-0

P-8 (read)

P-4

UST

LST

VRead

VPass

VPass On

On

OnVcc

Vcc On

SOML STVcc

(3)

… …

(1) (2)

P-0

P-11

B-M

…

P-1 P-0

P-11

B-1

…

P-1P-0

P-11

B-0

…

P-1

LST: lower select UST: upper select
PD: page decoder BD: block decoder

(d) SOML read circuit.

Figure 6

the half-page read operation. Note that a finer partial-page

read operation can be achieved by adding more SOML STs

and the corresponding signals.

P
-0

P
-1

P
-2

Bit 0

Bit n

LST

Memory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory CellsMemory Cells

S-0

S-1

S-2
S-2

S-3

SOML-like transistors

Layer 3

Layer 2

Layer 1

Layer 0

Always-on
transistors

Figure 7. The 3D VGNAND.

Simultaneous mul-
tiple partial-read op-
erations: Simultaneous

multiple read operations

cannot be performed by

the peripheral circuits in

the baseline 3D-NAND

architecture due to the

shared control circuitry

among read operations.

To enable such multiple

read operations, the shared circuitry, namely, the page-

decoder (PD) and block-decoder (BD), have to be replicated

or modified. Hence, the pages from different blocks can be ac-

cessed by different sets of page-decoders and block-decoders.

Figure 6d-(2) shows the modified circuitry to perform two

half-page read operations. The page decoder is duplicated to

index two distinct half-page read operations, while the block

decoder is split into two smaller block decoders, where each

of them can index a half set of blocks. Note that the number

of bit-lines remains the same, since doubling the highly-

condensed bit-lines is not practical. Note also that, we can

only enable multiple read operations across different blocks;

multiple read operations in the same block cannot be paral-

lelized due to the 3D NAND block-page micro-architecture.

In summary, with the SOML select transistor layers and

additional block-/page-decoders, our proposed SOML read

operation can be realized.

Hardware Feasibility: Our proposed circuitry is an ex-

tension of an early 3D horizontal-channel (vertical-gate)

NAND, called VGNAND [21]. Note that, as opposed to VG-

NAND, the current mainstream 3D NAND flash (shown in

Figure 5b-3) is vertical-channel based. In VGNAND, to access

a page, multiple pages on the same corresponding location

across layers are read out, and the SOML-like transistors

select only one page among them to access. For example, in

Figure 7, to read the data in Page-2 on Layer-2, the signal

P-2 is set to Vr ead (while P-0 and P-1 are set to Vpass), and
only S-1 and S-3 are set to On (while S-0 and S-2 are set

to Off). Our proposed circuitry is similar to the VGNAND,

but we stack the select transistors on the top and use them

to select partial-pages across different blocks. Note that, to

clearly demonstrate the effect of SOML read in Figure 6d, we

abstract the details of SOML transistors. (that is, in reality,

4 layers of SOML transistors are needed to enable a quarter

partial-page read).

4.2 Hardware Overheads
The hardware overheads of SOML read operation come

mainly from the SOML transistors and decoders. The SOML

transistors account for the major transistor overheads; how-

ever, the area and storage density of the chip is not affected,

since we only increase the number of transistor layers. Note

also that, although the density of 3D NAND is achieved by

layering more 3D NAND cells, the difficulty in achieving

more layers is in the mechanism needed to squeeze more

data cell layers in a limited distance between the top and

bottom data cell layers. On the other hand, the additional

decoders only introduce fewer additional transistors, but

the area of the chip increases due to the block-decoders.

Although we only split the baseline block-decoder into mul-

tiple smaller block-decoders, the area of the overall block-

decoders still increases. This is because, the area of a modern

highly-optimized decoder is not linearly proportional to the

number of indexable blocks; so, we estimate that the addi-

tional block-decoders would yield 3x area overhead over the

baseline if a quarter page SOML read operation is enabled.

The area overhead of the proposed quarter page SOML read

operations can be calculated as follows: The peripheral cir-

cuits in 3D NAND flash chip constitute 7 ∼ 9% [16, 19, 20],

and the block-decoder and page-decoder occupy about 7%

and 4% of the peripheral circuits [34], respectively. Therefore,

the overall hardware overhead is at most 1.7% of the whole

area, which indirectly reduces density by 1.6%.

4.3 SOML Read Command Format
Current read-related commands cannot be used to issue our

proposed SOML read operation, since they do not support

the following two SOML read mechanisms: (1) indexing the

partial-page and (2) issuing multiple partial-page across mul-

tiple blocks. Therefore, to issue a SOML read operation, we

introduce two new commands: (1) partial-page read com-

mand and (2) SOML read command.

The partial-page read command, which is shown in Fig-

ure 6b, is modified from the baseline read operation. The

only difference is that few bits in the reserved address field

are used for indexing the partial-page in a page. On the other

hand, the SOML read command consists of a sequence of

partial-read commands. To notify the chip on how many

partial-read operations are combined into one SOML read,

we introduce another variation of the partial-read command,

namely, last partial-read command. This new command noti-

fies chips the last partial-read command out of a sequence

of partial-read commands via a different start code (shown

in Figure 6b). Thus, all previously-issued partial-read com-

mands and the last partial-read command are combined into

one SOML read. It is to be noted that such SOML read com-

mand sequence is practical, since the existing multi-plane

read operations are essentially issued in the same manner.

The command overhead of the SOML read operation is in

nano-second range, which is negligible compared to the hun-

dred µs read latency. Note also that it is FTL’s responsibility

(covered in Section 5), to guarantee that a sequence of partial-

read (wait) command(s) do not violate any constraint of our

SOML read operation, such as shared bit-lines and decoders.

4.4 Discussion of the SOML Read Operation
4.4.1 The asymmetric latency of partial-read

operation:
Due to the high-density NAND flash demand, 3D NAND

manufacturers ship MLC (multi-level cell) and TLC (triple-

level cell) flash, where one cell can store 2 and 3 bits of

information, respectively. The read latencies of different bits

in a cell are different. That is, the second bit in a cell requires

additional read sensing operations compared to the first bit

in the same cell, thereby increasing the read latency of the

second bit. Such asymmetric read latencies in 3D NANDmay

result in sub-optimal read performance, since a SOML read

can only start transferring out data from the chip internal

buffer to the DRAM buffer after all partial-reads have been

successfully performed. As a result, short-latency partial-

reads need to wait for the completion of long-latency partial-

reads, which prolongs the latency of the short-latency read

requests.

4.4.2 Read disturbance:
Read disturbance [7, 29] becomes a major reliability concern

in the high-density NAND flash. This is because, as the num-

ber of pages per block increases, more pages in a block are

subjected to the disturbance from the page read operation.

Such accumulated read disturbance will ultimately alter the

value stored in the NAND cells, even with a strong ECC pro-

tection. Our proposed SOML read operation does not worsen

the read disturbance, since the partial-page read operations

in a SOML read operation read the partial-page in distinct

blocks; as a result, the read disturbances in different blocks

do not deteriorate each other.

5 SOML Read: Software Modifications
The SOML read operation presented in Section 4 requires

software changes in identifying the read requests that satisfy

the hardware constraints of the SOML read operation. To

that end, we propose a novel scheduling algorithm in the

FTL layer to construct a SOML read operation. Since our

algorithm schedules the FTL-translated (physical-address)

read requests, it is easily applicable across different FTL

implementations.

5.1 SOML Read Operation Constraints
The hardware and software constraints in constructing a

SOML read from partial-reads include: (a) a shared bit-line

across all partial-reads and (b) a shared block-decoder be-

tween the blocks corresponding to the partial-reads.

Shared bit-lines: Due to the highly-condensed bit-lines,

to form a SOML read operation, multiple partial-read oper-

ations have to share the same set of bit-lines. Figure 8a-(1)

shows four different scenarios for two partial-read opera-

tions. The first and second pairs of the partial-read operations

cannot be executed simultaneously, since these partial-reads

compete for the same set of bit-lines to transfer the read data

to the chip-internal buffer. In contrast, the third and fourth

pairs can be executed at the same time.

We assume that the data layout of a page is modified as

shown in Figure 8a-(2), to accommodate the partial-read

operation. Specifically, instead of dividing the page into only

two mandatory regions, i.e., user data region and spare area

region in the baseline layout, we propose splitting the spare

area region into smaller regions, thereby associating each

partial-page with a corresponding spare area. As a result,

the partial-page and its corresponding spare area are now

contiguous. Note that splitting spare area region does not

harm the ECC capability. This is because the ECC in modern

SSDs does not use the entire data region (16KB) as a unit to

16KBBaseline

Partial-page 4KB 4KB 4KB 4KB
User data Spare area (for ECC and FTL)

OK OK
(i) (ii) (iii) (iv)

(2)

(1)

(a) Examples and page layouts of shared bit-lines

constraint in (1) and (2), respectively.

1.
Baseline

5 reads

2.
3.

5.
4.

24 11

Our

2 SOML
reads

3 5

16KB

4KB

(b) A scheduling

example considering

the shared bit-lines

constraint.

1.
Baseline

2.
3.

5.
4.

BI:
3
1
6
8
6

24 11
Our

3
5

BI:
3,1,8

6
6

34 11
Optimal

2 5

BI:
3,6,8
1,6BI: Block Index

(c) A scheduling example consid-

ering both the shared bit-lines and

block-decoders constraints.

0
0.2
0.4
0.6
0.8

1
1.2

2 4 6 8 10 12 14

R
e

ad
 la

te
n

cy

re
d

u
ct

io
n

 a
ga

in
st

th

e
 b

as
e

lin
e

Number of queued read requests (n)

Proposed Optimal

(d) Comparison between our pro-

posed algorithm and the optimal al-

gorithm (lower is better).

Figure 8

Algorithm 1: SOML scheduling algorithm

Input: R_queue: queued read requests

Data: used_BLs: bit-lines, used_BDs: block-decoders
1 SOML_reqs← ϕ ; used_BLs← ϕ ; used_BDs← ϕ ;
2 for req in R_queue do
3 if BLs-overlapped(req.BLs, used_BLs) then continue ;

4 if BDs-overlapped(req.BDs, used_BDs) then continue ;

5 used_BLs.insert(req.BLs);

6 used_BDs.insert(req.BDs);

7 SOML_reqs.insert(req);

8 return SOML_reqs;

encode. Instead, the data region is broken into small chunk

(1KB or 2KB) and each chunk is encoded separately.

Shared block decoder: To enable executing multiple

partial-read operations simultaneously, we split the base-

line block-decoder into smaller block-decoders. Each smaller

block-decoder can only access a disjointed sub-set of blocks,

which can only execute one partial-read operation. Hence, to

perform a SOML read operation, the contained partial-read

operations have to be executed by different block-decoders.

For example, in Figure 6c-(2), one block-decoder is split into

two; as a result, a partial-read can be performed on odd

blocks, while another one can only be performed on even

blocks. More specifically, block-0 and block-M (where M is

an odd number) can execute two partial-read operations in-

dividually. However, block-1 and block-M cannot, since they

are controlled by the same block-decoder.

5.2 Scheduling Algorithm
Algorithm 1 gives our proposed SOML read scheduling al-

gorithm. This algorithm considers both (a) shared bit-lines

(BLs) and (b) shared block-decoders (BDs), while combining

partial-reads to form a SOML read operation. Our greedy

algorithm iterates over all the read requests and combines

reads that satisfy the imposed hardware constraints.
4

Figure 8b shows how Algorithm 1 finds the best set of

SOML read operations. As can be observed, there are 5 pend-

ing read requests queued to be serviced by a chip. Let us

assume that their granularity is either 4KB or 8KB, which

are the sizes of a quarter- or half-page, respectively. The

first round of Algorithm 1 picks requests 1, 2 and 4 to com-

bine them into one SOML read operation. This is because,

requests 3 and 5 share the bit-lines with requests 2 and 1,

4
Note that the read request queue is in chronological order, so the head of

the queue holds the oldest request.

respectively; as a result, requests 3 and 5 cannot be combined

to be part of the same (first) SOML read operation, resulting

in an additional SOML read operation, as depicted in Fig-

ure 8b. Note that this set of SOML read operations is optimal

in this example, since the total size of read requests (24KB)

warrants at least two read operations (16KB).

However, Algorithm 1 can occasionally generate sub-optimal

sets of SOML reads, since the SOML read has the mentioned

two constraints, and NAND flash has asymmetric read la-

tencies. Figure 8c shows a sub-optimal example caused by

the shared block-decoders. In this example, the block indices

of the read pages are indicated as BI ; so, both the imposed

hardware constraints have to be considered. In this case, the

first SOML read is the same as the one shown in Figure 8b,

since requests 1, 2, and 4 do not share any block-decoders.

However, since requests 3 and 5 read the same block and

hence share the same block-decoder, they cannot be per-

formed simultaneously. Such a scenario can be optimized by

combining requests 1, 3, and 4 in the first SOML read, and

then requests 2 and 5 can form the second SOML read.

Such sub-optimal case can be handled by employing an

“optimal algorithm," which considers all SOML read opera-

tions simultaneously; however, such an “optimal algorithm"

incurs an exponential time-complexity, making it imprac-

tical
5
. Hence, to see whether the SOML read operations

need to be scheduled by an optimal or other near-optimal

algorithms, we ran experiments to observe the difference

between our proposed and optimal algorithms. We used

randomly-generated workloads, which contain 4K, 8K, 12K

and 16K requests, to cover as many queued-request scenarios

as possible; hence, one can realize how rare these sub-optimal

examples are encountered. The latencies of the requests can

span any of 3 distinct TLC read latencies (shown in Table 1).

We randomly generated 7 workloads, and each workload

contains 10000 sets of fixed number (2 to 14) of queued read

requests.

Figure 8d shows the read latency reductions brought by

the proposed and optimal algorithms, compared to the base-

line scheduling algorithm. As the number of queued read

requests (X-axis) increases, the optimal algorithm gradually

5
The “optimal algorithm" spends more than one hour on a desktop CPU, to

find the optimal SOML read combination for 14 queued reads. In contrast,

the proposed algorithm only have to go over the queue once, which takes

less than few microseconds.

performs better than our proposed algorithm. However, this

latency reduction difference between our proposed and op-

timal algorithms is much smaller than that of between the

baseline and our proposed algorithm. This means that any

additional benefit that could be obtained by implementing

a costly (exponential-time-complexity) optimal algorithm

would be minimal; and so, we believe that our proposed

algorithm is sufficient to schedule and combine the SOML

reads.

6 Experimental Evaluation
6.1 Setup

Baseline 64-layer 3D NAND chip parameters [20]
(Die, Plane, Block, Page) (1, 2, 1437, 768)

(Page size, Cell density) (16KB, TLC)

(Program, Erase) (900µs, 10ms)

TLC read latency (LSB, CSB, MSB) (90µs, 120µs, 180µs)
Smallest partial-read size 4KB

Chip capacity 64 GB

SOML read enabled 64-layer 3D NAND chip parameters
Max SOML read 4 partial-reads

TLC read latency (LSB, CSB, MSB) (92.7µs, 123.7µs, 185.5µs)
SSD parameters

(number of chips, DRAM capacity) (8, 128MB)

(FTL, GC trigger) (Page-level mapping, 5%)

Victim block selection block with max #invalid pages

Transfer time per byte 5ns

(Over provision, Initial data) (25%, 50%)

#Re-read operations 3

32GB 3D NAND chip parameters [19]
(Die, Plane, Block, Page) (1, 2, 1888, 576)

16GB 3D NAND chip parameters [16]
(Die, Plane, Block, Page) (1, 1, 2732, 384)

Table 1. Characteristics of the evaluated SSDs.

trace read unique size size size size size
% access < 2KB < 4KB < 8KB < 16KB < 32KB

24HRS8 70.3 0.29 0 0.03 0.43 0.43 0.44

BS78 55 0.13 0 0.98 0.98 0.99 0.99

casa21 7.1 1 0 0.96 0.97 0.98 0.98

CFS13 63.2 0.78 0 0.84 0.85 0.86 0.94

ch19 14.9 0.76 0 1 1 1 1

DDR20 90.6 0.44 0.19 0.69 0.72 0.74 0.79

Ex64 22.3 0.96 0 0.13 0.79 0.83 0.87

hm_1 93.8 0.02 0 0.01 0.87 0.87 0.88

ikki18 1.1 1 0 0.83 0.9 0.98 0.98

LMBE2 82.9 0.88 0.01 0.14 0.16 0.21 0.35

mds_0 98.2 0.89 0.05 0.53 0.56 0.61 0.68

prn_1 85.4 0.41 0 0.44 0.64 0.68 0.71

prxy_0 5.66 0.07 0.01 0.83 0.86 0.89 0.96

src1_2 16.6 0.18 0.02 0.55 0.62 0.68 0.77

src2_0 12.7 0.29 0.02 0.82 0.85 0.89 0.98

stg_1 93.0 1 0.02 0.05 0.06 0.06 0.07

web_1 85.4 0.96 0.11 0.23 0.25 0.27 0.31

w8 15.4 1 0 0.96 0.96 0.98 0.99

Table 2. Important read characteristics of our workloads.

Columns 4-8 give the read request granularity breakdown.

We use SSDSim [15] to quantify how much SOML read

operations can improve the 3D NAND intra-chip read paral-

lelism. The detailed SSD parameters used in our evaluations

can be found in Table 1. We simulated a 512GB capacity

SSD, whose configuration parameters are very similar to

commercial SSDs such as [36]. We used 18 workloads
6
from

the OpenStor [27] repository. The details of these workloads

are given in Table 2.

Due to the additional SOML transistors, the latencies of all

read-related operations are prolonged. The increased read

latency can be calculated by the following two equations [34]:

Read Latency =
C

I
△V , and I =

VBL
(N − 1)R

, (1)

where C , △V , and VBL are the capacitor capacitance, mea-

sured voltage, and bit-line-applied voltage used by the sens-

ing circuits, respectively. These three parameters remain the

same as in the baseline, since our SOML read does not change

the sensing circuits. N is the number of data cells/transistors

between the upper and lower select transistors, which is also

the number of layers in 3D NAND, and R is the resistance of

a cell/transistor. We use a worst case estimation, where the

added SOML transistor has the same worst resistance as a

data cell. Therefore, the increased read latency can be calcu-

lated as
64+4−1
64−1

= 1.063 times of the baseline read latency, if

a quarter partial read is enabled.

6.2 Results
6.2.1 SOML Read Performance

Throughput: To show the intra-chip read parallelism im-

provement brought by the SOML read operation, we com-

pared the following three systems: (a) a baseline SSD with

8 chips, (b) a SOML read-enabled SSD with 8 chips, and

(c) a baseline SSD with 16 32GB chips. Figure 9a plots the

read/write throughput comparison between these three sys-

tems. On average, our proposal achieves about 2.8x better

throughput than the baseline under the same number of chips

(8 chips). It can also be observed that, our SOML-enabled sys-

tem outperforms both of the baseline systems tested, since

one SOML read operation can execute up to 4 (4KB) partial-

read operations simultaneously. As a result, the read perfor-

mance can be highly enhanced, thereby improving overall

throughput.

Read/write latency: To further understand the reason be-

hind the observed performance improvements, we plot the

write and read latencies in Figures 9b and 9c, respectively,

normalized to the 8-chip baseline. Although only reads can

be executed in parallel by the SOML read, the write latency

reduction is also significant, and is even higher than that

of reads. This is because, in SSDs, the writes typically have

lower priority compared to the reads due to the long-latency

of the former. As a result, to get processed, the writes need

to wait for the completion of all queued reads. Consequently,

shortening the overall read latency via the SOML reads short-

ens the write latencies as well.

6
Some of the workloads used are abbreviated as follows: ch19=cheetah19,

Exchange64=Ex64, and webusers8=w8.

0

3

6

9

12
2

4
H

R
S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

2
1

ch
1

9

h
m

_1

ik
ki

1
8

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.Th
ro

u
gh

p
u

t
(K

IO
P

S) Baseline (8 chips)
SOML Read (8 chips)
Baseline (16 chips)

19.7 12.3

64.53 140.7
98.39

(a) Throughput.

0

0.5

1

1.5

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
20

Ex
6

4

LM
B

E2

ca
sa

21

ch
1

9

h
m

_1

ik
ki

18

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
ve

ra
ge

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline (8 chips) SOML Read (8 chips) Baseline (16 chips)

(b)Write latency.

0

0.5

1

1.5

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

2
1

ch
1

9

h
m

_1

ik
ki

1
8

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
ve

ra
ge

N
o

rm
al

iz
e

d
 R

e
ad

La

te
n

cy

Baseline (8 chips) SOML Read (8 chips) Baseline (16 chips)

(c) Read latency.

Figure 9. Performance comparisons between the baselines and SOML read.

0

0.5

1

1.5

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
20

Ex
6

4

LM
B

E2

ca
sa

21

ch
1

9

h
m

_1

ik
ki

18

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
ve

ra
geN

o
rm

al
iz

e
d

 q
u

e
u

e
d

re

ad
 r

e
q

u
e

st
s

Baseline (8 chips) SOML Read (8 chips) Baseline (16 chips)

(a) Number of queued read requests.

0

50

100

150

1

1
8

7

3
7

3

5
5

9

7
4

5

9
3

1

1
1

1
7

1
3

0
3

1
4

8
9

1
6

7
5

1
8

6
1

2
0

4
7

2
2

3
3

2
4

1
9

2
6

0
5

2
7

9
1

2
9

7
7

3
1

6
3

3
3

4
9

3
5

3
5

3
7

2
1

3
9

0
7

4
0

9
3

4
2

7
9

4
4

6
5

4
6

5
1

4
8

3
7

R
e

ad
 la

te
n

cy
 (

m
s)

Request Index

Baseline (8 chips)
SOML read (8 chips)
Baseline (16 chips)

(b) prxy_0 read request time graph.

0

3

6

9

12

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

21

ch
1

9

h
m

_1

ik
ki

1
8

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.Th
ro

u
gh

p
u

t
(K

IO
P

S) Baseline (high-density)
SOML Read (high-density)
Baseline (low-density)

19.7 64.53

140.7

65.90

(c) Iso-die-count comparison.

Figure 10. Various comparisons between the baselines and SOML read.

SSD
controller

Baseline SSD

DRAM

3

Ch 0 Ch 1 Ch 3Ch 2

210

7654

SSD with replication

SSD
controller

DRAM

1

Ch 0 Ch 1 Ch 3Ch 2

100

3322

(a) Replication.

P-1

P-Z

Block M

P-0
Block 0

…

…

P-1

P-0

P-Z Write to

(b) Remapping.

Figure 11. Compared schemes.

Number of queued read requests: Figure 10a shows the
average number of read requests queued across all chips

for the three systems tested. Our proposal can successfully

reduce the number of read requests queued, compared to the

baseline system with 8 chips. However, the baseline with 16

chips still outperforms our proposed system. This is because,

under the same number of requests, the increased rate of

queued reads on an 8-chip SSDs is higher than that of 16-chip

SSDs. Therefore, though our SOML read can process multiple

queued requests simultaneously, the number of queued reads

is still high. Note however that, the throughput of our SOML

read system outperforms the baseline system with 16 chips.

Time graph: Figure 10b plots the latency comparisons of

the first 5000 read requests of prxy_0 across three systems.

As can be observed, the read latencies of our proposed sys-

tem are much smaller than those of the two baseline systems.

This is because, our system utilizes the SOML read opera-

tion to simultaneously process multiple read requests; hence,

fewer read requests are queued, shortening the incurred read

latency.

Iso-die-count comparison: 7 Figure 10c gives the perfor-
mance comparison between the baseline and SOML readwith

8 high-density (64GB) and low-density (32GB) chips. As can

be seen, SOML read can still highly improve the performance.

Nevertheless, only a limited performance difference between

baseline high-/low-density systems is observed, since the

systems share the same level of inter-chip parallelism under

the iso-die-count comparison. One may think that increasing

7
We use the terms “chip" and “die" interchangeably, since, in our experi-

mental setup, each chip has one die.

number of NAND chips can solve the SSD lower parallelism

issue, but such solution increases the SSD capacity; and in-

creasing the SSD capacity makes the mapping table larger

and requires a re-design of SSD processor-DRAM architec-

ture, which presents an undesired overhead for SSD vendors.

In comparison, our SOML read improves the SSD parallelism

without modifying the SSD architecture.

6.2.2 Comparisons with Other Schemes

Replication: The main idea behind replication is to keep

more than one copy of data in different chips across an SSD.

Hence, a read request can be serviced by any one of the

chips with a copy of the data. This idea, also known as RAIN

(Redundant Array of Independent NANDs) [5], is inherited

from RAID (Redundant Array of Independent Disks). Among

all the proposed RAIN types, only RAIN 1 based approaches

(shown in Figure 11a), which duplicate all data, can improve

the read performance. This is because this particular RAIN

system can service multiple queued read requests from dif-

ferent chips with replicated data, leveraging the multi-chip

parallelism. However, it needs to be emphasized that, RAIN

1 necessitates maintaining coherency across replicas. As a

result, a write incurred by a replicated data further results in

multiple writes to the same data in other chips to maintain

coherency, resulting in more number of writes.

Figures 12a, 12b, and 12c plot the throughput, average

write and read latencies of the compared schemes, respec-

tively. Note that this is an iso-chip-count comparison, since,

when using replication, half of chips are used for additional

data copies; so, the SSD capacity of the replication is half of

the baseline and our system. As can be observed, although,

on average, replication can perform better than the baseline,

it is still much worse than our proposed SOML read-enabled

system. This is because, the replication introduces additional

writes to guarantee the data consistency across different

chips. Due to such additional writes, the replication performs

0

3

6

9

12
2

4
H

R
S8

B
S7

8

C
FS

1
3

D
D

R
20

Ex
6

4

LM
B

E2

ca
sa

2
1

ch
1

9

h
m

_1

ik
ki

18

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.Th
ro

u
gh

p
u

t
(K

IO
P

S) Baseline SOML Read replication

19.7

64.53 140.7

139.1

(a) Throughput.

0

1

2

3

4

5

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

2
1

ch
1

9

h
m

_1

ik
ki

1
8

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline SOML Read replication

10.85

(b)Write latency.

0

1

2

3

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

2
1

ch
1

9

h
m

_1

ik
ki

1
8

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.

N
o

rm
al

iz
e

d
 R

e
ad

La

te
n

cy

Baseline SOML Read replication

(c) Read latency.

Figure 12. Performance comparisons between SOML read and the replication-based approach.

0

3

6

9

12

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
20

Ex
6

4

LM
B

E2

ca
sa

21

ch
1

9

h
m

_1

ik
ki

18

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.Th
ro

u
gh

p
u

t
(K

IO
P

S) Baseline SOML Read suspend remap

19.7 17.7

64.53 140.7
64.53
141.3

(a) Throughput.

0

0.5

1

1.5

2

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

21

ch
1

9

h
m

_1

ik
ki

1
8

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline SOML Read suspend remap

2.77 9.12

(b)Write latency.

0

0.5

1

1.5

2

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
20

Ex
6

4

LM
B

E2

ca
sa

21

ch
1

9

h
m

_1

ik
ki

18

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.

N
o

rm
al

iz
e

d
 R

e
ad

La

te
n

cy

Baseline SOML Read suspend remap

4.15

(c) Read latency.

Figure 13. Performance comparisons among SOML read, the remapping, and the program/erase suspension.

worse in workloads such as prxy_0 and src2_0. Therefore, the

replication is not a practical option for improving intra-chip

read parallelism.

Remapping: Remapping idea, borrowed from a DRAM-

based study, Micropages [26, 37], copies the data being ac-

cessed simultaneously to the same access-unit, so that it can

be accessed faster in a single read operation next time. Fig-

ure 11b shows how the remapping technique can be used in

reducing the read performance degradation in 3D NAND-

based SSDs. For example, the first half of page-1 in block-0

and the second half of page-0 in block-M are always accessed

at the same time; as a result, to improve the read performance,

the data of two half pages can be copied into another page

(page-Z of block-0 in the example). Therefore, two requests

can be serviced by only one baseline read operation in future,

without any hardware modification.

Figures 13a, 13b, and 13c show, respectively, the through-

put, average write, and read latencies of different schemes.

On average, our SOML read-enabled scheme outperforms

the remapping-based scheme, since the additional write op-

erations, introduced by the remapping technique, degrade

the overall performance. However, in some workloads, such

as Ent12 and Ch19, the remapping-based scheme performs

slightly better than our proposed scheme. This is because,

these workloads have easily-predictable, repeatedly-accessed

patterns; thus, combining multiple such requests can lead

to significant performance improvements. Note however

that those read patterns are not frequent, as mentioned in

Section 2.2 and illustrated in Figure 3a. In summary, our

SOML read operation is more general and can improve the

intra-chip parallelism in most of the workloads.

Suspension of program and erase operations: The sus-
pension of program and erase operations is proposed in [43].

The reason why suspension can improve the read perfor-

mance is due to the asymmetric operation latencies exhibited

by NAND flash, where the write and erase latencies are more

than 10 times longer than the read latency. Hence, a read

operation may be blocked by an ongoing write or erase op-

eration. To avoid such undesirable read operation blocking,

the write and erase operations can be suspended to allow the

blocked reads to be processed. Therefore, the overall read

performance is not affected by any write or erase operations.

In our implementation of this idea, we assume that per-

fect write and erase suspensions are employed in the NAND

chips; as a result, the read operations will not be blocked by

any write or erase operations. However, due to overheads in-

curred by the preempted read operations, the latencies of the

write and erase operations are prolonged. Clearly, this im-

plementation is too optimistic to be employed by the NAND

chips, since the overheads brought by write suspension for

3D NAND would be very high due to the full-sequence-

program operation [20].

The comparison results can be observed in Figures 13a, 13b,

and 13c. Our SOML read-enabled scheme outperforms the

program/erase suspension scheme, since the latency differ-

ence between read and write operations is shortened, ow-

ing to the prolonged chip read latency and the faster full-

sequence-program (write) operation. Consequently, fewer

reads are blocked by writes. In addition, the number of erase

operations incurred during GC is also reduced, due to the

reduced number of 3D NAND blocks per plane as the block

size increases. Therefore, the suspension technique can only

slightly improve the overall performance.

6.2.3 Sensitivity Results

To demonstrate that our SOML read operation can be ap-

plied to different 3D NAND SSDs, we conducted sensitivity

tests by varying: (1) DRAM capacity and (2) partial-page

granularities.

DRAMcapacity sensitivity: Figure 14a shows the through-
put comparison between the baseline and our SOML read

across various DRAM sizes. As can be observed, making

the DRAM buffer bigger (from 64MB to 256MB) provides

0

3

6

9

12
2

4
H

R
S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

2
1

ch
1

9

h
m

_1

ik
ki

1
8

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.Th
ro

u
gh

p
u

t
(K

IO
P

S) Baseline(0MB) SOML(0MB)
Baseline(64MB) SOML(64MB)
Baseline(256MB) SOML(256MB)

19.7

21 140.7
64.53 64.53

146.7

.028

.038

(a) Different DRAM Capacity.

0

3

6

9

12

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
20

Ex
6

4

LM
B

E2

ca
sa

21

ch
1

9

h
m

_1

ik
ki

18

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.Th
ro

u
gh

p
u

t
(K

IO
P

S) Baseline
SOML(2 subpages)
SOML(4 subpages)
SOML(8 subpages) 19.7

18.716.8

140.7
133.9

64.53
127.2

(b) Different partial-page granularities.

0

0.5

1

1.5

2

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

2
1

ch
1

9

h
m

_1

ik
ki

18

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.

N
o

rm
al

iz
e

d
 A

lg
o

ri
th

m

co
m

p
u

ti
n

g
o

ve
rh

e
ad

Baseline SOML Read

(c) Algorithm overhead.

Figure 14. Sensitivity tests and overhead comparisons between the baseline and the SOML read.

nearly no performance improvement. This is because a 64MB

DRAM is very large; hence, the write latencies are success-

fully hidden, while the read performance cannot be further

improved due to the non-repetitive access pattern of reads.

In contrast, making the DRAM buffer smaller or not employ-

ing a DRAM buffer (0MB) degrade the overall performance.

This is because the write latencies cannot be hidden by the

DRAM buffer; as a result, the performance is dominated by

the writes, instead of the reads. Hence, SOML read can only

slightly improve the performance of the DRAMless SSDs.

Partial-read granularity sensitivity: Figure 14b shows

the throughput comparison between the baseline and our

SOML read across various partial-read granularities. As can

be observed, the throughput of 4 partial-reads outperforms

that of the other two granularities. This result stems from

two reasons. First, more number of partial-read granularities

demand the insertion of more number of additional SOML

transistors, which in turn increases the read latency, ulti-

mately degrading the overall performance. Second, fewer

workloads are dominated by 1K or 2K read requests (shown

in Figure 3b); as a result, 1/8 partial-page (2K) read cannot

be easily utilized.

0

3

6

9

12

2
4

H
R

S8

B
S7

8

C
FS

1
3

D
D

R
2

0

Ex
6

4

LM
B

E2

ca
sa

21

ch
1

9

h
m

_1

ik
ki

1
8

m
d

s_
0

p
rn

_1

p
rx

y_
0

sr
c1

_2

sr
c2

_0

st
g_

1

w
e

b
_1 w

8

A
vg

.Th
ro

u
gh

p
u

t
(K

IO
P

S) Baseline SOML Read 8K page 4K page

19.7 11.92

64.53 140.7
108.2
149.1

Figure 15. The comparison between SOML read and smaller

pages.

6.2.4 Computation Overhead

To construct a SOML read operation, we propose Algorithm 1

to linearly search feasible reads in the request queue. How-

ever, the proposed algorithm has a higher time complexity

compared to the baseline request selection algorithm, which

always chooses the first read request. Figure 14c shows the

normalized total computation times of the baseline and our

algorithm. As can be observed, on average, our algorithm

takes 1.13x longer time, which, in our opinion, is negligi-

ble. This is because the request computation time is much

smaller than the latency of the NAND operation; hence, the

computation time can be successfully hidden, while NAND

chips being read/written.

6.2.5 Smaller page sizes
One may think that reducing the page sizes to half or quarter

can solve the performance degradation caused by the larger

page size (16KB). Figure 15 plots the throughput compari-

son between our SOML read and two smaller page sizes, 8K

and 4K. Note that, to have a fair comparison, we make the

same densities across all settings via increasing the num-

ber of pages per block 2x and 4x for 8K and 4K page sizes,

respectively. As can be seen, 4k and 8K page sizes can out-

perform the baseline under some workloads (such as w8 and

prxy_0) due to the reduced resource conflicts across chips.

However, under someworkloads (such as hm_1), the baseline

outperforms the SSDs with reduced page sizes, since smaller

page sizes reduce the overall throughput. In contrast, SOML

read can improve the overall performance by increasing the

intra-chip parallelism.

7 Related Work
7.1 Read Performance Enhancement Proposals:
We are not aware of any prior work that targets improving

the intra-chip read parallelism in 3D NAND flash; so, we

compare our proposed scheme against the existing 2DNAND

flash read performance enhancing techniques.

Re-Read related proposals: The 2D NAND proposals use

various techniques to minimize the number of re-reads re-

quired for servicing a read request. The studies in [6–9, 29]

characterized the disturbances of the 2D MLC NAND flash

in-detail. By using such characterization data, SSDs can cor-

rectly guess the NAND cell reliability status, so that a min-

imal number of re-reads is required for each read request.

Zhao et al. [49] proposed a progressive voltage sensing strat-

egy, which allows the number of re-reads to be varied based

on the reliability of individual pages, instead of the worst

page. As a result, the number of re-reads can be minimized.

Page disparity aware proposals: Liu et al. [31] proposed

techniques to record the errors in pages, in an attempt to

utilize such information to accelerate the speed of error cor-

rection, thereby improving the overall read performance. In

comparison, Chang et al. [10] proposed utilizing the asym-

metric read latency property of the MLC NAND cell, so that

the frequently-read data can be placed into faster pages to

improve the overall read performance.

These proposals are orthogonal to our SOML read oper-

ation; therefore, they can be combined, if desired, with our

SOML read operation to further improve the read perfor-

mance.

7.2 Request Scheduling Proposals:
We are not aware of any prior request scheduling algorithm

designed to improve the read intra-chip parallelism. Con-

sequently, we contrast our SOML read request scheduling

algorithm with general SSD request scheduling algorithms.

Mitigating inter-chip workload imbalance proposals:
In a multi-chip SSD architecture, different chips may expe-

rience imbalanced loads, which in turn reduces the overall

performance. This is because the requests may wait to be ser-

viced by heavily-loaded chips, while the other chips remain

idle. Dynamic write request dispatch [12, 15, 41, 42] redis-

tributes the write requests, which are queued in a heavily-

loaded chip, to other chips, so that the loads across chips

could be balanced.

Garbage collection (GC) related proposals: GC involves

a very large number of read/write operations to migrate

the valid data from the victim blocks to other blocks. Fore-

ground GC, which stalls all queued requests, can incur se-

vere performance penalties. Therefore, partial or background

GCs [18, 46] are introduced to distribute or schedule those

GC-related read/write operations to idle times; as a result,

the requests are not stalled and can be serviced as usual.

8 Conclusion
Due to the high storage capacity demands from the storage

market, 3D NAND density keeps increasing. Unfortunately,

high-density SSDs end up achieving lower multi-chip par-

allelism than their low-density counterparts. From our ex-

tensive workload analysis with varying number of chips,

we found that the read performance degrades much more

than the write performance when employing fewer chips.

Therefore, to mitigate such performance degradation, we

proposed a novel SOML read operation for 3D NAND flash,

which can perform multiple partial-reads to different pages

simultaneously. A corresponding SOML read scheduling al-

gorithm (for FTL) is also proposed to take full advantage of

the SOML read. Our experiments with various workloads

indicate that, on average, the overall performance of our

SOML read-enabled system with 8 chips outperforms that

of the baseline with 16 chips. Further, our experiments also

indicate that the proposed approach outperforms three state-

of-the-art optimization strategies.

Acknowledgments
This research is supported by NSF grants 1439021, 1439057,

1409095, 1626251, 1629915, 1629129 and 1526750, and a grant

from Intel. Dr. Jung is supported in part byNRF 2016R1C1B2015312,

DOE DE-AC02-05CH 11231, IITP-2017-2017-0-01015, NRF-

2015M3C4A7065645, and MemRay grant (2015-11-1731).

References
[1] 2013. Fatcache: memcached on SSD. https://github.com/twitter/

fatcache. (2013).
[2] 2014. ONFI 4.0 Specification. http://www.onfi.org/. (April 2014).
[3] 2018. Bitcoin. https://bitcoin.org/en/. (Aug 2018).
[4] 2018. Micron 3D NAND flyer. https://www.micron.com/~/media/

documents/products/product-flyer/3d_nand_flyer.pdf. (Aug 2018).

[5] 2018. RAIN. https://www.micron.com/~/media/documents/products/
technical-marketing-brief/brief_ssd_rain.pdf. (Aug 2018).

[6] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai. 2012. Error

patterns in MLC NAND flash memory: Measurement, characterization,

and analysis. In Proceedings of the Conference on Design, Automation

and Test in Europe (DATE). 521–526.

[7] Yu Cai, Yixin Luo, Saugata Ghose, and OnurMutlu. [n. d.]. Read disturb

errors in MLC NAND flash memory: Characterization, mitigation, and

recovery. In 2015 45th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks. IEEE, 438–449.

[8] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu. 2015. Data retention

in MLC NAND flash memory: Characterization, optimization, and re-

covery. In 2015 IEEE 21st International Symposium on High Performance

Computer Architecture (HPCA). 551–563.

[9] Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai. [n. d.]. Program

interference in MLC NAND flash memory: Characterization, modeling,

and mitigation. In 2013 IEEE 31st International Conference on Computer

Design (ICCD). IEEE, 123–130.

[10] D. W. Chang, W. C. Lin, and H. H. Chen. 2016. FastRead: Improving

Read Performance for Multilevel-Cell FlashMemory. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems (Sept 2016), 2998–3002.

[11] Hyeokjun Choe, Seil Lee, Seongsik Park, Sei Joon Kim, Eui-Young

Chung, and Sungroh Yoon. 2016. Near-Data Processing for Machine

Learning. http://arxiv.org/abs/1610.02273. (2016).
[12] Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mah-

mut T. Kandemir, Chita R. Das, and Myoungsoo Jung. 2017. Exploiting

Intra-Request Slack to Improve SSD Performance. In Proceedings of the

Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’17). 375–388.

[13] Sumitha George, Minli Liao, Huaipan Jiang, Jagadish B. Kotra, Mah-

mut Kandemir, Jack Sampson, and Vijaykrishnan Narayanan. 2018.

MDACache:Caching for Multi-Dimensional-Access Memories. In The

51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-50).

[14] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A

Flash Translation Layer Employing Demand-based Selective Caching

of Page-level AddressMappings. In Proceedings of the 14th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS).

[15] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping

Zhang. 2011. Performance impact and interplay of SSD parallelism

through advanced commands, allocation strategy and data granularity.

In Proceedings of the international conference on Supercomputing (SC).

[16] Jae-Woo Im, Woo-Pyo Jeong, Doo-Hyun Kim, Sang-Wan Nam, Dong-

Kyo Shim, Myung-Hoon Choi, Hyun-Jun Yoon, Dae-Han Kim, You-Se

Kim, Hyun-Wook Park, and others. 2015. 7.2 A 128Gb 3b/cell V-NAND

flash memory with 1Gb/s I/O rate. In 2015 IEEE International Solid-State

Circuits Conference-(ISSCC) Digest of Technical Papers. IEEE.

[17] Dawoon Jung, Jeong-UK Kang, Heeseung Jo, Jin-Soo Kim, and Joon-

won Lee. 2010. Superblock FTL: A superblock-based flash translation

layer with a hybrid address translation scheme. ACM Transactions on

Embedded Computing Systems (March 2010).

https://github.com/twitter/fatcache
https://github.com/twitter/fatcache
http://www.onfi.org/
https://bitcoin.org/en/
https://www.micron.com/~/media/documents/products/product-flyer/3d_nand_flyer.pdf
https://www.micron.com/~/media/documents/products/product-flyer/3d_nand_flyer.pdf
https://www.micron.com/~/media/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/~/media/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
http://arxiv.org/abs/1610.02273

[18] M. Jung,W. Choi, S. Srikantaiah, J. Yoo, andM. T. Kandemir. 2014. HIOS:

A host interface I/O scheduler for Solid State Disks. In 2014 ACM/IEEE

41st International Symposium on Computer Architecture (ISCA).

[19] D. Kang, W. Jeong, C. Kim, D. H. Kim, Y. S. Cho, K. T. Kang, J. Ryu, K. M.

Kang, S. Lee, W. Kim, H. Lee, J. Yu, N. Choi, D. S. Jang, J. D. Ihm, D.

Kim, Y. S. Min, M. S. Kim, A. S. Park, J. I. Son, I. M. Kim, P. Kwak, B. K.

Jung, D. S. Lee, H. Kim, H. J. Yang, D. S. Byeon, K. T. Park, K. H. Kyung,

and J. H. Choi. 2016. 7.1 256Gb 3b/cell V-NAND flash memory with

48 stacked WL layers. In 2016 IEEE International Solid-State Circuits

Conference (ISSCC). https://doi.org/10.1109/ISSCC.2016.7417941
[20] C. Kim, J. H. Cho, W. Jeong, I. h Park, H. W. Park, D. H. Kim, D. Kang,

S. Lee, J. S. Lee, W. Kim, J. Park, Y. l Ahn, J. Lee, J. h Lee, S. Kim,

H. J. Yoon, J. Yu, N. Choi, Y. Kwon, N. Kim, H. Jang, J. Park, S. Song,

Y. Park, J. Bang, S. Hong, B. Jeong, H. J. Kim, C. Lee, Y. S. Min, I.

Lee, I. M. Kim, S. H. Kim, D. Yoon, K. S. Kim, Y. Choi, M. Kim, H.

Kim, P. Kwak, J. D. Ihm, D. S. Byeon, J. y Lee, K. T. Park, and K. h

Kyung. 2017. 11.4 A 512Gb 3b/cell 64-stacked WL 3D V-NAND flash

memory. In 2017 IEEE International Solid-State Circuits Conference

(ISSCC). https://doi.org/10.1109/ISSCC.2017.7870331
[21] Wonjoo Kim, Sangmoo Choi, Junghun Sung, Taehee Lee, C. Park,

Hyoungsoo Ko, Juhwan Jung, Inkyong Yoo, and Y. Park. 2009. Multi-

layered Vertical Gate NANDFlash overcoming stacking limit for terabit

density storage. In 2009 Symposium on VLSI Technology.

[22] O. Kislal, M. T. Kandemir, and J. Kotra. 2016. Cache-Aware Approxi-

mate Computing for Decision Tree Learning. In Proceedings of IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW).

[23] Jagadish Kotra, D. Guttman, Nachiappan. C. N., M. T. Kandemir, and

C. R. Das. 2017. Quantifying the Potential Benefits of On-chip Near-

Data Computing in Manycore Processors. In Proceedings of 25th Inter-

national Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems (MASCOTS).

[24] Jagadish Kotra, S. Kim, K. Madduri, and M. T. Kandemir. 2017.

Congestion-aware memory management on NUMA platforms: A

VMware ESXi case study. In Proceedings of IEEE International Sympo-

sium on Workload Characterization (IISWC).

[25] J. B. Kotra, M. Arjomand, D. Guttman, M. T. Kandemir, and C. R. Das.

2016. Re-NUCA: A Practical NUCA Architecture for ReRAM Based

Last-Level Caches. In Proceedings of IEEE International Parallel and

Distributed Processing Symposium (IPDPS).

[26] Jagadish B. Kotra, Haibo Zhang, Alaa Alameldeen, Chris Wilkerson,

and Mahmut T. Kandemir. 2018. CHAMELEON: A Dynamically Re-

configurable Heterogeneous Memory System. In The 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-50).

[27] Miryeong Kwon, Jie Zhang, Gyuyoung Park, Wonil Choi, David

Donofrio, John Shalf, Mahmut Kandemir, and Myoungsoo Jung. 2017.

TraceTracker: Hardware/Software Co-Evaluation for Large-Scale I/O

Workload Reconstruction. In 2016 IEEE International Symposium on

Workload Characterization (IISWC).

[28] S. Lee, C. Kim, M. Kim, S. m. Joe, J. Jang, S. Kim, K. Lee, J. Kim, J. Park,

H. J. Lee, M. Kim, S. Lee, S. Lee, J. Bang, D. Shin, H. Jang, D. Lee, N.

Kim, J. Jo, J. Park, S. Park, Y. Rho, Y. Park, H. j. Kim, C. A. Lee, C. Yu, Y.

Min, M. Kim, K. Kim, S. Moon, H. Kim, Y. Choi, Y. Ryu, J. Choi, M. Lee,

J. Kim, G. S. Choo, J. D. Lim, D. S. Byeon, K. Song, K. T. Park, and K. h.

Kyung. 2018. A 1Tb 4b/cell 64-stacked-WL 3D NAND flash memory

with 12MB/s program throughput. In 2018 IEEE International Solid -

State Circuits Conference - (ISSCC).

[29] Chun-Yi Liu, Yu-Ming Chang, and Yuan-Hao Chang. 2015. Read Lev-

eling for Flash Storage Systems. In Proceedings of the 8th ACM Inter-

national Systems and Storage Conference (SYSTOR ’15). New York, NY,

USA.

[30] Jun Liu, Jagadish Kotra, Wei Ding, and Mahmut Kandemir. 2015. Net-

work Footprint Reduction Through Data Access and Computation

Placement in NoC-based Manycores. In Proceedings of the 52Nd An-

nual Design Automation Conference (DAC).

[31] R. S. Liu, M. Y. Chuang, C. L. Yang, C. H. Li, K. C. Ho, and H. P. Li. 2016.

Improving Read Performance of NAND Flash SSDs by Exploiting Error

Locality. IEEE Trans. Comput. (April 2016), 1090–1102.

[32] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu. 2018. HeatWatch:

Improving 3D NAND Flash Memory Device Reliability by Exploiting

Self-Recovery and Temperature Awareness. In 2018 IEEE International

Symposium on High Performance Computer Architecture (HPCA).

[33] H. Maejima, K. Kanda, S. Fujimura, T. Takagiwa, S. Ozawa, J. Sato,

Y. Shindo, M. Sato, N. Kanagawa, J. Musha, S. Inoue, K. Sakurai, N.

Morozumi, R. Fukuda, Y. Shimizu, T. Hashimoto, X. Li, Y. Shimizu, K.

Abe, T. Yasufuku, T. Minamoto, H. Yoshihara, T. Yamashita, K. Satou,

T. Sugimoto, F. Kono, M. Abe, T. Hashiguchi, M. Kojima, Y. Suematsu,

T. Shimizu, A. Imamoto, N. Kobayashi, M. Miakashi, K. Yamaguchi,

S. Bushnaq, H. Haibi, M. Ogawa, Y. Ochi, K. Kubota, T. Wakui, D.

He, W. Wang, H. Minagawa, T. Nishiuchi, H. Nguyen, K. H. Kim, K.

Cheah, Y. Koh, F. Lu, V. Ramachandra, S. Rajendra, S. Choi, K. Payak,

N. Raghunathan, S. Georgakis, H. Sugawara, S. Lee, T. Futatsuyama, K.

Hosono, N. Shibata, T. Hisada, T. Kaneko, and H. Nakamura. 2018. A

512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technology.

In 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[34] Alessia Marelli Rino Micheloni, Luca Crippa. 2010. Inside NAND Flash

Memory. Springer Netherlands.

[35] Samsung. 2018. Samsung Pro 950 SSD. https://www.
samsung.com/us/computing/memory-storage/solid-state-drives/
ssd-950-pro-nvme-512gb-mz-v5p512bw/. (Aug 2018).

[36] Samsung. 2018. Samsung Pro 960 SSD. http://www.samsung.com/
semiconductor/minisite/ssd/product/consumer/960pro/. (Aug 2018).

[37] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Ra-

jeev Balasubramonian, and Al Davis. [n. d.]. Micro-pages: Increasing

DRAM Efficiency with Locality-aware Data Placement. In Proceedings

of the Fifteenth Edition of ASPLOS on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS XV). 219–230.

[38] X. Tang, M. Kandemir, P. Yedlapalli, and J. Kotra. 2016. Improving

bank-level parallelism for irregular applications. In 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–

12.

[39] Xulong Tang, Orhan Kislal, Mahmut Kandemir, and Mustafa Karakoy.

2017. Data Movement Aware Computation Partitioning. In Proceedings

of the 50th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO-50 ’17). New York, NY, USA, 730–744.

[40] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai, M. Ibrahim,

M. T. Kandemir, and C. R. Das. 2017. Controlled Kernel Launch for

Dynamic Parallelism in GPUs. In 2017 IEEE International Symposium

on High Performance Computer Architecture (HPCA). 649–660.

[41] Arash Tavakkol, Mohammad Arjomand, and Hamid Sarbazi-Azad.

2014. Unleashing the Potentials of Dynamism for Page Allocation

Strategies in SSDs. In The 2014 ACM International Conference on Mea-

surement and Modeling of Computer Systems (SIGMETRICS ’14). 551–

552.

[42] Arash Tavakkol, Pooyan Mehrvarzy, Mohammad Arjomand, and

Hamid Sarbazi-Azad. 2016. Performance Evaluation of Dynamic Page

Allocation Strategies in SSDs. ACM Trans. Model. Perform. Eval. Com-

put. Syst. (June 2016), 7:1–7:33.

[43] Guanying Wu and Xubin He. 2012. Reducing SSD Read Latency via

NAND Flash Program and Erase Suspension. In Proceedings of the 10th

USENIX Conference on File and Storage Technologies (FAST’12).

[44] Qin Xiong, Fei Wu, Zhonghai Lu, Yue Zhu, You Zhou, Yibing Chu,

Changsheng Xie, and Ping Huang. 2017. Characterizing 3D Floating

Gate NAND Flash. In Proceedings of the 2017 ACM SIGMETRICS /

International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS ’17 Abstracts). ACM, 31–32.

https://doi.org/10.1109/ISSCC.2016.7417941
https://doi.org/10.1109/ISSCC.2017.7870331
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-950-pro-nvme-512gb-mz-v5p512bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-950-pro-nvme-512gb-mz-v5p512bw/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-950-pro-nvme-512gb-mz-v5p512bw/
http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/960pro/
http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/960pro/

[45] R. Yamashita, S. Magia, T. Higuchi, K. Yoneya, T. Yamamura, H.

Mizukoshi, S. Zaitsu, M. Yamashita, S. Toyama, N. Kamae, J. Lee, S.

Chen, J. Tao, W. Mak, X. Zhang, Y. Yu, Y. Utsunomiya, Y. Kato, M. Sakai,

M. Matsumoto, H. Chibvongodze, N. Ookuma, H. Yabe, S. Taigor, R.

Samineni, T. Kodama, Y. Kamata, Y. Namai, J. Huynh, S. E. Wang, Y. He,

T. Pham, V. Saraf, A. Petkar, M. Watanabe, K. Hayashi, P. Swarnkar, H.

Miwa, A. Pradhan, S. Dey, D. Dwibedy, T. Xavier, M. Balaga, S. Agarwal,

S. Kulkarni, Z. Papasaheb, S. Deora, P. Hong, M. Wei, G. Balakrishnan,

T. Ariki, K. Verma, C. Siau, Y. Dong, C. H. Lu, T. Miwa, and F. Moogat.

2017. 11.1 A 512Gb 3b/cell flash memory on 64-word-line-layer BiCS

technology. In 2017 IEEE International Solid-State Circuits Conference

(ISSCC). 196–197.

[46] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-

nathan Sundararaman, Andrew A. Chien, and Haryadi S. Gunawi.

2017. Tiny-Tail Flash: Near-Perfect Elimination of Garbage Collection

Tail Latencies in NAND SSDs. In 15th USENIX Conference on File and

Storage Technologies (FAST 17). 15–28.

[47] P. Yedlapalli, J. Kotra, E. Kultursay, M. Kandemir, C. R. Das, and A. Siva-

subramaniam. 2013. Meeting midway: Improving CMP performance

with memory-side prefetching. In Proceedings of the 22nd Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT).

[48] Chun yi Liu, Jagadish Kotra, Myoungsoo Jung, and Mahmut Kandemir.

[n. d.]. PEN: Design and Evaluation of Partial-Erase for 3D NAND-

Based High Density SSDs. In 16th USENIX Conference on File and

Storage Technologies (FAST 18). USENIX Association, 67–82.

[49] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong Zhang, Nanning

Zheng, and Tong Zhang. 2013. LDPC-in-SSD: Making Advanced Error

Correction Codes Work Effectively in Solid State Drives. In Presented

as part of the 11th USENIX Conference on File and Storage Technologies

(FAST 13). USENIX.

[50] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E.

Priebe, and Alexander S. Szalay. 2015. FlashGraph: Processing Billion-

Node Graphs on an Array of Commodity SSDs. In 13th USENIX Con-

ference on File and Storage Technologies (FAST 15). USENIX Association,

45–58.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation: Workload Analysis

	3 Overview
	4 SOML Read: Hardware Modifications
	4.1 Peripheral Circuit Modifications
	4.2 Hardware Overheads
	4.3 SOML Read Command Format
	4.4 Discussion of the SOML Read Operation

	5 SOML Read: Software Modifications
	5.1 SOML Read Operation Constraints
	5.2 Scheduling Algorithm

	6 Experimental Evaluation
	6.1 Setup
	6.2 Results

	7 Related Work
	7.1 Read Performance Enhancement Proposals:
	7.2 Request Scheduling Proposals:

	8 Conclusion
	Acknowledgments
	References

