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Abstract
DRAM cells need periodic refresh to maintain data integrity.
With high capacity DRAMs, DRAM refresh poses a signif-
icant performance bottleneck as the number of rows to be
refreshed (and hence the refresh cycle time, tRFC) for each
refresh command increases. Modern day DRAMs perform
refresh at a rank-level, while LPDDRs used in mobile en-
vironments support refresh at a per-bank level. Rank-level
refresh degrades the performance significantly since none of
the banks in a rank can serve the on-demand requests. Per-
bank refresh alleviates some of the performance bottlenecks
as the other banks in a rank are available for on-demand re-
quests. Typical DRAM retention time is in the order of sev-
eral milliseconds, viz, 64msec for environments operating in
temperatures below 85 deg C and 32msec for environments
operating above 85 deg C.

With systems moving towards increased consolidation
(e.g., virtualized environments), DRAM refresh becomes
a significant bottleneck as it reduces the available over-
all DRAM bandwidth per task. In this work, we propose
a hardware-software co-design to mitigate DRAM refresh
overheads by exposing the hardware address-mapping and
DRAM refresh schedule to the operating system (OS). In
our co-design, we propose a novel per-bank refresh sched-
ule in the hardware which augments memory partitioning
in the OS. Supported by the novel per-bank refresh sched-
ule and memory-partitioning, we propose a refresh-aware
process scheduling algorithm in the OS which schedules ap-
plications on cores such that none of the on-demand requests
from the applications are stalled by refreshes. The evaluation
of our proposed co-design using multi-programmed work-
loads from the SPEC CPU2006, STREAM and NAS suites
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show significant performance improvements compared to
the previously proposed hardware-only approaches.

CCS Concepts •Computer systems organization →
General-Hardware/software interfaces; •Hardware →
DRAM Memory; •Software→ Operating Systems

Keywords DRAM refresh, Operating Systems, Task Schedul-
ing, Hardware-software co-design.

1. Introduction
Dynamic Random Access Memory (DRAM) is the predom-
inant main memory technology used in computing systems
today. DRAM cells use capacitors as data storage devices.
Since capacitors leak charge over time, DRAM cells need to
be periodically refreshed inorder to preserve data integrity.
These periodic refresh operations block main memory ac-
cesses, therefore reducing main memory availability and in-
creasing effective memory latency. This problem is even
more accentuated in consolidated environments like virtu-
alized systems.

With technology scaling enabling increase in number of
homogeneous and heterogeneous cores on-chip [14, 20, 21,
23, 33], similar scaling is observed in the DRAM device
densities as well over the last several decades. These scal-
ing trends have enabled higher main memory capacities in
all computing segments, paving the path for higher system
performance and increasingly sophisticated software. How-
ever, as the total number of DRAM cells in a system con-
tinues to increase, the DRAM refresh overheads are on the
rise and are threatening to dampen the performance benefits
of DRAM capacity scaling. Recent studies have shown that
for upcoming 32Gb DRAM devices, DRAM refreshes can
cause a 30% reduction in overall system throughput [22].

Many recent papers have proposed hardware [15] [30]
[12] and software [25] [35] solutions to mitigate the per-
formance overheads caused by DRAM refreshes. These ap-
proaches can be broadly classified into two categories: (i)
reducing the number of refreshes, and (ii) overlapping mem-
ory accesses with refreshes. Techniques belonging to the first
category reduce refresh activity by refreshing each DRAM
row at a different rate, dictated by the cell with the low-
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Figure 1: Basic DRAM organization.

est retention time in that row. While these techniques can
reduce the number of refresh operations substantially, they
rely on accurate retention time profiling, which is costly to
implement and is highly prone to erratic changes in DRAM
cell retention times [30]. The second category of techniques
reduces the exposed refresh overhead by allowing regular
DRAM accesses to proceed in parallel with refresh opera-
tions. The key idea behind these techniques is to confine the
refresh activity to a portion of the DRAM (such as a bank or
a subarray), so that refresh operations in one portion will not
interfere with accesses to the other (non-refreshed) portions.

The most recent example of such finer-granularity re-
freshing adopted by the DRAM industry is the per-bank re-
fresh scheme supported in LPDDR3 [10] and beyond. As
opposed to the traditional all-bank refresh scheme in earlier
LPDDRx generations (and current DDRx generations), a re-
fresh command in the per-bank refresh scheme targets only
one DRAM bank. Therefore, while a per-bank refresh com-
mand is busy refreshing rows in one bank, all the other banks
are available to service regular DRAM accesses. In an ideal
scenario, if all the DRAM requests that arrive at the DRAM
controller during a refresh operation are headed to the avail-
able (non-refreshed) banks, then the refresh overhead can
be fully hidden. However, in realistic scenarios, since mem-
ory requests generated by typical programs are often uni-
formly distributed across DRAM banks, the probability of a
DRAM request being blocked by a per-bank refresh is quite
high. Therefore, as shown in prior studies, per-bank refresh
is only marginally effective in avoiding the DRAM refresh
overheads [15].

In this paper, we propose a hardware-software co-design
technique to mitigate the DRAM refresh overheads. Our
technique exposes per-bank refresh to the operating sys-
tem (OS) with the goal to enable higher overlap between
refresh operations and regular memory accesses. The key
idea behind our technique is to incorporate DRAM bank
awareness and refresh schedule in the memory allocation
and task scheduling decisions made by the OS. Specifically,
our technique proposes the following two main changes to
the operating system: (i) the OS memory allocator confines
the memory allocated by a task to a subset of the avail-
able DRAM banks, and (ii) the OS task scheduler chooses
the tasks scheduled during a quantum in such a way that
the memory accesses made by these tasks do not span all

the DRAM banks in the system. Furthermore, our technique
proposes the following change to the refresh scheduler in the
memory controller: rather than doing a round-robin schedul-
ing of refresh commands to individual banks, the memory
controller refreshes only those banks during a task schedul-
ing quantum which are not expected to receive any memory
requests during that quantum. With this careful collabora-
tion between OS and the memory controller, our technique
reduces the probability of per-bank refreshes interfering with
regular DRAM accesses.

Extensive evaluations of our proposed technique on
multi-programmed SPEC CPU2006 [6], STREAM [7] and
NAS [5] workloads show that our technique achieves 16.2%
and 6.3% performance improvement over all-bank and per-
bank refresh for 32Gb DRAM chips, respectively. Our re-
sults also show that the co-design improves the performance
by 14.6% and 6.1% on an average compared to previously
proposed Adaptive Refresh (AR) [27] and per-bank Out-Of-
Order refresh [15] respectively, without necessitating any
modifications to the internal DRAM structures.

2. Background
In this section, we cover the background on basic DRAM
organization introducing how the refreshes are scheduled to
the DRAM banks by Memory Controller (MC). Also, we
briefly touch upon how the OS (Linux) allocates memory
by traversing through the free-lists, and finally give a brief
primer on the current process scheduling algorithm used by
the OS to schedule tasks on processor cores.

2.1 DRAM Organization
As shown in Figure 1, a typical DRAM hierarchy is made up
of channels, ranks and banks [34] [21]. Each on-chip mem-
ory controller (MC) manages corresponding DIMMs by is-
suing various commands over the command bus, and the cor-
responding data is traversed over the data bus. Each DIMM,
as shown in Figure 1, is made up of multiple DRAM ranks,
while each rank further consists of multiple banks, as also
shown in the figure. Each bank consists of DRAM cells laid
out in rows (typically the size of a DRAM page, 4KB or
8KB) and columns connected by wordlines and bitlines, re-
spectively. The data in each DRAM row is accessed by ac-
tivating the row into DRAM sense-amplifiers (also referred
to as row-buffers) through a RAS command, after which a
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Figure 2: (a) All-bank refresh. (b) Per-bank refresh with tREFIpb = tREFIab/(numBanks).

corresponding cache line from an activated row is accessed
by a CAS command. Hence, a row-buffer caches the most
recently opened row till it is precharged explicitly. Since ac-
cessing data from an already opened row (present in row-
buffer) is faster, different row-buffer management policies
have been proposed by researchers in the past [31] [19] [36],
which aim at decreasing the overall memory latency.

2.2 DRAM Refresh Scheduling
DRAM cells are typically made up of an access transistor
and a capacitor. Over time, DRAM cells leak charge and
hence need to be refreshed periodically to maintain the data
integrity. DRAM cell retention times (denoted by tREFW)
are often a function of the operating temperatures and pro-
cess variation [22] [15]. Typically, tREFW is 64msec for en-
vironments operating in temperatures ¡ 85 deg C, while it is
halved to 32msec when temperature is beyond 85 deg C. In-
stead of refreshing all the DRAM rows at once, MC issues
refresh command once in every refresh interval (denoted by
tREFI). Typically, tREFI is in the order of µseconds and is
generally 7.8 µsecs for DDR3, while finer refresh granulari-
ties are supported for DDR4 in the 2x and 4x modes, where
tREFI is 3.9 µsecs and 1.95 µsecs, respectively [27]. Each
refresh operation issued by an MC lasts for a refresh cycle
time (denoted by tRFC), which is typically in the order of
several nano seconds. tRFC is a function of the employed
tREFI and the number of rows to be refreshed. tRFC in-
creases with the increase in the density of DRAM [15] [27]
[12], causing significant performance bottlenecks for high
capacity DRAMs. Commercial DDR cells are refreshed at a
rank level, while the mobile LPDDRs can be refreshed at a
per-bank granularity. Figures 2a and 2b illustrate the refresh
operations when rows are refreshed at a rank-level and bank-
level, respectively, in a system comprising of 2 ranks and 2
banks per rank.

2.2.1 All-bank refresh
As shown in Figure 2a, a refresh operation issued at the
rank-level refreshes a certain number of rows (say N) in
all the banks in that rank. Figure 2a depicts that rows R-
1 to R-N are refreshed in banks B-0 and B-1 during the
first refresh interval (indicated by tREFIab-0), while rows

R-(N+1) to R-2N are refreshed during the second refresh
interval tREFIab-1. As can be observed in Figure 2a, in
a given tREFIab, since all the banks in a rank are being
refreshed, the entire rank-0 is not available as indicated by
× in Figure 2a for rank-0 for tRFCab duration, while rank-
1 is available as indicated by X. Since the entire rank is not
available to serve the on-demand memory requests during
tRFCab, performance degradation is significant in all-bank
refresh as opposed to per-bank refresh.

2.2.2 Per-bank refresh
To increase the availability of the number of banks during
refresh, LPDDRs allow refresh commands to be issued at
a bank granularity. Figure 2b depicts the per-bank refresh
employed by LPDDRs. Since refreshes are issued at a bank
granularity, the refresh interval employed by per-bank (de-
noted by tREFIpb) is smaller than that of tREFIab and
tREFIpb = tREFIab / (numBanks). As can be observed
in Figure 2b, rows R-1 to R-N in Bank-0 are refreshed in
tREFIpb-0; as a result, only Bank-0 is not available during
tRFCpb (denoted by ×), while the other banks in Rank-0
are available to serve on-demand requests. In tREFIpb-1,
as can be observed from Figure 2b, the same rows R-1 to
R-N in Bank-1 are refreshed, while Bank-0 is available for
on-demand requests. Hence, banks in all the ranks are re-
freshed in a round-robin fashion in per-bank refresh [15].
Since not all the banks in a rank are refreshed in a given
tREFIpb in per-bank refresh, performance degradation in
per-bank refresh is not as catastrophic as in all-bank refresh.

2.3 Linux Memory Allocator
Linux uses a buddy memory allocator [4] to allocate phys-
ical addresses for applications. It maintains free-lists per
zone to cater to the memory allocation requests. The tradi-
tional Linux memory allocator is oblivious to the DRAM
bank organization, and consequently any given application
can have memory allocated in all the DRAM banks de-
pending on the memory footprint of the application. Such
DRAM-oblivious memory allocation accommodates for bet-
ter bank-level parallelism (BLP) for applications; however,
in some multi-programmed environments, it can lead to
memory interference as well [24] [37]. Such interference



in the multi-programmed environments result in not just
the contention for memory bandwidth but also poor row-
buffer locality in DRAMs, thereby degrading performance.
To avert this memory interference, researchers have pro-
posed DRAM bank-aware memory partitioning [24] [37],
where the OS memory allocator is aware of the hardware
address-mapping, viz, channel, rank and bank bits and can
allocate memory such that certain applications will access
certain DRAM banks, reducing the interference. However,
since such a partitioning limits the bank-level parallelism
(BLP), researchers have also proposed dynamic mechanisms
to balance BLP vs row-buffer locality [18]. Hence the OS
memory allocator plays a crucial role in managing various
shared on-chip resources including the memory bandwidth.

2.4 Linux Process Scheduling
Linux kernel past 2.6.23 version uses Completely Fair
Scheduler (CFS) to schedule tasks across processor cores
[3] [26]. CFS uses a notion called the “virtual runtime”,
which indicates the next time-slice1 when a task2 will be
scheduled. CFS employs time-ordered red-black tree data
structure where the tasks are sorted by the vruntime. The
left-most task in the red-black tree is chosen by the CFS
scheduler as it is the oldest executed task among the runnable
tasks. CFS manages red-black tree per CPU and in a multi-
CPU system, CFS runs the load-balancer in the background
to maintain an equal number of tasks in the per-CPU queues
to maximize the overall throughput [26]. The time-slice of
the CFS scheduler in Linux is typically in the order of 1-
5msec [17]3. Since the OS scheduler schedules the tasks on
the CPU, it provides ample opportunities to schedule suit-
able tasks if some of the underlying hardware bottlenecks are
exposed to the OS to improve the overall system through-
put. In current-day systems, task scheduling in the OS is
agnostic of the refresh scheduling in the DRAM. Such an
independent schedule of tasks and DRAM refreshes causes
significant performance problems. In this paper, we propose
hardware-software co-design where the OS partitions the
memory across tasks thereby enabling the OS task scheduler
to schedule processes in a refresh-aware fashion.

3. Motivation
3.1 Performance Degradation due to DRAM Refresh
As explained in Section 2.2, since all banks in a rank
are not available during refresh, all-bank refresh is more
detrimental to performance compared to per-bank refresh
since in the latter only one bank will be refreshed during a
refresh interval. Figure 3 shows the performance degradation
for different DRAM device densitities. As can be observed,
for operating temperatures below 85 deg C where the DRAM

1 We use time-slice and time quantum interchangeably in this paper.
2 We use “application”, “benchmark”, and “task” interchangeably in this
paper.
3 We observed similar values for time-slice in our full-system experiments.
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Figure 4: IPC Improvements for various DRAM densities,
normalized to a scenario where each application uses all the
8 banks in a rank.
retention time (tREFW) is 64 msecs, as the chip density
increases from 8Gb to 32Gb, performance degrades from
5.4% to 17.2% for all-bank refresh on an average. However,
for per-bank refresh, the degradation on an average varies
from 0.24% to 9.8%. This shows that refresh becomes much
of a problem with growing DRAM densities since tRFC,
the refresh cycle time increases from 350nsec for 8Gb to
890nsec for 32Gb device densities. Also, as device density
increases from 8Gb to 32Gb, per-bank refresh also degrades
performance significantly, by as much as 9.8% as can be
observed from Figure 3.

DRAM refresh is much more detrimental to performance
when the operating temperature is beyond 85 deg C, where
the retention is 32 msecs, meaning the DRAM rows need to
be refreshed twice as frequently. As can be observed from
Figure 3, all-bank refresh degrades the performance by up
to 34.8% for 32Gb chips on an average, while per-bank re-
fresh degrades performance by up to 20.3%. This shows that
DRAM refresh is an important problem that needs to be ad-
dressed for the future DRAMs with growing chip densities.
The performance degradation due to refresh is expected to
be even more pronounced in multi-programmed workloads
where multiple high memory-intensive applications are of-
ten executed concurrently.

3.2 Refresh Cycle Time (tRFC) vs Bank Level
Parallelism (BLP)

As explained in Section 2.3, the traditional Linux OS is ag-
nostic of DRAM bank organization and allocates data for
applications which span across all the DRAM banks. A pos-
itive side-effect of such an allocation scheme is increased
bank level parallelism (BLP). In our scheme, since the OS
partitions memory across tasks, it is important to under-
stand how partitioning an application to access a subset of
banks effects performance. Memory-partitioning by OS can
increase the DRAM row-buffer locality for certain applica-
tions as there will not be any interference from other ap-
plications. Since our hardware-software co-design requires
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partitioning applications’ data across DRAM banks and our
scheme will ultimately remove the entire tRFC overheads,
we present results of various such scenarios in Figure 4. As
can be observed from this figure, confining applications to
a subset of available banks still yields better performance
compared to the all-bank refresh if the entire tRFC over-
heads can be eliminated. Furthermore, confining applica-
tions to a maximum of 4 banks per rank (total of 8 banks per
channel) still yields improvement in performance in future
(16Gb, 24Gb, 32Gb) high-density DRAM chips. However,
currently-available density of 8Gb with a lower tRFC, con-
fining an application to few banks degrades the performance
as expected, since the BLP is reduced.4 This result shows
that confining applications to a subset of DRAM banks can
still yield significant improvements in performance if the en-
tire DRAM refresh related overheads are eliminated.

3.3 Feasibility of Bank-Partitioning from a Capacity
Stand-point

Having looked at the performance impact of memory-
partitioning, we now evaluate the feasibility of memory-
partitioning from a capacity stand-point. Since confining an
application to a subset of banks limits the overall memory
capacity available for an application, it is important to un-
derstand the capacity demands imposed by applications. If
an application has high memory footprint, confining its data
to a subset of banks will increase the number of page-faults
in the system even though there is free memory available in
the other DRAM banks. Such page-fault scenarios can cause
significant degradation in performance. In this subsection,
we evaluate the memory footprints of the SPEC CPU 2006
workloads using reference (large) input datasets and the fea-
sibility of bank-partitioning for these applications from the
capacity stand-point. Figure 5 shows the percentage of mem-
ory that can be allocated on each bank with different chip
densities, normalized to the total footprint of each applica-
tion. These results are collected by modifying the default
Linux kernel buddy memory allocator, such that the kernel
tries to allocate the maximum amount of memory on bank-0.
If this cannot be done after a while, the fall-back mechanism

4 Since per-bank refresh yields maximum benefit in 8Gb chips, we do not
consider 8Gb in our experiments in the sub-sequent sections.

would allocate data on other banks using the buddy memory
allocator.

Figure 5 indicates that for the current-day DRAM chip
density of 8Gb, on an average, 68% of applications’ total
footprint can fit into a single bank. And, this percentage of
footprint that can be fit in a single bank increases with the
increase in chip density, as can also be noted from Figure 5,
making bank partitioning-based memory allocator more and
more feasible5 from a capacity stand-point.

4. Overview of Our Problem
4.1 Problem
Figure 6a depicts the modern day dual-core system, two
cores C-0 and C-1 executing four tasks T0 - T3 (each de-
noted by a different pattern). As explained in Section 2.3,
Linux allocates data for these tasks in a DRAM-oblivious
fashion and hence the data for each task are allocated across
all the DRAM banks. In Figure 6a, the memory allocated for
each task by the OS is depicted with the same pattern as the
task itself. Consequently, all the tasks T0-T3 can access data
from any of the DRAM banks B0 - B3. Figure 6b shows the
implications of all-bank refresh on a conventional system.
Since none of the banks in a rank are available to serve the
on-demand requests in all-bank refresh, the probability of
the tasks T-0 and T-2 waiting on the data from the banks B0
- B3 is high. Figure 6b depicts such a scenario where cores
C-0 and C-1 are stalled on the outstanding loads (depicted
in the MC queue) to be served by the banks being refreshed.
However, for per-bank refresh, since only one bank will be
busy refreshing, the probability that both cores stalling due
to a bank is low. As depicted in Figure 6c, there could be
not-so-worse scenarios where only one core could be stalled
due to per-bank refresh. However, since data of all the tasks
are spread across all the DRAM banks, the worst-case sce-
nario of both cores stalling due to a refreshed bank is still
possible as depicted in Figure 6d. Hence, as observed in Sec-
tion 3.1, allbank-refresh is more detrimental to performance
compared to perbank-refresh.

4.2 Our Solution
Building on the per-bank refresh support6, we propose a
hardware-software co-design to mitigate DRAM refresh
overheads by making changes in both the hardware and the
OS. Our proposals are based on the observation that the
DRAM retention time (tREFW) and the OS time quanta
are in the same order of milliseconds, and include both hard-
ware and software modifications with the goal of eliminating
entire DRAM refresh overheads. To this end, we propose
a novel and simple per-bank refresh schedule in the hard-

5 Please refer to section 5.4.1 on how the applications with higher overall
memory footprint are dealt in our co-design.
6 Note that, per-bank refresh already performs significantly better compared
to the other prior proposals which are built upon the all-bank refresh strat-
egy as demonstrated in [15].
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executing 4 tasks, (b) worse-case scenario where cores stalled due to all-bank refresh, (c) Not-so-worse scenario where only
one core is stalled due to per-bank refresh, and (d) worse-case scenario where both cores can get stalled due to per-bank refresh.

ware which facilitates interesting solutions at the software-
level. At the software-level, we use a simple soft-partitioning
based memory allocator in the OS which augments the pro-
posed per-bank refresh schedule in the hardware. Together,
the proposed memory allocator and the proposed per-bank
refresh scheduler enable the OS scheduler to schedule the
applications in a refresh-aware fashion. That is, our pro-
posed hardware per-bank scheduler and soft-partitioning
based memory allocator present an opportunity for the OS
to schedule an application which does not access the bank
being refreshed in it’s entire time-quantum7. This in turn
increases the probability that an applications’ on-demand
requests are not stalled due to refresh.

5. Hardware-Software Co-design
5.1 Proposed Hardware Changes
Our proposed changes to the per-bank refresh schedule are
depicted in Figure 7. Comparing Figures 2b and 7, it can
be observed that, in our proposed schedule, in tREFIpb-
1, instead of refreshing rows R-1 to R-N of Bank-1, we re-
fresh rows R-(N+1) to R-2N. That is, contrary to the default
round-robin per-bank refresh scheduler, our per-bank refresh
scheduler schedules refreshes to the same bank (to different
rows) in successive refresh intervals until all the rows in a
bank are refreshed. The pseudo-code for our new per-bank
refresh scheduler is given in Algorithm 1.
Implications of our per-bank refresh schedule: Consider
a typical system operating in environments below 85 deg C
with a tREFW of 64 msec, containing 2 ranks and 8 banks
per rank. In this system, with a total of 16 banks, using our
proposed per-bank refresh schedule, all the rows in Bank-0
are done refreshing at the end of first 4msec. Since Bank-
0 will be refreshed again only after the 64msec, Bank-0

7 Please refer to our best-effort process scheduler explained in Section 5.4.1
which picks the task with minimum amount of data allocated on bank being
refreshed incase if there are high memory footprint tasks being executed on
the system

Algorithm 1 Proposed per-bank refresh schedule algorithm.
1: /* nextRefreshBank and the nextRefreshRank represents the bank and the corre-

sponding rank that will be refreshed in the next tREFIpb. */
2: refreshBankIdx = (nextRefreshRank * numBanksPerRank) + nextRefreshBank
3: /* numRowsRefreshed keeps track number of rows refreshed in a bank.*/
4: numRowsRefreshed[refreshBankIdx] += RowsPerRefresh;
5: if numRowsRefreshed[refreshBankIdx]< numRowsPerBank then
6: nextRefreshBank = nextRefreshBank;
7: else
8: /* Done refreshing the entire bank. schedule the refresh to the next bank */
9: numRowsRefreshed[refreshBankIdx] = 0;

10: nextRefreshBank += 1
11: end if
12: if nextRefreshBank>= numBanksPerRank then
13: nextRefreshBank = 0;
14: nextRefreshRank = (nextRefreshRank + 1) % numRanks;
15: end if
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Figure 7: Proposed per-bank refresh schedule.
will be available to serve the on-demand memory requests
uninterruptingly after the first 4msecs in a 64msec refresh
window. As covered in Section 2.4, this duration of 4msec
coincides with the process scheduling time quantum used by
the OS. Consequently, the new per-bank refresh scheduler
enables interesting options for task scheduling in the OS if
the applications’ memory could be carefully partitioned such
that not all the banks contain data from all the applications.

5.2 Proposed Software (OS) Changes
5.2.1 Memory Partitioning Based Allocator
Various DRAM bank-aware memory partitioning algorithms
have been proposed in [37] [24] to alleviate the interference
across applications running on different cores. We envision
two different ways of partitioning memory as depicted in
Figures 8a and 8b.



Off-chip DRAM

B0 B1 B2 B3

T0

T1

T2

T3

LLC

C - 0 C - 1

(a)

T0

T1

T2

T3

LLC

C - 0 C - 1

B2

Off-chip DRAM

B0 B1 B3

(b)
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Hard-partitioning based allocator: Figure 8a shows the
hard-partitioning based memory allocator. In such an allo-
cator, each memory bank or a group of banks can host data
only from a certain task. As depicted in Figure 8a, task T0’s
data is allocated in bank B-0, task T1’s data is allocated in
bank B-2, task T2’s data is allocated in bank B-3, and T3’s
data is allocated in bank B-1.8 Liu et al [24] proposed such
a hard-partitioning based memory allocator. By allocating a
task’s data exclusively on a subset of banks, such an allocator
alleviates the memory bank contention, thereby increasing
row-buffer locality. However, there are certain drawbacks to
such an allocator:

• Confining applications to certain set of banks results in
poor bank-level parallelism (BLP) [18] for applications
that do not have high row-buffer locality, e.g., irregular
applications and pointer-based applications.

• Hard-partitioning can cause a task to page-fault when it is
under-provisioned in terms of the number of banks, even
if the other banks contain free memory. Such a scenario
can be catastrophic to performance.

• With the increasing number of cores on-chip, hard-
partitioning limits the overall memory bandwidth avail-
able for a task causing the performance to degrade com-
pared to the baseline DRAM bank-agnostic memory al-
location.

Soft-partitioning based allocator: An alternative to hard-
partitioning is “soft-partitioning” where a group of tasks
share a subset of DRAM banks, as depicted in Figure 8b. In
the soft-partitioning scheme, instead of dedicating a DRAM
bank to an application, a DRAM bank is loosely partitioned
such that a group of tasks can share it. In Figure 8b, tasks
T-0 and T-2 have data allocated in banks B-0 and B-2, while
tasks T-1 and T-3 have data allocated in banks B-1 and B-
3. Hence, such a soft-partitioning based allocator increases
the overall memory utilization by sharing the capacity with
other tasks and is more likely to reduce the number of the

8 Note that though in this example each task’s data is allocated in only one
bank, the OS can allocate multiple banks to a task. However, other tasks
cannot have data allocated in these banks.

page-faults in a system. It also caters to the increased BLP,
thereby increasing the overall memory bandwidth available
for a task at the cost of row-buffer locality.

Algorithm 2 Proposed memory-partitioning algorithm.
1: procedure GET PAGE FROM FREELIST(..., unsigned int order, ..., struct zone

*preferred zone, int migratetype)
2: /* current –> pointer to the current task which requested the memory allocation

*/
3: /* free list –> original free list maintained by the OS */
4: /* free list per bank –> per bank free-list */
5: /* possible banks vector –> Bit mask representing bank bits.*/
6: /* lastAllocedBank represents the bank amongst the possible banks where the last

memory request is allocated for the current task. */
7: for each order in MAX ORDER do
8: count = 0
9: for count< num total banks do

10: allocBank = current–>lastAllocedBank;
11: allocBank = (allocBank+1) % num total banks;
12: if current–>possible banks vector[allocBank] is set then
13: if free list per bank[bank] is not empty then
14: /* Hit from a per bank free list */
15: page = free list per bank[bank];
16: current–>lastAllocedBank = allocBank;
17: return page;
18: else
19: /* Fetch a page from OS free-list */
20: page = list entry(free list, ....);
21: nr free--; /* Decrementing the number of OS free pages */
22:
23: /* Since OS is exposed with hardware address-mapping infor-

mation, we can get the bank id from the physical page address */
24:
25: bank = get bank id from page(page);
26:
27: if allocBank == bank then
28: /* Matches the round-robin bank */
29: current–>lastAllocedBank = allocBank;
30: return page;
31: else
32: /* Maintaining a cache of per bank free-lists*/
33: insert in to free list(free list per bank, bank, page)
34: end if
35: end if
36: end if
37: count++;
38: end for
39:
40: end for
41: return NULL;
42: end procedure

Algorithm 2 shows the detailed pseudo-code for our gen-
eral memory-partitioning allocator which can either hard-
partition or soft-partition data across DRAM banks. We im-
plemented and verified this algorithm in the actual Linux
buddy allocator for our experiments. As can be observed
from lines 15 and 33, we maintain a free-list of pages per
bank so that a free page corresponding to a bank is known
readily without traversing the OS free-list. Also, the possi-
ble banks vector used in line 12 is a bit-mask which repre-
sents the possible list of banks that contain data from this
particular task. In our current implementation, this possi-
ble banks vectors bit-mask is an input taken from the user
using debugfs [2] and cgroups [1] features in Linux. Hence,
our partitioning based allocation presented in Algorithm 2
is generic for both the hard-and soft-partitioning schemes,
and can be configured dynamically based on the possi-
ble banks vector bit-mask. One more important aspect to
be noted in our implementation from lines 10-11 is that our



memory-partitioning allocator allocates pages such that the
consecutive allocation requests9 fall into different banks in
a round-robin fashion by keeping track of lastAllocedBank
per task, thereby improving BLP. In our experiments, we
observed that soft-partitioning yields better performance as
the number of applications running concurrently increases.
This is because the memory bandwidth per task increases
with soft-partitioning.

Algorithm 3 Proposed refresh-aware process scheduling.
1: procedure PICK NEXT TASK(struct rq *rq)
2:
3: /* nextRefreshBank –> represents the next bank to be refreshed in DRAM

based on the new per-bank refresh schedule */
4:
5: struct task struct *p;
6: struct cfs rq *cfs rq = &rq–>cfs;
7: struct sched entity *se;
8: struct sched entity *firstSchedEntity;
9:

10: if !cfs rq–>nr running then
11: return NULL;
12: end if
13: found task flag = false;
14: count = 0;
15:
16: do
17: count++;
18: se = pick next entity(cfs rq);
19: set next entity(cfs rq, se);
20: cfs rq = group cfs rq(se);
21: p = task of(se);
22:
23: if count == 1 && cfs rq then
24: firstSchedEntity = se;
25: end if
26:
27: if cfs rq && p–>possible banks vector[nextRefreshBank] is not set then
28: found task flag = true;
29: else if cfs rq && count>= ηthresh then
30: found task flag = true;
31: p = task of(firstSchedEntity);
32: end if
33: while !flag found task;
34: / ******* Some more Code ***/
35: return p;
36: end procedure

5.2.2 DRAM Refresh-Aware Process Scheduling
The new per-bank refresh schedule and memory-partitioning
proposed in the previous subsections provide an opportunity
for the OS to schedule tasks in a refresh-aware fashion. The
pseudo-code for the proposed refresh-aware process sched-
uler is presented in Algorithm 3. As can be noticed in Al-
gorithm 3, nextRefreshBank represents the next bank to be
refreshed based on our new per-bank refresh schedule. The
code-snippet in the algorithm is the actual implementation
in the Linux CFS scheduler, which returns the next task to
be scheduled on a core. Our refresh-aware implementation is
depicted in line 27 where the next runnable task chosen is the
one that does not have any data allocated on the bank which
will be refreshed in the next time quantum. This task to be
scheduled is one among the tasks to the left in the red-black

9 We do not consider large-pages in our evaluation, hence each allocation
granularity is 4KB.

tree maintained by the CFS scheduler. Hence, by chosing the
task which is left among the runnable tasks in the red-black
tree, our scheduler tries to schedule a task which does not
have any data allocated in the bank to be refreshed.
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Figure 9: Our co-design depicted with soft-partitioning allo-
cator.
5.3 Putting It All Together
Figure 9 depicts the bigger picture of how our co-design
works. As discussed in Section 5.1, our proposed per-bank
refresh schedule results in Bank B-0 being refreshed in the
first 4msec, bank B-1 in 4-8msec, and so on. Figure 9 shows
how data for tasks T0-T4 are allocated based on the soft-
partitioning discussed in Section 5.2.1. The data of tasks T0
and T2 are allocated on banks B0 and B2, while T1 and T3
have their data allocated on banks B-1 and B-3. Since bank
B-0 containing data allocated by tasks T-0 and T-2 will be
refreshed in the first 4msec, our refresh-aware OS scheduler
schedules tasks T1 and T3 on cores C-0 and C-1. After 4
msec, since bank B-1 will be refreshed from 4-8 msec, tasks
T0 and T2 will be scheduled by our refresh-aware scheduler,
thereby ensuring that none of the on-demand requests from
the scheduled tasks are stalled by the refreshes.

5.4 Caveats
In a real-life system, there could be varying scenarios where
the process scheduling is disrupted by the external factors.
Such scenarios include:

• A high priority task enters the system warranting for
it to be scheduled for more number of time quantums
compared to the other tasks.

• It could be possible that the desired tasks to be sched-
uled (that do not have data allocated on the bank to be
refreshed) are not in runnable queue as they are in other
states e.g., sleep state.

• A non-maskable interrupt needs to be serviced immedi-
ately by the core.

In all the above scenarios, our refresh-aware scheduler
might result in loss of fairness. To address these issues,
“fairness threshold”, denoted by ηthresh and depicted in line
29 of Algorithm 3, can be used to disable our refresh-aware
co-schedule immediately by setting this parameter to 1 or
gracefully by setting to some value like 2 or 3. This ηthresh



parameter can be used by the user to over-ride the refresh-
aware scheduling decisions at-will using the sysctl sched
interface present in the Linux kernel.

5.4.1 Large Memory footprint applications
The per-task (benchmark) footprints of some tasks used in
our workloads are: mcf : 1.7GB; bwaves : 920MB; stream :
800MB; GemsFDTD : 850MB.

Since each workload comprises of multiple such tasks
(up-to 8 for dual-core and 16 for quad-core), the total mem-
ory footprint of workloads used in our evaluation are in sev-
eral GBs (maximum of up to 27.2GB for quad-core[1:4-
ratio] for WL1).

However, the futuristic workloads may have much higher
footprints where fitting the entire applications’ memory in
the soft-partitioned banks may not be entirely feasible. In
such scenarios, our memory-partitioning and refresh-aware
scheduling-algorithms can easily be generalized as follows:

• Soft-partitioning allocator initially exhausts the whole
capacity from soft-partitioned banks after which the allo-
cator falls-back to allocating data in other banks to cater
to high-footprint tasks. For each task, OS can keep track
of the percentage of memory allocated on each bank.

• Our refresh-aware scheduler can then perform best-
effort-scheduling such that it schedules the task with a
minimal percentage of allocated-data in the bank to be
refreshed.

Such a generalized-mechanism will perform similar to
default per-bank-refresh in the worst-case, since the refreshed-
bank can still serve the on-demand requests for(tREFIpb-
tRFC) duration out of tREFIpb duration.

6. Evaluation
6.1 Experimental Setup
We used a simulation based setup with modified Linux ker-
nel to evaluate our co-design. For the simulation setup, we
used the gem5 [13] simulator with the out-of-order CPU
model integrated with NVMain [29] for the detailed mem-
ory model. The evaluated system configuration is given in
Table 1, unless otherwise explicitly stated. Our default ex-
periments are evaluated with 4 threads consolidated per core,
with a default system executing 8 threads in total on 2 cores
(a 1:4 consolidation ratio). As mentioned in Section 2.4, by
registering a callback to switch to( ) Linux system call in the
gem5 simulator, we observed that each task in our workloads
covered in Table 2 executes for a time-slice of 4 msec.

We used benchmarks from the SPEC CPU2006 [6] suite
with the reference (large) input, STREAM [7] and UA
from NAS [5] benchmark suite. We evaluated various multi-
programmed workloads shown in Table 2, each using a mix
of these benchmarks based on their memory intensities. We
categorize an application with Misses Per Kilo Instruction
(MPKI) higher than 10 as high memory intensive applica-

Cores 2 cores @ 3.2GHz, Out-of-order, 8-wide issue,
ROB: 128 Entries.
32KB, 4-way associative,

L1I/L1D $ Hit latency: 2 cycles

H
ar

dw
ar

e
C

on
fig 1MB per core, 2MB total, 16-way associative,

L2 Cache Hit latency: 20 cycles, 64 Byte cache lines.
DDR3-1600 [8], 1 channel, 1DIMM/channel,
2 ranks/DIMM, 8 banks/rank, FR-FCFS scheduler,

Memory open-row policy, Read/Write Queue Sizes: 64/64,
Writes drained in batches [15] [16],
Low/High watermarks: 32/54, 4KB DRAM row
tREFIab=7.8 µsecs, tREFW=64msecs,
tRFCab=530/710/890 nsecs for 16Gb/24Gb/32Gb,

Refresh Config Rows/bank=256K/384K/512K for 16Gb/24Gb/32Gb,
tRFCab-to-tRFCpb ratio = 2.3 [15],

Timeslice 4msec.

O
S

C
on

fig

OS Scheduler CFS (round-robin).

Baseline
Allocator Buddy Allocator without any memory partitioning.

Co-design Allocator Soft-partitioning based memory allocator.

Table 1: Evaluated configuration.
tion, denoted by H in the table. Applications with MPKI
values between 1 and 10 are categorized as medium, de-
noted by M, and those with MPKI values less than 1 are
categorized as low. As shown in Table 2, our workloads are
formed such that we cover a large spectrum of the mem-
ory intensity so that our performance results reported are
representative and are not biased by high memory intensive
workloads. For evaluation, we fast-forward applications to
get to the region-of-interest after which the workload ex-
ecutes 100 million instructions to warm-up the LLC. We
continue the simulation till each task in the workload exe-
cutes a minimum of 200 million instructions. Once the last
task finishes executing its 200 million instructions, we ter-
minate the simulation and dump the statistics. Performance
improvements reported in this section are the improvements
in harmonic mean of the Instructions committed Per Cycle
(IPC) of the workload relative to the baseline.10

Benchmarks MPKI Category

WL-1 mcf(8) H
WL-2 povray(8) L
WL-3 h264ref(8) L
WL-4 povray(4), h264ref(4) L
WL-5 GemsFDTD(8) M
WL-6 mcf(4), povray(4) H + L
WL-7 stream(4), h264ref(4) M + L
WL-8 bwaves(4), h264ref(4) H + L
WL-9 npb ua(4), povray(4) M + L
WL-10 mcf(4), bwaves(2), povray(2) H + L

Table 2: Workloads used in evaluating our co-design in a
dual-core system (1:4 consolidation ratio).

6.2 Co-design Results
Figure 10 shows the performance improvements of per-bank
refresh and our refresh-aware co-design normalized to all-
bank refresh for a dual core system with a 1:4 consolidation
ratio. Note that, in our baseline, memory is not partitioned

10 Note that in our baseline, each task is executed in a round-robin fashion
with a time-slice of 4msec.
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Figure 10: IPC improvement results (normalized to all-bank refresh).
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Figure 11: Average memory access latency results.

across tasks and a task can allocate data in all the 8 banks in
a rank. For our co-design experiments, we confine each task
to 6 banks within a rank so that not all tasks have data allo-
cated on all 8 banks in a rank. Confining a task to 6 banks11

in a dual-core system is the sweet-spot as it gives us good
BLP (thereby reducing contention) as well as gives our co-
design a flexibility to schedule tasks such that none of the
on-demand requests are stalled by refreshes. As can be ob-
served, our co-design scheme gives significant benefits over
the all-bank refresh and per-bank refresh. Our co-design on
an average improves the performance by 16.2%, compared
to all-bank refresh, while it improves the performance by
6.3% over per-bank refresh for 32Gb chips. For 24Gb chip
density, our co-design improves the performance by an av-
erage of 12.1% over all-bank refresh, and it improves the
performance by an average of 5.4% over per-bank refresh.
Furthermore, as the refresh overheads become less of a prob-
lem for 16Gb chips, our co-design improves the performance
by 9.03% and 2.5% over the all-bank and per-bank refresh
schemes, respectively. Figure 11 shows the corresponding
average memory latencies in memory cycles per workload
(lower the better in this graphs). As expected, the average
memory access latencies are reduced significantly by our co-
design as none of the tasks’ on-demand requests are stalled
by the refreshes.

The workloads WL-2, WL-3 and WL-4 are low memory-
intensive, and hence not many of their on-demand requests
are stalled by the refreshes in the baseline itself. Conse-
quently, they do not get any improvement in performance
from our co-design (as can be noted from Figure 10). WL1
as presented in Table 2 comprises of mcf applications which
has a very high MPKI, compared to the other benchmarks
categorized as high. Since our approach confines each task

11 We have experimented with 4 and 2 banks as well. While they improve
performance,the improvements are not as high as 6 banks case.

to 6 out of the 8 banks, the tasks executing at the same time
contend for bandwidth from the confined banks. As a re-
sult, the improvement in performance is significant but still
not as significant as other high MPKI workloads. As can be
observed, WL5 comprising of the medium intensive appli-
cations like GemsFDTD and WL8 comprising of a mix of
the high and low MPKI workloads give very good improve-
ments as there is not much contention for bandwidth in the
confined banks.

6.3 DDR4 Fine Granularity Refresh Results
Figure 12 shows how our co-design fares with DDR4-1600.
As discussed in Section 2.2, DDR4 supports 1x, 2x and 4x
refresh modes [9]. DDR4 1X mode employs a tREFIab of
7.8 µsecs, while 2x and 4x modes employ 3.9 µsecs and
1.95 µsecs respectively. While the tREFIab is halved from
1x to 2x and 2x to 4x modes, tRFCab for 2x/4x modes is
scaled only by a factor of 1.35x/1.63x as observed in [15]
[27]. Consequently, DDR4-2x and DDR4-4x modes fare
worse than DDR-1x as more number of refresh commands
are issued in a given refresh window, thereby causing more
number of on-demand request stalls. To mitigate these re-
fresh overheads, Adapative Refresh (AR) [27] dynamically
switches between the DDR4-1x and DDR4-4x modes by
monitoring the DRAM channel utilization at runtime. We
present the comparison results of our co-design with AR in
Section 6.5. As the entire refresh overheads are masked in
our co-design, our co-design performs significantly better on
an average compared to DDR4-1x, DDR4-2x and DDR4-4x
modes, as can be noted in Figure 12 as we schedule tasks in
a refresh-aware fashion.

6.4 Results with Lower DRAM Retention Time
As covered in Section 2.2, the DRAM retention time is
halved to 32msecs in environments operating beyond 85 deg
C. As a result, the DRAM refresh overheads become detri-
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Figure 12: Comparison with FGR in DDR4 (normalized to allbank-refresh DDR4-1x mode baseline).
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Figure 13: Results with the 32msec retention time.
mental to the overall system performance. Using a refresh
window, tREFW of 32msec, Figure 13 shows the perfor-
mance improvements acheived by our co-design.12 As in
other performance graphs, all the results are normalized to
all-bank refresh baseline. Our co-design refresh improves
the performance in such high temperature environments on
an average by 34.1% over all-bank refresh and 6.7% over
per-bank refresh for 32Gb chips. In 24Gb chips, our co-
design improves the performance on an average by 23.4%
and 6.3% over the all-bank and per-bank refresh, respec-
tively, while in 16Gb chips, the average performance im-
provements are 16.4% and 3.9%, respectively, over all-bank
and per-bank refresh.
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Figure 14: Comparison results for 32Gb chips (normalized
to all-bank refresh).

6.5 Comparison with Previous Proposals
Figure 14 shows how our co-design fares over some of
the previously proposed hardware-only solutions. Since our
mechanism is based on the per-bank refresh, we compare
it with the out-of-order (OOO) per-bank refresh proposed
by Chang et al [15]. Apart from doing a OOO per-bank re-
fresh, they further propose parallelizing accesses going to
the refreshed bank by assuming sub-array support. Since our
mechanism does not assume these additional support (modi-
fications) to a DRAM bank, we compare our co-design only
with OOO per-bank refresh. In OOO per-bank refresh, while

12 Note that we used a 2msec time-slice for 32msec retention time in our
experiments, which still falls in typical OS time-slice duration of 1-5msec
[17].

deciding which bank to be refreshed, they look at the trans-
action queue and decide the target bank as the one with the
lowest number of outstanding requests. As can be observed
in Figure 14, just performing an OOO per-bank refresh does
not improve the performance considerably. In our experi-
ments, we observed that this is primarily a timing issue. Even
though there are no requests queued to the target bank when
deciding which bank to be refreshed, as the refresh operation
lasts for several hundred nanoseconds (tRFCpb), we ob-
served the outstanding requests to the bank being refreshed
increased from the point the decision is taken. This is pri-
marily because the data of each task are spread across all the
banks. As a result, the average performance improvement
brought in by the OOO per-bank refresh is marginal com-
pared to the per-bank refresh but is significant around 9.5%
compared to the all-bank refresh for 32Gb chips. Our co-
design performs significantly better compared to the OOO
per-bank refresh improving the performance on an average
by 6.1%. In the interest of space, we could not present the
results for other chip densities, but they seem to follow the
same trend.

Figure 14 also presents results compared to another pre-
viously proposed hardware-only solution, Adaptive Refresh
(AR) [27]. As discussed in Section 7, AR switches between
the DDR4-1x and DDR4-4x modes dynamically by monitor-
ing the channel bandwidth utilization. AR is an optimization
proposed on top of DDR4 all-bank refresh. As can be noted
from Figure 14, AR improves the performance by 1.9% on
average compared to all-bank refresh but still does not per-
form as well as the per-bank refresh. Similar observations
have also been noted by Chang et al [15]. Compared to AR,
our co-design improves the performance on an average by
14.6%.

6.6 Sensitivity Results
Figure 15 shows the sensitivity results of our co-design with
varying number of cores and varying number of tasks per
core. In the interest of space, we present the average im-
provements over all the workloads (and not each workload
result) across different chip densities. As can be observed,
our co-design consistently fares better than both all-bank and
per-bank refresh across various consolidation ratios. Confin-
ing to use just 1 DRAM channel, in a dual-core system as
the consolidation ratio decreases from 1:4 to 1:2, a task’s



data can only be allocated on 4 banks per rank, as opposed
to 6 banks per rank in the 1:4 consolidation ratio. This is be-
cause, assigning more than 6 banks per rank for each task al-
lows only one task to be available to be scheduled on a dual-
core system remaining the other core idle, thereby resulting
in the under-utilization of cores. Hence, on a dual-core sys-
tem with the 1:2 consolidation ratio, memory is partitioned
such that each task allocates data on 4 banks in a rank, mak-
ing a total of 8 banks. Consequently, the available BLP is
reduced compared to the 1:4 consolidation ratio scenario.
However, the 1:2 consolidation ratio still fares better com-
pared to the all-bank and per-bank refresh. Our co-design
improves the performance by 14.2%,11.2%,8.9% over all-
bank refresh in 32Gb, 24Gb and 16Gb chips, respectively.
However, by scaling up the number of DIMMs per chan-
nel from 1 to 2, it is possible for each task to allocate data
on more number of banks, resulting in improved BLP and
reduced contention and ultimately higher performance ben-
efits. As can be observed, our co-design also gives good per-
formance improvements as we increase the number of cores
and the corresponding number of tasks per bank over the all-
bank and per-bank refresh scenarios as well.
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Figure 15: Sensitivity results (normalized to all-bank re-
fresh).

7. Related Work
Many recent papers have proposed hardware and software
solutions to mitigate the DRAM refresh overheads. These
solutions reduce the DRAM refresh overheads by either
skipping unnecessary refreshes or allowing DRAM accesses
to proceed in parallel with refreshes.

Multiple previous papers have exploited the fact that most
of the DRAM cells have high retention times and do not need
to be refreshed as often as the small number of weak cells
with low retention times. Liu et al. proposed RAIDR [22], a
retention-aware refresh technique which enables 75% of the
refresh activity to be eliminated. Bhati et al. proposed mod-
ifications to the existing auto-refresh functionality in order
to enable such refresh skipping [12]. Other software tech-
niques such as Flikker [25] and RAPID [35] take retention
times into account while allocating the critical program data
and the OS pages, respectively. All these techniques rely
on building a retention time profile for the entire DRAM,
which requires extensive testing and could incur a substan-
tial runtime overhead. Furthermore, recent work has shown
that DRAM cell retention times exhibit large variations with
both time and temperature [22] [30], making “retention time
profiling” unreliable and difficult to implement.

Other prior work attempts to reduce refresh overheads
by scheduling refresh commands in periods of low DRAM
activity. Elastic Refresh proposed by Stuecheli et al. [32]
postpones up to 8 refresh commands in order to find idle
periods when these refresh commands could be scheduled.
Similarly, Co-ordinated Refresh [11] attempts to schedule
refreshes when DRAM is in the self-refresh mode. While
these techniques could save refresh power for low memory
intensity workloads, they may not work well for memory-
intensive workloads where periods of low memory activity
are scarce.

Another approach adopted by prior techniques to reduce
refresh overheads is to use finer granularity refresh modes.
We already presented how our co-design fares quantitatively
relative to Adaptive Refresh [27] and DDR4 2x and 4x
modes. Adaptive Refresh (AR) chooses one of the three
available refresh modes (1x, 2x and 4x) in DDR4, based on
monitoring the runtime DRAM bandwidth utilization. An-
other technique, refresh pausing [28], aborts refresh com-
mands upon receiving DRAM requests and then resumes
them subsequently. However, supporting this functionality
requires the memory controller to have intricate vendor spe-
cific knowledge of the refresh implementation within the
DRAM device.

Finally, some recent papers have proposed techniques to
overlap memory accesses with refreshes. The per-bank fea-
ture in LPDDR3 allows one DRAM bank to be refreshed
while other banks can be accessed in parallel. Chang et.
al [15] and Zhang et al. [38] have proposed techniques
to enable bank-granularity and sub-array granularity re-
fresh commands in order to allow more parallelism between
refreshes and requests. These techniques require changes
to the DRAM subarray architecture. In comparison, our
technique enables parallelism of refreshes and requests by
careful hardware-software co-design, without requiring any
DRAM modifications. If such DRAM modifications are in-
corporated into the future DRAMs, we expect our co-design
to yield even better performance improvements. This is be-
cause, exposing the sub-array structures to the OS can en-
able soft-partitioning at a sub-array granularity, resulting in
reduced contention and increased BLP.

8. Conclusion
In this work, we proposed a hardware-software co-design
to mitigate the DRAM refresh overheads for high density
DRAMs. In particular, we proposed a novel per-bank refresh
schedule for DRAM banks which is further combined with
our proposed soft memory-partitioning scheme to present
ample opportunites for the OS to schedule tasks in a refresh-
aware fashion. By exposing the hardware address-mapping
and the per-bank refresh schedule to the OS, our co-design
framework enables the OS scheduler to schedule a task such
that none of the on-demand requests of a scheduled task
are stalled by refreshes in a given time quantum. Hence, by
being refresh-aware, our proposed co-design masks the en-



tire refresh overheads at the small cost of bank-level paral-
lelism. Our proposed co-design improved the overall perfor-
mance on an average by 16.2%/12.1%/9.03% over all-bank
refresh and by 6.3%/5.4%/2.5% over per-bank refresh for
32Gb/24Gb/16Gb DRAM chips, respectively, without war-
ranting any changes to the internal DRAM structures unlike
the prior proposals.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grants 1439021, 1439057,
1213052, 1409095, and 1629129. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References
[1] Linux cgroups. http://goo.gl/tTiwSl.

[2] Linux debugfs. https://goo.gl/sdBhIh.

[3] Linux CFS Scheduler. https://goo.gl/hjVjJl, .

[4] Understanding the Linux Kernel. http://goo.gl/8P7gJR, .

[5] NAS. https://www.nas.nasa.gov/publications/npb.html.

[6] SPEC 2006. https://www.spec.org/cpu2006/.

[7] STREAM. https://www.cs.virginia.edu/stream/.

[8] JEDEC. DDR3 SDRAM Standard, 2012.

[9] JEDEC. DDR4 SDRAM Standard, 2012.

[10] JEDEC. Low Power Double Data Rate 3 (LPDDR3), 2012.

[11] I. Bhati, Z. Chishti, and B. Jacob. Coordinated refresh: Energy
efficient techniques for DRAM refresh scheduling. In Pro-
ceedings of the 2013 International Symposium on Low Power
Electronics and Design, ISLPED, 2013.

[12] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob. Flexible auto-
refresh: Enabling scalable and energy-efficient DRAM refresh
reductions. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA, 2015.

[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
2011.

[14] J. D. Booth, J. B. Kotra, H. Zhao, M. Kandemir, and P. Ragha-
van. Phase detection with hidden markov models for dvfs on
many-core processors. In 2015 IEEE 35th International Con-
ference on Distributed Computing Systems, ICDCS, 2015.

[15] K. K. W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen,
C. Wilkerson, Y. Kim, and O. Mutlu. Improving DRAM per-
formance by parallelizing refreshes with accesses. In the 20th
International Symposium on High Performance Computer Ar-
chitecture, HPCA, 2014.

[16] N. Chatterjee, N. Muralimanohar, R. Balasubramonian,
A. Davis, and N. P. Jouppi. Staged reads: Mitigating the
impact of DRAM writes on DRAM reads. In Proceedings
of the 2012 IEEE 18th International Symposium on High-
Performance Computer Architecture, HPCA, 2012.

[17] V. V. Fedorov, A. L. N. Reddy, and P. V. Gratz. Shared last-
level caches and the case for longer timeslices. In Proceedings
of the 2015 International Symposium on Memory Systems,
MEMSYS, 2015.

[18] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and
M. Erez. Balancing DRAM locality and parallelism in shared
memory CMP systems. In IEEE International Symposium on
High-Performance Comp Architecture, HPCA, 2012.

[19] D. Kaseridis, J. Stuecheli, and L. K. John. Minimalist open-
page: A DRAM page-mode scheduling policy for the many-
core era. In Proceedings of the 44th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO, 2011.

[20] O. Kislal, M. T. Kandemir, and J. B. Kotra. Cache-aware ap-
proximate computing for decision tree learning. In 2016 IEEE
International Parallel and Distributed Processing Symposium
Workshops, IPDPSW, 2016.

[21] J. B. Kotra, M. Arjomand, D. Guttman, M. T. Kandemir, and
C. R. Das. Re-NUCA: A practical nuca architecture for reram
based last-level caches. In 2016 IEEE International Parallel
and Distributed Processing Symposium, IPDPS, 2016.

[22] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. Raidr: Retention-
aware intelligent DRAM refresh. In Proceedings of the 39th
Annual International Symposium on Computer Architecture,
ISCA, 2012.

[23] J. Liu, J. B. Kotra, W. Ding, and M. Kandemir. Network foot-
print reduction through data access and computation place-
ment in noc-based manycores. In Proceedings of the 52Nd
Annual Design Automation Conference, DAC, 2015.

[24] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A
software memory partition approach for eliminating bank-
level interference in multicore systems. In Proceedings of the
21st International Conference on Parallel Architectures and
Compilation Techniques, PACT, 2012.

[25] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn.
Flikker: Saving DRAM refresh-power through critical data
partitioning. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, 2011.

[26] J. Lozi, B. Lepers, J. R. Funston, F. Gaud, V. Quéma, and
A. Fedorova. The Linux scheduler: a decade of wasted cores.
In Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys, 2016.

[27] J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. F.
Martı́nez. Understanding and mitigating refresh overheads in
high-density DDR4 DRAM systems. In Proceedings of the
40th Annual International Symposium on Computer Architec-
ture, ISCA, 2013.

[28] P. Nair, C. C. Chou, and M. K. Qureshi. A case for refresh
pausing in DRAM memory systems. In IEEE 19th Interna-
tional Symposium on High Performance Computer Architec-
ture, HPCA, 2013.

[29] M. Poremba and Y. Xie. Nvmain: An architectural-level main
memory simulator for emerging non-volatile memories. In
IEEE Computer Society Annual Symposium on VLSI, ISVLSI,
2012.



[30] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu.
Avatar: A variable-retention-time (vrt) aware refresh for
DRAM systems. In IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN, 2015.

[31] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. In Proceedings of the
27th Annual International Symposium on Computer Architec-
ture, ISCA, 2000.

[32] J. Stuecheli, D. Kaseridis, H. C. Hunter, and L. K. John. Elas-
tic refresh: Techniques to mitigate refresh penalties in high
density memory. In the 43rd Annual International Symposium
on Microarchitecture, MICRO, 2010.

[33] K. Swaminathan, J. B. Kotra, H. Liu, J. Sampson, M. Kan-
demir, and V. Narayanan. Thermal-aware application schedul-
ing on device-heterogeneous embedded architectures. 2015
28th International Conference on VLSI Design, 2015.

[34] X. Tang, M. Kandemir, P. Yedlapalli, and J. B. Kotra. Im-
proving bank-level parallelism for irregular applications. In
2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO, 2016.

[35] R. K. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware
placement in DRAM (rapid): software methods for quasi-non-
volatile DRAM. In The Twelfth International Symposium on
High-Performance Computer Architecture, HPCA, 2006.

[36] P. Yedlapalli, J. B. Kotra, E. Kultursay, M. Kandemir, C. R.
Das, and A. Sivasubramaniam. Meeting midway: Improving
CMP performance with memory-side prefetching. In Pro-
ceedings of the 22nd International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT, 2013.

[37] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. PALLOC:
DRAM bank-aware memory allocator for performance isola-
tion on multicore platforms. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium, RTAS,
2014.

[38] T. Zhang, M. Poremba, C. Xu, G. Sun, and Y. Xie. Cream:
A concurrent-refresh-aware DRAM memory architecture. In
The 20th International Symposium on High Performance
Computer Architecture, HPCA, 2014.


