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Abstract

Thanks to Moore’s law, the number of transistors on a chip have been increasing
over time without increasing area of the processing die. The increased number of
transistors are being invested in separate cores instead of optimizing the already
complex out-of-order cores to ensure the power-density ie., the heat dissipated per
unit area is not too high. Hence, the complex uni-core systems have paved way in
to multi- and many-core systems on a processor die of necessarily the same size,
thereby resulting in increased amount of processing per unit area. Similar to the
processing-end, the number of transistors on the memory side have also increased
(though not at the same rate), resulting in the increased memory (DRAM) capacity
over the years.

Such increased number of transistors at the processor- and memory-ends have
enabled significant computation and memory capacity scalings over time in the
same area. However, the speed-ups observed due to the increased processing
power were not linear. This was because the number of pins that connect the
processor and memory haven’t been increased as that would make the die size
bigger. As a result, with the increased number of cores, the effective memory
bandwidth per computation core decreased over time. Apart from the reduced
memory bandwidth per core, the increased memory density (capacity per unit area)
resulted in interesting performance and power ramifications in DRAM. Due to
the volatile nature of the DRAM, the increased memory density warranted more
number of rows to be refreshed in effectively the same retention time. As a result,
certain sections of DRAM remained inaccessible to continuously feed the data in
to the processing elements resulting in reduced overall memory bandwidth as well.

As a result, the performance-gap between the processor and memory have
increased significantly over time. This gap in performance between processor and
memory is widely referred to by the researchers as “memory-wall”.

In my thesis, I have proposed various techniques to bridge the performance-gap
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between the processor and memory. The techniques I have proposed can be broadly
be classified in to:
1. Entirely hardware-based proposals,
2. Entirely software-based proposals, and
3. Hardware-Software based co-design proposals.
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Chapter 1
Introduction

With the increase in number of transistors following Moore’s law, systems have
transformed from single core to multicore to manycore processors. While the core
frequency has saturated owing to the power-wall, increased number of transistors
resulted in increased number of cores on-chip. Currently Intel Xeon-Phi has around
60 cores integrated on a chip, while each core itself is 4-way SMT making a total of
240 hardware threads. With the memory bandwidth doubling only every 4 years (on
average), memory bandwidth fails to keep up with the processor throughput, there
by increasing the difference between the speed of processors and memory. This
performance gap between processor and memory is widely referred to as “memory
wall” [1] by industry and academia.

To overcome this performance-gap between processor and memory, researchers
employed solutions broadly falling in to following categories:
Dense last-level caches (LLC): Academia and industry have proposed employ-
ing wide variety of emerging memories including non-volatile STT-RAM, Re-RAM
and volatile embedded(e)-DRAM [2], stacked 3D DRAMs [3,4] as last-level caches.
Employing such dense last-level caches alleviates the pressure on off-chip memory
bandwidth.
Memory performance scaling: As the number of transistors enable scaling the
memory densities rapidly, the non-proportional growth in memory bandwidth have
resulted in memory refresh related overheads being the performance bottleneck. To
alleviate these bottlenecks for the futuristic memories, researchers in academia and
industry have introduced varying solutions ranging from stalling the refreshes to
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parallelizing the refreshes with accesses.
Processing-In-Memory solutions: These solutions leveraged the isolated pe-
ripheral layer in stacked 3D DRAMs to offload certain computations to the stacked
DRAM. Such solutions averted the data-movement costs associated with offloaded
computations thereby increasing the overall performance.

While these efforts from academia and industry demonstrate the importance
of addressing the “memory wall”, there is still a lot of scope for unravelling the
full-potential of these high-level solutions. The advent of these emerging and
scalable memory solutions present interesting software and hardware challenges
to computer architects to seemlessly integrate them in to the processor memory
hierarchy. In my thesis, I try to explore various hardware-only, software-only and
hardware-software co-design based solutions to bridge this performance-gap further.

My thesis is organized as follows:
In Chapter 2, I present the background information on the organization of

manycore and large multi-socket processors. After the background on processor
organization, I briefly cover the organization of memory hierarchy inside these
processors. Specifically, I present a brief primer on DRAM organization, explaining
the various performance bottlenecks as it scales further. After covering the basics on
DRAM organization, I present details on how systems software manages the memory
interms of allocation and unallocation. In Chapter 3, I present a hardware-only,
Resistive-NUCA proposal, which addresses the wearout issue of Re-RAM based
last-level caches in a performance-conscious manner. In Chapter 4, I present my
software-only approach for detecting and addressing congestion in a multi-socket
processor. In Chapter 5 I present my proposal on evaluating the potential benefits
of on-chip near-data computing in manycore systems. While in Chapters 6 and 7, I
present a hardware-software co-design based solutions to address the memory-wall.
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Chapter 2
Background

2.1 Manycore and Multi-socket processors
In this sub-chapter, overview of manycore processor is presented showing various
how data is accessed from the last-level L3 cache bank after a miss in the private
L1 and L2 caches along with how an on-demand memory request is routed to the
corresponding memory channel. Also, a brief overview on large NUMA systems is
presented. Later in this chapter prior works related to this proposal is presented.

Response
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Request
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Core
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Figure 2.1: NoC-based manycore processor.
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Figure 2.2: Multi-socket NUMA-based systems.

2.1.1 Overview of manycore processor

Figure 2.1 shows a NoC based many core processor with 32 cores. Each tile shown
as shown in the figure consists of a core, a private L1/LD caches, a private L2
cache and a L3 cache bank. Also, a tile consists of a NoC router which routes the
packets from one tile to another. The manycore shown in figure 2.1 contains 4
memory controllers (MC) at the four corners of a chip. Each memory controller
manages the off-chip DRAM connected to the controllers over a memory channel.
Traditional interconnects employ static X-Y routing where a packet is routed from
source to the destination first in the X-direction and then in the Y-direction. Hence
this X-Y routing is a deterministic routing.

The last level L3 cache banks can be managed either in the private cache
configuration or in the shared cache configuration. In a private cache configuration,
a core in a tile will only use the local cache bank and hence does not incur
remote cache bank accesses. However, private cache configuration can cause under-
utilization of the cache space but has the benefit of less interference. The other
end of the spectrum of a shared cache configuration can result in better utilization
of the cache banks and hence can increase the overall performance of the system.

In a shared configuration, the access to a cache line in local cache bank will incur
lower access latency compared to the access to a cache line in the remote cache
bank. Hence, the shared cache configuration will result in Non-Uniform Cache
Access latencies, widely referred to as NUCA architecture. There are various cache
line mapping schemes proposed by the researchers [5] [6] [7]. Prominent of these
various NUCA configurations is the static-NUCA configuration where each cache
line is mapped to a fixed LLC bank based on some bits in the physical address.
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Figure 2.1 shows how a on-demand request is routed to a LLC L3 bank upon a
miss in the private L2 bank. On-demand request first travels in the X-direction
and then in the Y-direction to the destination L3 bank. If it results in a L3 hit, the
cache block is returned to the core, else the on-demand request results in a memory
access. Hence the request is routed to the corresponding memory controller based
on the X-Y routing again as shown in figure 2.1.

From/To
Cycles N-0 N-1 N-2 N-3 N-4 N-5 N-6 N-7
N-0 290 454 735 736 840 835 839 843
N-1 454 290 734 748 865 860 864 868
N-2 735 734 290 452 839 863 888 863
N-3 736 748 452 290 840 861 862 864
N-4 839 862 839 840 290 451 734 750
N-5 835 860 863 861 451 290 741 739
N-6 839 863 885 863 734 729 290 454
N-7 843 868 863 864 748 739 454 290

Table 2.1: Intel Westmere bootup latencies.

From/To
Cycles N-0 N-1
N-0 229 319
N-1 319 229

Table 2.2: Intel Haswell bootup latencies.

2.1.2 Overview of a NUMA system

Figures 2.2a and 2.2b shows the block diagram of a Intel Haswell 2 socket (named
as Node-0 and Node-1) and Intel Westmere NUMA systems. Socket and Node are
used interchangeably in the rest of the proposal. All the sockets are connected
through an Intel Quick Path Interconnect (QPI) [8] [9] [10]. A socket consists of
a local memory which is managed by a local memory controller, represented by
MC in the Figure 2.2a, and is a Chip Multi-Processor (CMP) containing cores; all
cores share a last-level cache, represented by LLC in the figure. Upon a miss in
the LLC, depending on where the data is allocated, data is fetched from either the
local memory or the remote memory in a different socket.

A local memory access incurs a DRAM access delay and, if the MC is congested,
a MC queuing delay as well. However, since, the remote memory access involves

5



moving the data from the remote socket over the QPI, an additional interconnect
latency is incurred apart from the MC queuing and DRAM access delays. Therefore,
in a NUMA based system, local memory access incurs lower latency than the remote
memory access. Tables 2.1 and 2.2 show the latencies in CPU cycles after a system
bootup without any guest VMs running inside the ESXi hypervisor for Westmere
and Haswell systems, respectively. In these tables, the value in row-x and column-
y represent memory access latency in CPU cycles observed from Node-x when
accessing the data allocated in the local memory of Node-y. Hence, values in the
diagonal (bolded) represent the local memory access latencies. From these tables,
it can be observed that the local latency incurred is always lower than the remote
latency, and in the case of Westmere, remote latency increases with the distance to
data.
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2.1.3 Off-chip DRAM Overview

2.1.3.1 DRAM Organization

As shown in Figure 2.3, a typical DRAM hierarchy is made up of channels, ranks
and banks. Each on-chip memory controller (MC) manages corresponding DIMMs
by issuing various commands over the command bus, and the corresponding data
is traversed over the data bus. Each DIMM, as shown in Figure 2.3, is made up of
multiple DRAM ranks, while each rank further consists of multiple banks, as also
shown in the figure. Each bank consists of DRAM cells laid out in rows (typically
the size of a DRAM page, 4KB or 8KB) and columns connected by wordlines and
bitlines, respectively. The data in each DRAM row is accessed by activating the
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row into DRAM sense-amplifiers (also referred to as row-buffers) through a RAS
command, after which a corresponding cache line from an activated row is accessed
by a CAS command. Hence, a row-buffer caches the most recently opened row
till it is precharged explicitly. Since accessing data from an already opened row
(present in row-buffer) is faster, different row-buffer management policies have been
proposed by researchers in the past [11] [12] [13], which aim at decreasing the
overall memory latency.
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Figure 2.4: (a) All-bank refresh. (b) Per-bank refresh with tREFIpb =
tREFIab/(numBanks).

2.1.3.2 DRAM Refresh Scheduling

DRAM cells are typically made up of an access transistor and a capacitor. Over
time, DRAM cells leak charge and hence need to be refreshed periodically to
maintain the data integrity. DRAM cell retention times (denoted by tREFW)
are often a function of the operating temperatures and process variation [14] [15].
Typically, tREFW is 64msec for environments operating in temperatures < 85 deg
C, while it is halved to 32msec when temperature is beyond 85 deg C. Instead
of refreshing all the DRAM rows at once, MC issues refresh command once in
every refresh interval (denoted by tREFI). Typically, tREFI is in the order of
µseconds and is generally 7.8 µsecs for DDR3, while finer refresh granularities
are supported for DDR4 in the 2x and 4x modes, where tREFI is 3.9 µsecs and
1.95 µsecs, respectively [16]. Each refresh operation issued by an MC lasts for a
refresh cycle time (denoted by tRFC), which is typically in the order of several nano
seconds. tRFC is a function of the employed tREFI and the number of rows to be
refreshed. tRFC increases with the increase in the density of DRAM [15] [16] [17],
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causing significant performance bottlenecks for high capacity DRAMs. Commercial
DDR cells are refreshed at a rank level, while the mobile LPDDRs can be refreshed
at a per-bank granularity. Figures 2.4a and 2.4b illustrate the refresh operations
when rows are refreshed at a rank-level and bank-level, respectively, in a system
comprising of 2 ranks and 2 banks per rank.
All-bank refresh: As shown in Figure 2.4a, a refresh operation issued at the
rank-level refreshes a certain number of rows (say N) in all the banks in that rank.
Figure 2.4a depicts that rows R-1 to R-N are refreshed in banks B-0 and B-1 during
the first refresh interval (indicated by tREFIab-0), while rows R-(N+1) to R-2N
are refreshed during the second refresh interval tREFIab-1. As can be observed in
Figure 2.4a, in a given tREFIab, since all the banks in a rank are being refreshed,
the entire rank-0 is not available as indicated by × in Figure 2.4a for rank-0 for
tRFCab duration, while rank-1 is available as indicated by X. Since the entire
rank is not available to serve the on-demand memory requests during tRFCab,
performance degradation is significant in all-bank refresh as opposed to per-bank
refresh.
Per-bank refresh: To increase the availability of the number of banks during
refresh, LPDDRs allow refresh commands to be issued at a bank granularity.
Figure 2.4b depicts the per-bank refresh employed by LPDDRs. Since refreshes are
issued at a bank granularity, the refresh interval employed by per-bank (denoted by
tREFIpb) is smaller than that of tREFIab and tREFIpb = tREFIab / (numBanks).
As can be observed in Figure 2.4b, rows R-1 to R-N in Bank-0 are refreshed in
tREFIpb-0; as a result, only Bank-0 is not available during tRFCpb (denoted by
×), while the other banks in Rank-0 are available to serve on-demand requests. In
tREFIpb-1, as can be observed from Figure 2.4b, the same rows R-1 to R-N in
Bank-1 are refreshed, while Bank-0 is available for on-demand requests. Hence,
banks in all the ranks are refreshed in a round-robin fashion in per-bank refresh [15].
Since not all the banks in a rank are refreshed in a given tREFIpb in per-bank
refresh, performance degradation in per-bank refresh is not as catastrophic as in
all-bank refresh.
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2.2 Overview of System Software (OS)

2.2.1 Linux Memory Allocator

Linux uses a buddy memory allocator [18] to allocate physical addresses for appli-
cations. It maintains free-lists per zone to cater to the memory allocation requests.
The traditional Linux memory allocator is oblivious to the DRAM bank organiza-
tion, and consequently any given application can have memory allocated in all the
DRAM banks depending on the memory footprint of the application. Such DRAM-
oblivious memory allocation accommodates for better bank-level parallelism (BLP)
for applications; however, in some multi-programmed environments, it can lead to
memory interference as well [19] [20]. Such interference in the multi-programmed
environments result in not just the contention for memory bandwidth but also
poor row-buffer locality in DRAMs, thereby degrading performance. To avert
this memory interference, researchers have proposed DRAM bank-aware memory
partitioning [19] [20], where the OS memory allocator is aware of the hardware
address-mapping, viz, channel, rank and bank bits and can allocate memory such
that certain applications will access certain DRAM banks, reducing the interfer-
ence. However, since such a partitioning limits the bank-level parallelism (BLP),
researchers have also proposed dynamic mechanisms to balance BLP vs row-buffer
locality [21]. Hence the OS memory allocator plays a crucial role in managing
various shared on-chip resources including the memory bandwidth.

2.2.2 Linux Process Scheduling

Linux kernel past 2.6.23 version uses Completely Fair Scheduler (CFS) to schedule
tasks across processor cores [22] [23]. CFS uses a notion called the “virtual runtime",
which indicates the next time-slice1 when a task2 will be scheduled. CFS employs
time-ordered red-black tree data structure where the tasks are sorted by the
vruntime. The left-most task in the red-black tree is chosen by the CFS scheduler
as it is the oldest executed task among the runnable tasks. CFS manages red-
black tree per CPU and in a multi-CPU system, CFS runs the load-balancer in
the background to maintain an equal number of tasks in the per-CPU queues to

1We use time-slice and time quantum interchangeably in this work.
2We use “application", “benchmark", and “task" interchangeably in this work.
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maximize the overall throughput [23]. The time-slice of the CFS scheduler in Linux
is typically in the order of 1-5msec [24]3. Since the OS scheduler schedules the
tasks on the CPU, it provides ample opportunities to schedule suitable tasks if
some of the underlying hardware bottlenecks are exposed to the OS to improve the
overall system throughput. In current-day systems, task scheduling in the OS is
agnostic of the refresh scheduling in the DRAM. Such an independent schedule
of tasks and DRAM refreshes causes significant performance problems. In this
work, we propose hardware-software co-design where the OS partitions the memory
across tasks thereby enabling the OS task scheduler to schedule processes in a
refresh-aware fashion.

3We observed similar values for time-slice in our full-system experiments.
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Chapter 3
Resistive-NUCA (Re-NUCA): A
Hardware Approach

In this chapter, a pure hardware approach which wear-levels the Re-RAM cache
banks in a performance-aware fashion is presented.

3.1 Introduction
Workloads in the next generation of large-scale computing systems are expected to
be highly data-intensive and have large working-sets. The processing power is also
steadily increasing and major manufacturers are planning to integrate hundreds
of cores on a die. To mitigate performance loss due to increasing memory access
rate in multi-core systems running multiple workloads, computer architects tend
to employ high-capacity on-chip cache hierarchies. Nevertheless, performance is
not the only efficiency metric; an important concern in multi-core systems is total
dissipated power. It is known that large last-level cache (LLC) is a major source of
on-chip power consumption in chip multiprocessors (CMPs) because they occupy
a large portion of processor die and standby power is up to 80% of their total
power [25]. Recently, researchers have extensively studied the use of non-volatile
memory technologies in large cache designs [26–30], in contrast to charge-based
technologies (SRAM or DRAM), non-volatile memories have near-zero standby
power. Among the available non-volatile technologies, resistive RAM (ReRAM)
has attractive features as a replacement of SRAM in caches. Specifically, ReRAM
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has fast read access latency, gives about four times higher density than SRAM and
is fully compatible with core fabrication process. These features make it suitable
to be employed as baseline technology for LLC in deep cache hierarchies.

Compared to SRAM, write operations in ReRAM are slower and consume more
power and prior work [31, 32] has mainly concentrated on alleviating the write
performance and write energy issues with ReRAM. However, little attention has
been paid to the problem of limited write endurance in ReRAM caches. Indeed,
even though ReRAM has typically higher cell endurance (about 109 writes [33])
compared to competitive technologies like STT-RAM, it is still low for cache
memories when write traffic of the application is high. This work studies the
lifetime problem in high-capacity ReRAM caches and proposes a low-overhead and
reasonable architecture to relax it.

Large caches in modern multicore processors are usually structured as non-
uniform cache architecture (NUCA). NUCA is a multi-bank cache where each
bank is connected to one core (the number of banks is usually kept equal to the
number of cores) and a switched network handles data movement between banks.
NUCA caches are organized as either static NUCA (S-NUCA) or dynamic NUCA
(D-NUCA). In S-NUCA, a cache block(line) is mapped to the cache banks using
a subset of bits in address and hence bank assignment is fixed. In D-NUCA, on
the other hand, each cache block can be in any bank and the switched network
allows data to migrate across different cache banks – that is, if a cache block is
frequently used by one core, D-NUCA brings it to the local bank for future fast
access. D-NUCA offers lower access latency, but it may exacerbate the lifetime
problem in ReRAM caches because data migration between banks increases the
write traffic into the cache. Moreover, if one program is highly write-intensive, it is
highly probable that cache banks close to it get higher write traffic and wear out
faster than others. Therefore, ReRAM D-NUCA caches may have lower lifetime
than S-NUCA and sometimes lower performance in long execution of the workload.

We propose Resistive NUCA architecture (shortly Re-NUCA) that mitigates
fast wear-out of cache banks in D-NUCA ReRAM while keeping its performance
high. Re-NUCA is designed on top of Reactive NUCA (R-NUCA) cache [7], which
is a realistic implementation of D-NUCA. R-NUCA allows data migration in NUCA
but limits it to few banks close the target core (i.e., those that are only one-hop
away from the local bank) and reduces the overhead of metadata required for cache
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Figure 3.1: Re-RAM cell and its SET and RESET operations.
block mapping. Our proposed NUCA architecture (Re-NUCA), on the other hand,
uses a “hybrid mapping function" based on criticality of the cache block1: it maps
the performance-critical data like R-NUCA to keep the data close to the cores, and
spreads-out non-critical cache blocks to other banks (like S-NUCA). In this way,
Re-NUCA tries to reduce write intensity on cache banks by spreading them over
the entire cache space, while it offers low latency by keeping the critical cache lines
in the banks near to the core. Having this hybrid mapping function, Re-NUCA
thus relaxes write intensity onto cache banks (almost the same as S-NUCA) while
keeping performance high (close to that of R-NUCA).

Implementing Re-NUCA requires a mechanism to capture the criticality of
the cache blocks. Re-NUCA determines the criticality of each cache line at the
instruction level using a simple criticality predictor which works on the heuristics of
the instruction issuing a data fetch. In addition, this architecture needs a hardware
to choose proper mapping function when searching or allocating a cache line (either
S-NUCA or R-NUCA mapping). Re-NUCA achieves this goal by adding few
metadata bits to TLB, so (1) it reduces the overhead of this structure by avoiding
to store address tag of the cache blocks, and (2) the controller of the ReRAM
cache knows which function has to be used prior to access to the cache (since TLB
search is performed in early cycles of memory access and the mapping information
is available when accessing LLC).

This work makes the following main contributions:
• We propose Re-NUCA, a novel D-NUCA implementation customized for Re-

RAM cache memories. It uses a hybrid of R-NUCA and S-NUCA mapping
schemes, with the goal of wear-leveling the last-level caches in a performance-
1A cache block is assumed to be critical, if it contains one word (or more words) that the core

needs them in short time to avoid pipeline stall.
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Figure 3.2: WPKI and MPKI for the studied applications.

conscious manner. Specifically, R-NUCA is used for critical cache blocks, and
S-NUCA is used for non-critical cache blocks.

• To capture the criticality of a given cache line, we use a criticality predictor
that determines how much a cache line is critical to the performance of the
processor based on the heuristics of the instruction issuing a cache line fetch.
We also suggest to keep the metadata information related to mapping function
in TLB, to reduce the overhead of mapping tables and remove its access time
from critical-path latency of the processor.

• We evaluate the performance and lifetime of Re-NUCA using a large set of
multi-programmed workloads with different levels of memory/write intensities.
Our experiments show that Re-NUCA improves the lifetime by 42%, on average,
without loosing performance over R-NUCA.

3.2 Background

3.2.1 Resistive RAM

Resistive memories, in general, refer to any technology that uses a variable resistance
to store information. However, ReRAM in this work refers to a subset of memories
that use metal oxides as the storage medium, also called as metal-oxide ReRAM.

As shown in Figure 3.1a, a ReRAM cell consists of a metal-oxide layer sandwiched
between two metal electrodes, named top electrode and bottom electrode. The
cell can be either in low resistance state (i.e., SET or “1”) or high resistance state
(i.e., RESET or “0”). In order to switch the state of a ReRAM cell, an external
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positive voltage with specific polarity, magnitude and duration has to be applied
to the sandwiched layer through the electrodes. The SET and RESET operations
are shown in Figure 3.1b and Figure 3.1c, respectively. When a positive biased
voltage is applied to the top electrode, the metal ions (or oxygens) are forced to
migrate through oxide, and eventually reach the bottom electrode. The ion-path
is highly conductive, and the cell’s equivalent resistance value is low (SET). The
low-resistance state changes again to a high-resistance state by positively biasing
the bottom electrode (RESET).

The biggest advantage of the ReRAM is its good compatibility with the CMOS
process used in fabrication of logic (cores). Furthermore, the voltage required for
the ion-path formation has a linear relationship with the oxide layer thickness – that
is, the required voltage will decrease with a decrease in the thickness. This makes
ReRAM a highly-scalable and promising alternative to SRAM. The challenging
issues with ReRAM are high write latency, high write energy and low cell endurance
(in terms of number of writes). A few prior studies target performance and
power issues related to write operations on ReRAM when used as cache and main
memory [31, 32]. This work focuses on the limited write endurance of ReRAM.
Current prototypes show that a ReRAM cell can have an endurance of 109 [33] to
1011 [34–36] writes. Although this per-cell endurance is large, it can be a source of
failure in cache memories when running applications are write-intensive.

3.2.2 NUCA Architecture for Large Caches

Because of small size of ReRAM cell, the on-chip ReRAM caches usually have large
capacity and are subject to optimization techniques used for large caches. Large
caches are usually structured as NUCA where the entire cache is partitioned into
multiple banks. Each bank is connected to one core and an on-chip network for
data and address transfer between banks. NUCA exhibits varying access latencies
depending on the distance between the data and the core requesting it. In static
NUCA (S-NUCA), mapping a cache block to banks is fixed and is determined using
the lower bits of the block’s address. This makes redirection (finding the target
bank on requesting a cache block) in S-NUCA simple and obviates the need for any
lookup table. In D-NUCA, any given line can be mapped into several banks, and a
cache block can migrate between banks according to the access frequency – that is,
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frequently used cache lines migrate to banks closer to the core. D-NUCA needs
a table to keep the redirection data for each cache block that is kept along with
coherency information in the directory. On a cache access, the directory is checked
for coherency issues, and if it is a hit, the associated redirection information is also
read to determine the bank index currently holding the cache block.

Accessing D-NUCA for this metadata information increases the energy con-
sumption of the directory and increases the traffic of the switched network. This
clearly complicates the implementation of D-NUCA. Considering the overheads of
migration to keep the data close to the core requesting the data like in D-NUCA,
Hardavellas, et al. proposed Reactive NUCA (R-NUCA), [7] which tries to combine
the benefits of both S-NUCA and D-NUCA. In R-NUCA, cache blocks for each
core are allowed to be stored in a fixed-size cluster that includes banks that are
(at most) one hop away from the core. Figure 3.4(a) pictorially shows bank-level
clustering in R-NUCA for a cache with 16 banks and 16 cores. In this example,
the cache blocks requested by core are allocated in the shaded region. As can be
observed, shaded region cache banks are at most one hop away from the requested
core. Thus cache lines accessed by each core are always close to it (at most one
hop away from the target core), which resembles D-NUCA in performance. Similar
to S-NUCA, the address redirection in each cluster is done by simply decoding few
low-order bits for the bank index. The mapping function used by R-NUCA is:

DestinationBank = (Addr +RID + 1)&(n− 1),

where RID is the rotational ID in [7] and n is the cluster size which in this case is
4.

3.3 Application characteristics and motivation for
wear-leveling
Figure 3.2 plots the Writebacks Per Kilo Instruction (WPKI) and Misses Per Kilo
Instructions (MPKI) for different applications used in our evaluation. As writes to
the L3 caches come from both write backs from L2 and a cache line fetch upon a
L3 miss, Figure 3.2 shows the LLC write intensity of various applications when an
application runs individually with a 256KB L2 and 2MB L3 caches. Hence there is
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wide diversity among applications’s lastlevel cache write and miss characteristics.
To demonstrate the importance of NUCA architecture and its mapping scheme

on the write count distribution over cache banks, we performed a series of lifetime
and performance evaluation in a system with the configuration given in Table 7.1.
The L3 cache (last-level cache) is made up of ReRAM, has 16 banks each with 2MB
size, and has the NUCA structure with 4×4 on-chip network between cache banks.
The system has 16 cores and runs a workload of 16 single-threaded application from
the SPEC CPU 2006 suite [37]. Our multi-program workloads include applications
with diverse write intensities and the number and pattern of writes can vary greatly
from core to core, depending on the application.

Figure 3.3 shows the lifetime variation between banks of the L3 cache for
different NUCA architectures, over all evaluated workloads. We evaluated S-NUCA,
R-NUCA, private cache (each core has a 1MB private L3 cache) and a cache
architecture with perfect wear-leveling scheme (named Naive and discussed later in
this section). The numbers presented in y-axis are the harmonic mean of lifetimes
across all the workloads that is calculated as follows: we run 10 workloads of varying
memory intensities and calculate the lifetimes experienced by the cache bank over
all these workloads. The harmonic mean lifetime of a cache bank is the harmonic
mean of these lifetimes. As discussed earlier, S-NUCA evenly stripes the memory
space across all cache banks in the system, so that every core will access all the
banks. We expect writes being more uniformly distributed over cache banks in
S-NUCA, when compared to two other designs (R-NUCA and Private). The results
plotted in Figure 3.3 confirm this finding, as all cache banks have very similar
lifetime in the S-NUCA architecture, regardless of the memory-intensity of the
workload bound to each core. The other extreme design is private cache for each
core that offers maximum variation in lifetime of the cache banks – that is, the most
heavily written cache bank has a lifetime of less than 2 years in our experiments.
We also observe that R-NUCA has relatively large variation between lifetime of
the cache banks. The reason is that, in R-NUCA, since data blocks of a core are
concentrated in a cluster of four banks (compared to a single LLC in the case of
private caches), the clusters of banks used by the memory-intensive applications
will still wear out more quickly than the clusters used by the low memory- and
write-intensive applications.
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3.3.1 Perfect (Naive) wear-leveling approach

A performance-agnostic perfect wear-leveling approach would wear-level the cache
banks perfectly by ensuring that each cache bank would receive the same number
of writes. Such a perfect wear-leveling scheme allows us to compare how well a
NUCA scheme performs with respect to cache bank wear-leveling. This scheme
needs oracle knowledge about the number of writebacks and misses incurred for
every cache bank. Apart from the oracle knowledge about the individual cache
bank, this scheme would also require a directory to know which cache bank contains
a particular cache line for a cache line look up after a miss in the L2 private cache.
The directory overhead for a high capacity last-level cache is significant and hence
this scheme is not a feasible option in a commerical processor and, in this work,
we use it just for comparison. We interchangeably use “Naive” to refer to this
perfect wear-leveling scheme as it naively accounts only for the lifetime of cache
and ignores the performance.
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In our implementation, we keep track of the total number of LLC misses and
writebacks (i.e., total writes to the cache) for each bank. When a new cache line
needs to be written into the cache, the cache controller chooses the bank with the
smallest number of writes so far. This approach leads to near-ideal wear-leveling
as shown in Figure 3.3, with 0% variation in lifetimes between banks. However,
as this scheme does not consider performance while wear-leveling, it degrades the
application performance by 21%, on average, compared to S-NUCA.

3.3.2 Performance versus lifetime of various NUCA schemes

Figure 3.4 shows the trade-off between performance and lifetime for various cache
architectures: S-NUCA, R-NUCA, Private and Naive. The numbers presented in
Figure 3.4 are the harmonic mean values of 10 workloads, which are explained in
detail in Section 7.6.2. In Figure 3.4, y-axis represents the lifetime in years which
signifies the number of years beyond which we loose the whole cache capacity, and
therefore, a higher number on that axis is better. X-axis represents the Instructions
Committed Per Cycle (IPC). A higher IPC value means a higher performance;
hence, a larger number on X-axis is better. As can be observed from this figure, the
Naive mapping policy, which balances the number of writes and misses achieves a
maximum lifetime of more than 6 years, does not fare well in terms of performance.
Note also such a perfect mapping policy is not practical as we explained above.
While the Naive mapping scheme performs best for lifetimes, private cache banks
perform best for performance. However, private caches perform worst in terms
of lifetimes as the writes are distributed unevenly across the cache banks. The
next best scheme, as can be observed in Figure 3.4(b), for better wear-leveling is
S-NUCA. Since S-NUCA uses address bits to interleave cache lines across various
cache banks, it is not a better scheme for performance as it incurs on-chip traffic
for accessing cache blocks that are interleaved across the cache banks. Reactive(R)-
NUCA proposed in [7] perrforms close to private caches in terms of performance
and fares slightly better than private caches in terms of lifetimes. We remark that
Even though R-NUCA is good in performance, with time, cache banks wear out
and we loose cache capacity without wear-leveling in place thereby hurting the
performance.

From above, there is a clear necessity for a new NUCA architecture which fares
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well in terms of both performance and wear-out. In the next section, we propose a
NUCA architecture and related policies to achieve this goal.

3.4 Re-NUCA Architecture
Ideally, a wear-level and performance-aware NUCA cache should place all the
important cache lines in the nearby cache banks, and spread out all the non-
important cache lines across various cache banks. Important data cache blocks
are often referred to in the architectural community as critical cache blocks and
loads that fetch such critical cache blocks are referred to as critical loads. Our
proposed architecture, Resistive NUCA or Re-NUCA, allocates the critical cache
blocks closer to the core running the application in a region called the Re-NUCA
region, while spreading out the cache blocks that are not critical to the performance
using S-NUCA mapping. By spreading out non-critical cache blocks using S-NUCA,
write-backs to such non-critical cache blocks can also be distributed across cache
banks.

When a cache line is brought to the cache for the first time, we assume a cache-
line is not critical, hence a cache line is mapped using S-NUCA. This presumption
helps us in prioritizing lifetime over performance for a cache line. Later, based on
the output of the criticality predictor logic, the decides on the mapping policy used
for cache line allocation. In the following we describe data criticality and the logic
we used for criticality prediction.

3.4.1 Critical data and criticality predictor

To explain our notion of criticality better, it is important to consider the micro-
architecture of current processors. Most of the commercial processors available in the
market currently perform out-of-order execution to achieve maximum performance.
Even though instructions are executed out-of-order in the processor, they are
committed in-order. All out-of-order processors typically employ a special hardware
structure called ReOrder Buffer (ROB), shown in Figure 3.6(a). The ROB contains
all the instructions that are being executed, and the instructions at the head of the
ROB are committed upon execution. If the instruction at the head of the ROB is
not executed, head of the ROB is stalled until the instruction is executed.
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Figure 3.5: ROB stall percentage.
A load issued by a processor is considered critical if it blocks the head of the

ROB. As explained above, since out-of-order processors follow in-order commit,
all the other instructions, which are executed and are ready to be committed, are
stalled by the blocking load. As a result, a load which stalls the head of the ROB
prevents other ready instructions from being committed thereby decreasing the
performance of the application. Such loads that block the head of the ROB are
defined as critical loads.

Every instruction executed on a processor contains a Program Counter (PC)
which is unique for a specific instruction. Since many data-intensive applications
spend considerable amount of time executing loops, each instruction in the program
is executed multiple times in different iterations on different data. Consequently,
the PC can serve as a valuable attribute to predict various properties of a program
phase. Prior works [38] have used this PC to predict the criticality of a load. In this
work, we employ a slightly modified version of the criticality predictor presented
in [38], as described later in this section.

Figure 3.5 shows the percentage of loads that do not stall the head of ROB
for various SPEC CPU2006 benchmarks. For these experiments, each benchmark
is executed on a 2.4 GHz out-of-order processor containing a private L1(32KB),
L2(256KB) and L3(2MB) caches with a DDR-3 memory channel. On an average,
over 80% of all loads issued by the processor do not stall the ROB, meaning that
non-critical loads contribute to 80% of loads. These results represent a promising
direction to identify cache blocks that do not result in performance degradation.
That is, a criticality predictor which can accurately predict the non-critical loads
is important to identify which cache blocks can be spread over the other banks
without incurring any performance loss.
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3.4.2 Criticality Predictor

Our criticality predictor adapts hardware structures similar to the Commit Block
Predictor presented in [38], which we refer to as the Criticality Predictor Table
(CPT). More specifically, it contains the following counters:

(1) a PC associated with a load instruction,
(2) a counter similar to robBlockCount in [38] that denotes the number of times

the ROB has been blocked by the corresponding PC in the past.
(3) a counter numLoadsCount, that indicates the number of loads that were

issued by this PC up to this point.
Figure 3.6(b) shows the operation of the criticality predictor. When a load

is issued by the processor, the CPT is indexed with the PC as shown in step 1,
and if an entry for the corresponding PC exists, numLoadsCount is incremented,
which is referred to in Figure 3.6 as step 2. If this load results in ROB head block,
the robBlockCount counter is incremented which is referred to as step 3. If the
CPT does not contain an entry with the corresponding PC, a new entry with the
corresponding PC will be inserted into the CPT when the load is committed. The
new entry will have numLoadsCount counter set to 1 and a robBlockCount of 1 or
0, depending on whether the load results in a ROB head stall or not.

The difference in our criticality predictor compared to the one proposed in
[38] is that we do not need additional information for a PC viz, LastStallTime,
MaxStallTime and TotalStallTime as proposed in [38] since we do not have to rank
the loads in terms of criticality. Hence, our scheme does not incur any additional
overhead as it just needs an extra bit to be sent to the mapping logic to identify
if a load being issued is critical or not and averts all the complexity involved in
tracking the stall cycles and the corresponding storage.

When a load is issued by the processor, if the CPT lookup results in a hit, we
read the robBlockCount and numLoadsCount from the CPT. If the robBlockCount
is greater than or equal to a threshold, x% of the numLoadsCount, we mark the
load as a critical load. This threshold x, referred to as the “criticality threshold"
in this work, determines the accuracy of the criticality predictor. For example,
if the value of x is 100%, then we predict a load as critical if 100% of the load
instructions issued by that PC in the past have resulted in a ROB stall. In general,
our experiments reveal that a smaller criticality threshold leads to better criticality
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Figure 3.7: Criticality prediction accuracy.

predictions. A criticality threshold of 100% is a stringent condition. The accuracy
of our criticality predictor for different thresholds is plotted in Figure 3.7. As can
be observed, a high criticality threshold of 100% results in a lower accuracy of
14.5%, while a criticality threshold of 3% results in an accuracy as high as 83%, on
average with the maximum being around 99% for a workload. Based on this result,
we use 3% as our criticality threshold.

Figure 3.8 shows the percentage of non-critical cache blocks with various criti-
cality threshold values. It shows that, around 50.3% of the cache blocks are fetched
from memory are non-critical and do not result in any ROB stall. Figure 3.9
plots the number of writes to the non-critical cache blocks identified through our
criticality predictor. With a criticality threshold of 3%, we observe that around
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Figure 3.8: Percentage of noncritical cache blocks.
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50% of the writes go to non-critical cache blocks and, as a result, these writes can
be distributed across various cache banks to reduce the wear-out without causing
the performance to degrade. The non-critical loads shown in Figure 3.5 are different
compared to that in 3.8 as the non-critical loads in Figure 3.5 accounts multiple
loads to the same cache blocks as critical or non-critical and hence will account
to the on-chip cache hits as well. However, the non-critical loads in Figure 3.8
just accounts for the loads that result in a on-chip cache misses and a memory
access, which present an opportunity for cache wear-leveling. Hence, even though
Figure 3.5 indicates 80% non-critical loads on an average, since our mechanism
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does not consider migration of cache blocks, we can only act on 50.3% of the cache
block loads, as shown in Figure 3.8.

3.4.3 Enhanced TLB

Since a Program Counter (PC) can change from being non-critical to critical and vice
versa over the course of execution, we need to store the mapping information for the
cache lines that have already been allocated using one of either S-NUCA or R-NUCA
mappings. Upon a miss in the private L1 and L2 caches, the mapping information
is used to lookup the corresponding cache bank. We propose an enhanced TLB
architecture, which augments a conventional TLB with this mapping information.
Every load and store instruction go through the TLB to obtain the physical address
of the requested cache line. TLB ideally contains the virtual address-to-physical
address translation for a page (typically 4KB), and hence contains information at
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coarse granularity. Assuming cache line to be 64 bytes, each 4KB page contains 64
cachelines. Since a cache line to be accessed in a page is already part of the virtual
address, we can use the same virtual address bits to lookup the TLB entry. In our
enhanced TLB architecture, TLB is augmented with a Mapping Bit Vector (MBV)
of length 64 bits, each bit corresponding to a cache line in the page. The proposed
architecture for Enhanced TLB is shown in Figure 3.10. The cache line index bits
from the virtual address are used as an index into the MBV to update or read the
mapping information of a particular cache line.

Upon a last-level cache miss for a cache line, based on the predicted criticality,
the corresponding cache line is allocated in cache bank. Once the data is returned
to the processor, MBV in the TLB for the corresponding cache line is updated. If
the cache line is mapped in the last-level cache bank using S-NUCA (non-critical),
then the MBV bit is set to 0; else it is set to 1, indicating that it uses R-NUCA
(critical). In our proposal, since a cache line does not change the criticality status
in its on-chip lifetime, we do not need to update the MBV bits for a cache line
unless the cache line is to be evicted. When a cache line is being evicted, the
corresponding MBV bit needs to be reset back to 0.

Our enhanced TLB contains 64 entries in both L1I and L1D per core. Each
of them is 8-way set-associative. As each entry in the enhanced TLB contains an
extra 64 bits in the MBV, our proposed enhanced TLB architecture adds an extra
over-head of 1KB per core, that is 512 bytes for L1I and 512 bytes for L1D TLBs.
For a 16 core processor, our enhanced TLB architecture requires an extra 16KB
storage, which is less than a single L1I/L1D cache size. Hence, the overhead of our
enhanced TLB architecture is negligible in terms both area and power.

We want to emphasize that Re-NUCA tries to achieve the best of both S-NUCA
and R-NUCA by combining the performance benefits of R-NUCA by allocating
only the critical cache blocks closer to the processor, and wear-leveling of S-NUCA
by spreading out the non-critical blocks.

26



-5

 0

 5

 10

 15

 20

 25

W
L1

W
L2

W
L3

W
L4

W
L5

W
L6

W
L7

W
L8

W
L9

W
L10

Avg

IP
C 

Im
p

ro
ve

m
en

t [
%

]

R-NUCA Private Re-NUCA

Figure 3.11: IPC Improvements. All the improvements are normalized to S-NUCA.

 0
 2
 4
 6
 8

 10
 12
 14

Naive
S-NUCA

Re-NUCA

R-NUCA

Private

H
-M

ea
n

 L
if

et
im

e 
(Y

ea
rs

)

CB-0
CB-1
CB-2

CB-3
CB-4
CB-5

CB-6
CB-7
CB-8

CB-9
CB-10
CB-11

CB-12
CB-13
CB-14

CB-15

Figure 3.12: Re-NUCA wearout.

3.5 Experimental Evaluation

3.5.1 Evaluation Environment

In this work, we used GEM5 [39] to evaluate our Re-NUCA. We used the system-call
emulation (SE) mode of GEM5 instead of the time-consuming full-system (FS)
mode. SE mode of simulation in GEM5 is faster compared to the full-system mode.
Table 7.1 gives our target multicore system. We fast-forward around 2 billion
instructions for each benchmark to get to the region of interest, warmup the caches
by running 100 million instructions for each benchmark, and then simulate the
next 100 million instructions on each core to collect the statistics. We consider
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Cores 16 cores @ 2.4GHz, ALPHA ISA, out-of-order
ROB entries 128
NoC 4x4 Mesh
L1I/L1D Cache 32KB, 4-way associative, 2-cycle latency, 64 Bytes cache line
L2 Cache 256KB (private), 8-way associative, 5-cycle latency, 64 Bytes cache

line
L3 Cache 2MB per core, 32MB total, 16-way associative, 100 cycle latency, 64

Bytes cache line
Cache Coherence MESI Protocol
Memory JEDEC-DDR3, 16GB DRAM, 4 channels, 2 ranks per channel, 8

banks per rank, FR-FCFS memory scheduler

Table 3.1: Simulated architecture configuration.

Application WPKI MPKI Hitrate IPC Application WPKI MPKI Hitrate IPC
mcf 68.67 55.29 0.20 0.07 omnetpp 16.22 0.61 0.96 0.78
streamL 36.25 36.25 0.00 0.37 xalancbmk 13.17 0.76 0.94 0.89
lbm 31.66 31.46 0.01 0.53 leslie3d 5.24 4.86 0.07 1.33
zeusmp 18.57 17.13 0.08 0.54 bzip2 2.89 0.69 0.76 1.63
bwaves 14.01 12.91 0.08 0.59 gromacs 1.85 0.61 0.67 1.61
libquantum 11.67 11.64 0.00 0.34 hmmer 2.20 0.13 0.94 2.61
milc 11.31 11.28 0.00 0.71 soplex 1.27 0.25 0.80 0.94
GemsFDTD 0.00 0.01 0.00 1.81 h264ref 1.09 0.08 0.93 2.00
namd 0.04 0.05 0.21 2.34 povray 0.18 0.04 0.79 1.57
astar 0.24 0.12 0.54 2.08 dealII 0.33 0.12 0.65 2.27
sphinx3 0.30 0.30 0.06 1.96 sjeng 0.52 0.32 0.41 1.16

Table 3.2: Applications used in the experiments. IPC values shown are for a single
core.

ReRAM cache line to wear out beyond 1011 writes.
We used the SPEC CPU 2006 benchmarks with their reference inputs. Table

7.2 presents various characteristics of these applications like IPC, last-level cache
hit rates, last-level Writes Per Kilo Instruction (WPKI), and last-level cache Misses
Per Kilo Instruction (MPKI). As can be observed from this table, these applications
exhibit quite a variation in performance; some are memory intensive while others
are compute intensive. Based on the sum of the WPKI and MPKI values shown in
Table 7.2, we characterize our applications as high, medium and low write intensive.
Applications with sum of a WPKI and MPKI greater than 10 are categorized as
high write-intensive ; applications with a sum between 1 and 10 are categorized
as medium write intensive while all the applications having a sum less than 1 are
categorized as low write intensive ones.

We further formed 16-core workloads by randomly choosing applications from the
high write-intensive ones along with the medium- and low-intensive ones. Since the
cache endurance problems mostly occur when high write-intensive applications are
run and the imbalance in wearout occurs when the high write-intensive applications
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Figure 3.13: Wear-leveling with an L2 size of 128KB.
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Figure 3.14: IPC improvements with L2 size of 128KB.

are run with the medium- and low-intensive applications, we choose workloads
such that we always run high memory-intensive applications with low/medium
write-intensive applications.

3.5.2 Results

We present liftime and performance results for Naive, S-NUCA, R-NUCA, Private
and compare them with our proposed Re-NUCA scheme. We report the following
results across all the NUCA schemes: harmonic lifetime in years, IPC, and raw
minimum lifetime in years. Harmonic lifetime in years represent the harmonic
mean of lifetime in years across all the workloads per cache bank. Harmonic mean
of lifetimes is a better compared to an average as average lifetime is significantly
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Figure 3.15: Wear-leveling with an L3 size of 1MB.
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Figure 3.16: IPC improvements with L3 size of 1MB.

effected by the extremes. On the contrary the raw minimum lifetime gives the
minimum lifetime of any cache bank in all the workloads. This metric helps us to
observe how much one can improve the lifetime of a cache bank, which is under
write pressure, under different NUCA configurations. Note that higher values of
harmonic and raw minimum lifetimes are better. We use a metric called Instructions
committed per cycle (IPC) to evaluate the performance of processor for each NUCA
scheme. IPC is an accurate metric for multi-programmed workloads and gives the
throughput of an out-of-order processor. Higher values of IPC are better.

Figure 3.12 shows the harmonic mean lifetimes for Re-NUCA mechanism com-
pared to the other mechanisms. X-axis in Figure 3.12 represents various NUCA
schemes, and Y-axis represents the harmonic lifetime in years. Hence, higher the
number on Y-axis the better.
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The Naive mechanism which does not consider performance and tries to wear-
level the cache banks result in the best harmonic lifetime of around 7.5 years.
Also, the variation of lifetimes across all the cache banks is 0, and thus Naive
mechanism gives the best wear-leveling possible. One can observe from Table 3.3
(Actual Results row) that Naive scheme also has the best raw minimum lifetime of 5
years. The Naive scheme degrades the performance on average by 21% compared to
S-NUCA. Hence, all the IPC improvements are normalized with respect to S-NUCA
as the Naive scheme performs worse even in the sensitivity analysis. This can be
attributed to the fact that the Naive mechanism does not consider criticality of
cache blocks while choosing the destination of the cache blocks. At the other end of
the spectrum is the private cache configuration which has the worst raw minimum
lifetime of 2.3 years, as seen in Table 3.3 (Actual Results row) for Private, and
huge variations in the harmonic lifetimes across cache banks as can be observed in
Figure 3.12.

The private cache configuration, as explained before, localizes writes and misses
to the corresponding cache bank without spreading the writes/misses unlike other
NUCA schemes. Consequently, a high memory and write intensive application like
mcf wears-out its own last-level cache bank faster than other (non-memory and
non-write intensive) applications. Also, since the private cache configuration does
not warrant on-chip traffic for last-level cache hits, the performance for private
cache configuration is the best compared to the other NUCA schemes tested as can
be observed in Figure 3.11. However, the private cache configurations suffer from
the capacity utilization problem as the last-level caches are not shared. This is the
reason why we see that IPC is lower in some workloads in Figure 3.11 compared
to R-NUCA. However, the private cache configuration does not suffer from cache-
interference, a problem with the shared last-level caches. As a result, private caches
incur high IPC in most of the workloads compared to other NUCA schemes and on
an average achieves around 8% improvement in IPC compared to S-NUCA and
around 4% improvement compared to R-NUCA. The improvements are as high as
16% compared to S-NUCA and 14% compared to R-NUCA for certain workloads,
as can be observed in Figure 3.11.

As the Naive and private cache configurations fall at the two ends of the
spectrum, the other NUCA schemes S-NUCA and R-NUCA have mediocre IPC
and harmonic/raw lifetime compared to the Naive and Private cache configurations.

31



Application Naive S-NUCA Re-NUCA R-NUCA Private
Actual Results 4.95 3.37 3.24 2.38 2.32
L2-128KB 7.14 3.9 3.09 2.31 2.31
L3-1MB 3.64 1.67 1.67 1.38 1.38
ROB-168 7.06 3.26 3.26 2.33 2.32

Table 3.3: Raw Minimum lifetimes.

While S-NUCA contains better harmonic/raw minimum lifetime compared to R-
NUCA, R-NUCA gives better performance compared to S-NUCA. On an average,
R-NUCA beats S-NUCA by 4.7% in IPC, and S-NUCA has a better raw minimum
lifetime of 3.36 years while R-NUCA contains a raw minimum lifetime of 2.38 years.
The maximum performance difference between R-NUCA and S-NUCA is 12.8% for
a certain workload (Figure 3.11).

Our Re-NUCA scheme, as can be observed in Figures 3.11, 3.12 and in Actual
Results row for Re-NUCA in Table 3.3, retains the best of both worlds from S-
NUCA and R-NUCA in terms of the raw minimum lifetime and performance. By
placing the critical blocks closer to the target core in the Re-NUCA region, our
Re-NUCA configuration achieves a performance improvement of 5.2% on average,
and up to 6.9% for a workload compared to S-NUCA and equalling the performance
of R-NUCA on average. On the other hand, by spreading the non-critical cache
blocks using S-NUCA approach, our Re-NUCA scheme wear-levels the cache in a
performance-conscious fashion. The raw minimum lifetime of Re-NUCA scheme is
3.24 years bettering the R-NUCA raw minimum lifetime by 42%, as can be seen
in Table 3.3 while retaining it’s performance. Once can see from Figure 3.12 that
Re-NUCA wear-levels the cache banks in R-NUCA by increasing the harmonic
lifetime of cache banks with lower lifetime such as cache banks cb-0, 1, 2, 4, 5, 6,
while reducing the harmonic lifetime of other cache banks which are remarkably
high such as cache banks, cb-12, 13,14 and 15. Recall that Re-NUCA employs a
hybrid mechanism of R-NUCA and S-NUCA in a performance-conscious manner.
If a cache block is predicted as critical, it is allocated in the Re-NUCA region close
to the target core, whereas if the cache block is predicted as non-critical, cache
blocks are spread-out across last level cache banks using S-NUCA.
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Figure 3.17: Wear-leveling with an ROB of 168-entry size.
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Figure 3.18: IPC improvements: with an ROB size of 168.

3.5.3 Sensitivity Analysis

In this subsection, we discuss how our Re-NUCA works with varying sizes of
caches in the cache hierarchy and with the changes in the micro-architecture of
the processor especially the number of ROB entries. One of the cache hierarchy
parameters which effect the number of writes to the last level cache banks is the
sizes of L2 and L3 cache banks itself. Since reducing the size of L2 increases
the number of L2 misses and hence the write-backs, we evaluated the impact of
Re-NUCA by decreasing the size of L2 to 128KB while our default system had
256KB. Figure 3.13 and the L2-128KB row in Table 3.3 show the harmonic and
raw minimum lifetime of Re-NUCA compared to the other schemes. As can be
observed, Re-NUCA reduces the variation in harmonic lifetimes across the cache
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banks compared to R-NUCA, while managing the performance degaradation of
only 1.5%, on an average, compared to R-NUCA as can be observed in Table 3.3
in L2-128KB row. The raw minimum lifetime of Re-NUCA with 128KB L2 is 3.10
years compared to R-NUCA with 2.3 years thereby improving the raw minimum
lifetime by 34.8%.

As our next sensitivity experiment, we reduce the size of L3 Re-RAM cache bank
to 1MB while our baseline consists of 2MB per cache bank. With the decreased
L3 cache bank size, the memory-intensive application incurs more L3 cache misses,
which results in fetching more cache blocks and thus increasing the writes to the
L3 cache bank. The harmonic mean and lifetime improvements are plotted in
Figures 3.15 and in L3-1MB row in Table 3.3, respectively. As can be observed, Re-
NUCA wear-levels the lifetimes similar to L2 with 128KB case. Re-NUCA improves
the raw minimum lifetime compared to R-NUCA from 1.38 to 1.67 years improving
it by 21%. On average, Re-NUCA improves performance compared to R-NUCA by
around 1.8%. It also increases performance by 4.11% compared to S-NUCA on an
average. However, the maximum improvements acheived by Re-NUCA compared
to R-NUCA and S-NUCA observed are 8.2% and 6.81% respectively.

The other micro-architectural characteristic that influence the impact of Re-
NUCA is the number of entries in the ROB itself. With the increased number of
entries in the ROB, some of the loads might endup not stalling the ROB, thereby
effecting the criticality predictor. Next, we conducted experiments by increasing the
number of entries in ROB to 168, while in our baseline configuration ROB contained
128 entries. With increased ROB size, as can be observed in Figure 3.19, IPC
improves by 5.2% compared to S-NUCA, while it is slightly better than R-NUCA
by 0.5%. However, the raw minimum lifetime improves from 2.33 years to 3.26
years compared to R-NUCA, improving its lifetime by around 39.9%, as opposed
to 42% with an ROB containing 128 entries.

3.6 Related Work
EqualChance by Mittal and Vetter [40] moves write-intensive cache blocks to a
different set in a cache. It keeps track of the writes per set and redirects write to
another clean or invalid location if the number of writes goes over a threshold. i2wap
(Wang et al.) [41] is a cache management strategy that balances writes between
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Figure 3.19: IPC improvements: with an ROB size of 168.
sets and within a set. They combine a main memory wear-leveling technique for
addressing variations between sets using a technique to reduce variation within a
set.

In our work, we target inter-cache bank wear-leveling while the works mentioned
above try to wear-level a cache bank at a finer granularity at inter-set and intra-set
level. Though our approach is orthogonal to their approaches, their approaches can
be complementarily implemented on top of our proposed approach to reap higher
benefits in terms of wear-leveling in a performance-conscious fashion.
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Chapter 4
Congestion-Aware Memory
Management (CAMM) - A
Complete Software Approach

4.1 Background and Experimental Setup

4.1.1 NUMA architecture

Figure 2.2a shows the basic block diagram for Intel Haswell system. The nodes1 in
Haswell (similar to Westmere) processor are connected to one another through an
Intel Quick Path Interconnect (QPI) [8–10]. A socket consists of a local memory
which is managed by a local memory controller (MC) as shown in the Figure 2.2a,
and is a Chip Multi-Processor (CMP) containing cores; all cores share a last-level
cache, represented by LLC in the figure. A local memory access incurs a DRAM
access delay and, if the DRAM banks are busy, an additional MC queuing delay
as well. However, since the remote memory access involves moving data from the
remote socket over the QPI, an additional interconnect latency is incurred. Tables
2.1 and 2.2 show the latencies in CPU cycles after a system bootup without any
guest VMs running inside the ESXi for Westmere and Haswell systems, respectively.
In these tables, the value in row-x and column-y represent memory access latency
in CPU cycles observed from Node-x when accessing the data allocated in the

1We use socket and node interchangeably in the rest of this work.
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Figure 4.1: Performance degradation with varying consolidation scenarios on Intel
Haswell.

local memory of Node-y. Hence, values in the diagonal (bolded) represent the
local memory access latencies. From these tables, it can be observed that the local
latency incurred is always lower than the remote latency.

Nodes 2
Cores/socket 18
Core Freq. 2.3GHz
LLC Size 45MB
QPI Speed 9.6GT/sec
DRAM (Capacity) DDR4-2133 (512GB)

Table 4.1: Haswell configuration.

Nodes 8
Cores/socket 10
Core Freq. 2.27GHz
LLC Size 24MB
QPI Speed 6.4GT/sec
DRAM (Capacity) DDR3-1333 (1TB)

Table 4.2: Westmere configuration.

4.1.2 Experimental setup

We used two Intel NUMA based systems, Haswell and Westmere to conduct our
experiments. Tables 4.1 and 4.2 summarize the configurations of these machines.
The Intel Haswell system shown in Table 4.1 contains 2 NUMA sockets. In each
socket, there are total 36 hardware (2-way hyper-threaded) threads sharing an LLC
of size 45MB. Intel Westmere system2 shown in Table 4.2 contains 8 NUMA sockets

2In the interest of space, we could not present the Westmere block diagram. Please find it in
slide-12 of [42].
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Figure 4.2: Memory access latencies noted from Node-0 in a congested environment
on Haswell for npb_is workload.

and each socket contains 20 hardware threads (2-way hyper-threaded) per socket.
The applications presented in Table 4.3 are run inside the guest VMs running
on ESXi hypervisor. Each guest VM runs a RHEL 6.0 Operating System. For
simplicity, we assume each guest VM to be running a single application, though
our analysis and evaluations hold equally well for multiple applications running
inside a guest VM. For our evaluations, we used multi-threaded and single-threaded
applications from various benchmarks suites from HPC domain viz., NAS [43], SPEC
CPU2006 suite [44], SPECOMP [45], MANTEVO [46], also the SPECJBB [47]
suite and finally the graph parallel-processing multistep [48] suite. The specific
applications from these suites are further categorized in to high (represented by
H), medium (M) and low (L) based on their memory-intensities, measured by LLC
Misses Per Kilo Instruction (LLC-MPKI) as depicted in Table 4.3.3 Applications
with LLC-MPKI greater than 15 are categorized as H, while those with LLC-MPKIs
between 5-15 (inclusive) are categorized as M and the ones with LLC-MPKIs below
5 are categorized as L.

We further used homogeneous and heterogeneous workloads formed using the
applications in Table 4.3 to quantify the benefits of our optimizations. The homo-
geneous workloads execute same applications while the heterogeneous workloads
execute different applications on a given socket. To simulate real-world scenarios,
where different nodes on the same machine exhibit varying degrees of congestion,
in some workloads, we map high/medium/low-memory intensive applications on
different nodes. However, to replicate scenarios where all the nodes experience

3The LLC-MPKIs reported in Table 4.3 are collected on Haswell machine by executing an
instance of the same application on each hardware thread of a node. As a result, 36 threads
(applications) contend for 45MB of LLC on Haswell, while on Westmere 20 threads contend for
24MB of LLC. Roughly, each threads get 1.25MB of LLC on both the machines. As a result, we
observed similar LLC-MPKI values on Westmere as well.
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the same degree of memory congestion, we map different instances of the same
workload on all the nodes in a machine, there by covering the entire spectrum of
the real-world scenarios. More details of these workloads are covered in Section 4.6.

In the rest of the work, the % Execution Time Improvement (or degradation)
results reported in various figures for each workload is the geometric mean of
individual applications’ execution time improvement (or degradation) over the
corresponding applications’ baseline execution time.

Benchmark Suite MT ? LLC- Cat Benchmark Suite MT ? LLC- Cat
MPKI MPKI

mcf SPEC2K6 N 66.9 H GemsFDTD SPEC2K6 N 13.33 M
npb_is NPB N 43.51 H HPCCG mantevo N 11.81 M
npb_ua NPB N 42.72 H equake SPECOMP Y 7.24 M
Omnetpp SPEC2K6 N 23.01 H specjbb SPECJBB Y 6.48 M
swim SPECOMP Y 22.162 H CC MULTISTEP Y 2.45 L
lbm SPEC2K6 N 21.62 H mgrid SPECOMP Y 1.95 L

libquantum SPEC2K6 N 19.52 H SCC MULTISTEP Y 2.45 L
milc SPEC2K6 N 18.28 H povray SPEC2K6 N 0.07 L

Table 4.3: Benchmarks used in our evaluation [MT: Multi-Threaded (Y - Yes, N -
No), Cat: MPKI Category] .

4.2 Motivation
As can be observed from Tables 2.1 and 2.2, the access latency to local node is
around 40% lower in both the systems compared to access to the neighboring remote
nodes. ESXi is NUMA-aware [49] and hence tries to allocate memory from the local
node, whenever possible, for better performance. However, when a high number
of memory-intensive VMs are consolidated on a single node, the MC queuing and
DRAM access latencies can dominate the additional interconnect latency incurred
by the remote access.

4.2.1 Effect of increasing consolidation

Figure 4.1 shows how performance changes with increasing number of VMs consoli-
dated on a socket for our homogeneous workloads on Intel Haswell system. In this
experiment, each VM is pinned to a hardware thread on a processor socket. The
performance degradation reported is normalized to the basecase which executes 18
VMs. As can be observed from Figure 4.1, performance degrades as the number of
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VMs consolidated increases and is as high as 92% for npb_is [43] which is highly
memory-intensive, while it is almost 0% for low memory-intensive applications like
povray as such applications rarely access memory.

To further explain the degradation in Figure 4.1, we present the access latencies
for npb_is homogeneous workload. Figure 4.2 shows the memory access latencies
incurred from Node-0 to both Node-0 and Node-1 on our Intel Haswell system
running homogeneous npb_is workload. As can be observed, initially when there is
no congestion in the system the local node (Node-0) access latency is lower than the
remote node (Node-1) access latency. However, around the 11th epoch (23 secs), the
local latency to Node-0 starts increasing and becomes greater than the remote nodes’
access latency indicating that the Node-0’s memory bandwidth is saturated resulting
in congestion. Note that, after the 11th epoch, the Node-0 latency continues to
dominate the latency to Node-1 till the end of the workload execution in the 105th
epoch. In such scenarios, the overall system performance would improve if the
neighboring remote nodes’ bandwidth could be utilized. However, to use the remote
memory bandwidth effectively, one needs to answer the following questions:
1. When to allocate data in the remote node ?
2. What percentage of data needs to be allocated in the remote node for a specific

topology NUMA system?
3. In which remote node (number of hops from the source node) should the data

be allocated ?
These questions are important, because if data is allocated on the remote node

when there is no congestion, system performance can degrade significantly as extra
cycles are spent on the interconnect traversal while accessing data. Consequently,
it is important to detect the congestion in the system dynamically so that the data
can be allocated in the most appropriate node. Once the congestion is detected
and the decision to allocate data in the remote node is taken, it is important to
determine how much data needs to be allocated in the remote node. This decision
is also important because if too less data is allocated in the remote node, system
performance further degrades as the local node will still be congested. However,
if a high percentage of data is allocated on the remote node, local node memory
bandwidth will be under-utilized, thereby resulting in performance degradation.
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Figure 4.3: Execution time improvements with different static allocation ratios on
Intel Haswell.

-15
-10

-5
0
5

10
15
20

%
 E

x
e

c 
T

im
e

 I
m

p 50_50 60_40 70_30 80_20 90_10

Figure 4.4: Execution time improvements with various static allocation ratios on
Westmere only using 2 of 8 NUMA nodes.

4.2.2 Static allocation results

Figure 4.3 plots the percentage execution time improvement when a fixed fraction of
data is allocated in the remote node on our Intel Haswell 2 NUMA node system. All
the results presented are normalized to the basecase where all the data are allocated
on the local NUMA node, Node-0. We present results for different allocation ratios,
for example, the bars marked using 60_40 in Figure 4.3 represents the execution
time improvement when 60% of memory is allocated on the local node, and the
remaining 40% is allocated on the neighboring remote node. As can be observed,
in this system, allocating 10% of data in the remote node (90_10 ratio) does not
alleviate congestion and incurs considerably lower performance improvement of
around 7.5% on an average. On the other hand, allocating 50% of data on the
remote node alleviates congestion; however, it results in under-utilizing the local
node memory bandwidth and yields a performance improvement of 12.6% on an
average, which is still not very high. Allocating 60% on the local node and 40%
on the remote node is optimal in this case, giving a performance improvement of
19.1% on an average. Figure 4.4 shows the performance improvement when only 2
NUMA nodes out of 8 are used in our Intel Westmere system. In these experiments,
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memory is allocated only on Node-0 and Node-1. Node-0 is the source node, and
Node-1 is the neighboring remote destination node for VMs running on Node-0. As
can be observed from Figure 4.4, 70% local node allocation and 30% remote node
allocation result in the maximum performance improvement of 11.4% on an average.
Similarly 70_30 yielded better performance considering 4 NUMA nodes out of 8
NUMA nodes, i.e, 30% data is spread the rest three other remote nodes. Beyond 4
NUMA nodes, latency to the remote node dominates the extra bandwidth provided
by the remote node. Consequently, we do not see any performance improvement
when data is allocated in the remote node beyond 4 NUMA nodes in Westmere.

Summarizing the results from Figures 4.3 and 4.4, one can conclude that memory
congestion can be alleviated by using the extra memory bandwidth from the target
remote nodes. There is no one common ratio in distributing the data across
the local and remote nodes to achieve maximum performance. That is, different
workloads prefer different ratios depending on the hardware configuration. Thus, we
need a mechanism which can dynamically identify how congested different shared
resources in a NUMA system are oblivious to the hardware configuration. These
shared resources include local memory bandwidth, interconnect bandwidth, and
the remote memory bandwidth. The proposed scheme should be successful in
identifying congestion oblivious to the underlying hardware configuration. Hence,
such a scheme should estimate congestion accurately in diversified environments
employing:
• homogeneous/heterogeneous link bandwidth interconnects like AMD Bull-

dozer [10] and
• homogeneous/heterogeneous bandwidth memories including DRAM [50–52],

AMD’s HBM [3], Intel’s MCDRAM [53], non-volatile memories like Intel 3D
XPoint [54] and futuristic phase-change memory (PCM) [55]

4.3 Dynamic Latency Probing
Past congestion detection techniques [56–59] relied on reading the performance
counters to estimate the per-socket memory intensity. However, since performance
counters are shared resources, these mechanisms limit the number of performance
counters [60] that can be used for other runtime optimizations. We implemented
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our dynamic probing mechanism in VMware’s ESXi4 on a real system, and observed
that it gives the end-to-end information on how congested different shared resources
in a NUMA system are very accurately.

Algorithm 1 Pseudo-Code for Dynamic Latency Probing.
1: procedure NUMA_ProbeDynLatencies(my_numa_node)
2: for each numa_node do
3: NUMA_ProbeDynLatency(my_numa_node, numa_node);
4: end for
5: end procedure
6:
7: procedure NUMA_ProbeDynLatency(srcNode, tgtNode)
8: totalAccessCycles = 0
9: for each page in NUM_PROBED_PAGES do
10: startCycle = RDTSC();
11: for each probe in NUM_PROBES_PER_PAGE do
12: /* Access the tgtNode pages (by issuing processor-loads) in a non-cacheable manner using volatile

constructs. */
13: end for
14: endCycle = RDTSC();
15: /* Let pageAccCycles represent the elapsed cycles */
16: totalAccessCycles + = pageAccCycles;
17: end for
18: /* Measure and record the avgAccessLatency in the table corresponding to row srcNode and column

tgtNode */
19: currNodeLatArray[tgtNode] = average;
20: end procedure

Our dynamic latency probing mechanism is based on periodically accessing
the non-cacheable pages in each node from every node. Algorithm 1 presents the
pseudo-code for our dynamic probing mechanism. NUMA_ProbeDynLatencies
procedure is invoked periodically on each NUMA node through timer callbacks
already implemented in ESXi. From every source node, represented by srcNode
in the pseudo-code, NUMA_ProbeDynLatency routine is invoked by ESXi passing
the target node as an argument. To ensure only one Physical CPU (PCPU) per
node probes pages from the target nodes, NUMA_ProbeDynLatencies callback
code is only scheduled on the first PCPU of every NUMA node, except for the
node where the current Timing Loop code is being executed. On this node, instead
of scheduling the probing code on first PCPU, our dynamic probing latency code is
executed on the same PCPU. Such an optimization prevents the pre-emption of
the code currently being executed on the first PCPU for the current node. This
can be observed in the pseudo-code for the timing loop presented in Algorithm 2.

4We would like to emphasize again that though we implemented and evaluated the mechanism
in ESXi, this mechanism is general and can be adapted by any runtime or OS and is not
limited to ESXi.
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This timing loop in Algorithm 2 is responsible for scheduling the dynamic latency
probing code in Algorithm 1 on each node periodically.

Algorithm 2 Pseudo-Code for Dynamic Latency Probing.
for each numa_node in TOTAL_NUMA_NODES do

2: currNumaNode = NUMA_GetNumaNodeNum(MY_CPU);
if numa_node == currNumaNode then

4: NUMA_ProbeDynLatencies(currNumaNode);
else

6: fCPU=NUMA_GetFirstCPUOnNode(numa_node);
Timer_Add(fCPU, NUMA_ProbeDynLatencies, numa_node);

8: end if
end for

As can be observed in lines 2-4 for procedure NUMA_ProbeDynLatencies in
Algorithm 1, the for-loop code passes each node as the target node for procedure
NUMA_ProbeDynLatency. Consequently, the source node can itself be the destina-
tion target node. In such a scenario, the PCPU running on source node accesses
pages in local node.
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Figure 4.5: Esxtop output showing the memory allocation behavior of applications
over time (in minutes).

Having understood how the dynamic probing latency code is triggered on each
NUMA node, we can now look at the latency probing algorithm itself which is
covered in procedure NUMA_ProbeDynLatency in Algorithm 1. We modified
the ESXi code to allocate extra specified set of ‘probe pages’ on each NUMA
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Figure 4.6: Memory allocation behavior of SPECJBB.
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Figure 4.7: CAMA results for Intel Haswell processor.
node. Each ‘probed page’ is 4KB in size and is used only by ESXi for probing
periodically. In the dynamic probing algorithm, these probed pages allocated
per NUMA node are accessed using “volatile" construct so that the processor
loads generated by accessing these probed pages do not get cached in the on-chip
cache hierarchy. Hence, accesses to these probed pages always result in memory
access to corresponding NUMA nodes. Since processor stores going to the memory
are buffered in a separate write-queue and are drained based on the low/high
watermarks set at the MC, non-cacheable stores do not truely reflect the congestion
of the memory subsystem. As a result, our probing code only issues non-cacheable
processor-loads to to estimate congestion. The for-loop in lines 9-19 of Algorithm 1
represents the PCPU on the source NUMA node accessing the probed pages from
the target NUMA node. We use RDTSC() function to read the time-stamp counter
(TSC) provided by the hardware to record the processor cycles lapsed in accessing
these probed pages.

Note that the dynamic probing code itself is an additional overhead incurred
by ESXi. There is a clear trade-off on how frequently the probing code can be
triggered versus the accuracy of the memory latency information provided by
probing. Probing code triggered very frequently not just pre-empts the execution
of VM(s) running on the corresponding PCPUs but also causes additional memory
traffic. However, if the probing code is sampled very infrequently, the memory
latencies reported by the dynamic latency probing might become stale and may
not be useful in alleviating memory congestion and sometimes could result in a
proposed optimization to degrade the overall system performance. Two parameters
in our algorithm effect the accuracy vs performance trade-off, viz, sampling interval
and number of memory probes.

In the next three sections, we show how dynamic probing is used to guide
memory allocation and migration strategies. Though our mechanism can be used
in migrating VMs, we do not consider VM migration for the following reasons:
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Figure 4.8: CAMA latencies for NPB IS on Haswell.
• VM migration is often an expensive operation, since migrating VM not only

involves migrating the execution context, but also migrating the entire memory
footprint of the corresponding VM to the remote node. Migrating the entire
memory footprint is an expensive operation in terms of both energy and perfor-
mance considering how quickly the memory footprint is growing in the emerging
workloads [61, 62]. Migrating just the VM without it’s corresponding mem-
ory results in overwhelming number of remote node memory accesses thereby
degrading performance.

• VM migration from one node to another in highly consolidated environments
often necessitates swapping the VMs between the source and destination nodes.
This is due to the unavailability of a free PCPU that can excute the migrated VM
on the target node. This VM swapping is an expensive operation as it involves
not just migrating the memory, but also the cost involved in other hardware
structures including: flushing the deep processor pipelines, disrupting the branch
predictors, flushing TLB entries, and the locality lost in private L1D/L1I and
last-level caches. And such a cost increases with increase in number of VMs to
be migrated (swapped) and also by the frequency of migration.

4.4 Congestion-Aware Memory Allocation (CAMA)
Before we look into the optimizations based on the dynamic latency probing,
Figures 4.5a, 4.5b and 4.6 plot the memory allocation behavior of libquantum,
npb_is and specjbb applications, respectively, collected using esxtop utility. As
can be observed, in these applications, the memory footprint grows over time and
hence provides an opportunity for the memory allocator to allocate some of the
data on the remote nodes dynamically when the local node is congested. In this
section, we discuss Congestion-Aware Memory Allocation (CAMA), which guides
allocation of data on the remote node dynamically.
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Figure 4.9: CAMA results for Intel Westmere processor.
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Figure 4.10: 0.2 secs epoch CAMA Improvements on Haswell.
Upon receiving a memory allocation request from a VM running on a source

node, CAMA decides the target node based on the latencies incurred from the
source node to the other nodes in the previous epoch. The target node chosen
for allocation in CAMA is the one which incurred the lowest probed latency in
the previous epoch. The intuition is that, the probed latencies recorded at the
end of previous epoch gives an approximate idea of how congested different shared
resources would be in the current epoch. This simple modification in the ESXi
memory allocator can automatically consider the end-to-end access latencies and
can account for the congestion on different shared resources. The shared resources
include the local nodes’ memory controllers, the inter-socket interconnect (Intel
QPI/AMD HT interconnect), and the remote nodes’ memory controllers. Also, this
simple change in the memory allocator is flexible enough to pick the local node
automatically when the access latency to the local node is lower.

In Figure 4.7, the last bar for each workload shows the performance improvement
for the homogeneous workloads with CAMA. All the results presented are normalized
to the basecase, where all the memory is allocated in the local node. The other
bars representing the static allocation are shown there for comparison. The epoch
duration used in these experiments is 2 secs, that is, the dynamic latencies are
updated every 2 secs. As can be observed, CAMA improves the performance by
18.49% on an average and a maximum of up to 34.2% for npb_is, and also on an
average CAMA is within 1% compared to the best in static allocation schemes.
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Figure 4.11: Dynamic latencies for VMs running mcf with epoch duration of (a) 2
secs and (b) 0.2 secs.
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Figure 4.12: Cumulative percentage of data allocated on local node in Haswell by
CAMA.
Figure 4.8 shows the dynamic latencies measured on our Haswell system from Node-
0 to both Node-0 and Node-1 for CAMA in ESXi. One can see from this figure that
the local and remote node latencies are almost the same at every epoch for CAMA
unlike in Figure 4.2 where the local node latency is much higher than the remote
node latency. Figure 4.9 shows the performance improvements in for CAMA on Intel
Westmere processor; the static allocation results are reproduced for comparison. It
can be observed that on an average CAMA improves the performance by 10% for
Westmere. Also, from Figures 4.7, 4.9 and 4.12, comparing the static allocation
and CAMA results, we note that same percentage of data allocated on local node
could result in varying performance improvements.
Impact of epoch duration on CAMA: Since we use the probed latencies from
the previous epoch to govern the memory allocations in the current epoch, one
crucial parameter in our setup which governs the performance improvements is
the epoch duration itself. Since our epoch of 2 secs translates to billions of core
cycles (with a processor frequency in the order of GHz), it may be beneficial to
trigger the probed latencies more frequently. Probing more frequently can give us
the more up-to-date congestion information and can help the memory allocator to
respond to the dynamic modulations in the application phase behavior more rapidly.
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Figure 4.10 shows the performance benefits when we sample the probing code more
frequently at 0.2secs epoch on the Haswell processor. For high memory-intensive
applications like libquantum, npb_is, lbm we can see that the performance degrades
with 0.2 secs epoch compared to 2 secs epoch. This degradation in performance
is due to the fact that the probed memory accesses interfere with applications’
on-demand memory accesses resulting in increased memory access latencies for the
on-demand memory requests. The performance degradation in these applications
is as high as 10% for npb_is compared to the case with epoch duration of 2 secs.
However, applications like mcf, npb_ua, milc, GemsFDTD and omnetpp benefit
from 0.2 secs epoch duration. This improvement in performance is because CAMA
could adjust to subtle changes in congestion rapidly.

Figures 4.11a and 4.11b show the memory access latencies for homogeneous
mcf workload for 2 secs and 0.2 secs epochs, respectively. For an epoch duration
of 2 secs in Figure 4.11a, we can see the bubbles formed due to gap in latencies
between the local and remote nodes around epochs 141, 301, 381, 481 and 541.
This result indicates that there is still some scope for improvement when using
an epoch duration of 2 secs. For epoch duration of 0.2 secs, one could see that
the latencies to local and remote nodes match at every instant. This is because,
all the shared resources viz., local memory bandwidth, interconnect bandwidth
and remote bandwidth are utilized optimally making the end-to-end latencies to
match at every instant. Hence, in workloads that benefit from smaller epoch of 0.2
secs, the performance improvement is as high as 4.5% for omnetpp, compared to
an epoch duration of 2 secs. On an average, an epoch duration of 0.2 secs yields
17.5% increase in performance compared to the basecase and the corresponding
performance improvement for an epoch duration of 2 secs is 18.4%. Figure 4.12
gives the cumulative percentage of data allocated on the local node for epochs
of 2 secs and 0.2 secs using CAMA. For both the epochs, high memory-intensive
applications like mcf and npb_is have more than 30% of their data in the remote
node.

4.5 Congestion-Aware Page Migration (CAPM)
CAMA is ineffective in the following scenarios:
1. Memory system is congested during data allocation, but it is no longer congested
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Figure 4.13: Esxtop output showing memory allocation behavior of the applications
over time (in minutes).
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Figure 4.14: Memory Allocation behavior of NPB_UA.
when the data is being accessed.

2. Memory subsystem is not congested during data allocation, however, it gets
congested during execution of workload.
Figures 4.13a, 4.13b and 4.14, show the memory allocation behavior of different

classes of applications over time. As can be observed, all of the data is allocated
in the first few seconds of the program execution. In such scenarios, as local node
memory will not be congested initially, CAMA allocates all the data in the local
node it cannot alleviate congestion.

Therefore, we need a dynamic mechanism which can fix the incorrect decisions
made by CAMA at runtime or augment CAMA to reap maximum overall system
performance. Motivated by this, we propose our second optimization, Congestion-
Aware Page Migration (CAPM) which dynamically migrates pages across nodes
based on the probed latencies described in Section 4.3. In this section, we elaborate
on the intricacies in designing CAPM in isolation in the absence of our first proposed
optimization CAMA. From Figures 4.8 and 4.11b, in presence of congestion, it
can be observed that maximum overall performance is obtained when the shared
resources are utilized optimally, i.e, when the gap between end-to-end memory
latencies of the local node and the remote node is minimum in every epoch. Hence,
based on dynamic probed latency in the previous epoch, CAPM tries to migrate
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pages such that the latencies to the local node and remote node(s) match in every
epoch. When local node becomes congested, CAPM migrates the data from local
node to the remote node, but when the latency to the remote node increases later,
data is migrated back from remote node to local node in next epoch to balance
end-to-end latencies. The key factors that effect improvements in CAPM are:
• Candidate pages chosen to migrate from source to destination nodes.
• Number of such candidate pages to be migrated per epoch, referred to as

migration rate.

Algorithm 3 Pseudo Code for setting the migration rate in CAPM.
1: currNumaNode = NUMA_GetNumaNodeNumFromCPU(MY_CPU);
2: currNodeLatencyArray = NUMA_GetDynLatCyclesArray(currentNumaNode);
3:
4: currNodeLatencyArray contains the dynamic probed latencies from the current NUMA Node to all the other

NUMA nodes.
5:
6: Iterate currNodeLatencyArray and find the node which incurs minimum latency from the current NUMA node

and the latency value. Let minLatencyNode and minNodeLatency represent the corresponding values. Also,
calculate the average of the latencies. Let avgLatency represent the average value.

7:
8: if currNumaNode ! = minLatencyNode then
9: /* Local NUMA node is congested, pages are to be migrated from local current NUMA node to the

neighboring remote NUMA node. */
10: latency_gap = currNodeLatencyArray[currNumaNode] - avgLatency;
11: if latency_gap > (ηthresh ∗ avgLatency) then
12: Set migration rate here
13: else
14: migrationrate = 0;
15: end if
16: else
17: /* Neighboring remote NUMA node is congested, pages are to be migrated from neighboring remote

NUMA node to local current NUMA node. */
18: latency_gap = currNodeLatencyArray[neighboringNumaNode] - avgLatency;
19: if latency_gap > (ηthresh ∗ avgLatency) then
20: Set migration rate here
21: else
22: migrationrate = 0;
23: end if
24: end if

Candidate Pages for Migration: Since programs exhibit locality [63] during
execution, not all the pages allocated are accessed in all the epochs. In VMware
ESXi and traditional OS’s like Linux, such pages accessed can be identified by
poisoning the page table entry (PTE) by setting its reserved bit similar to [63].
Such a poisoned page is flushed from the TLB and a corresponding processor
load/store will incur a TLB miss. Upon a miss, a hardware pagetable walk is
triggered following which a BadgerTrap routine [64] is executed accounting for
the page access. BadgerTrap handler further resets (unpoisons) the reserved bit
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Algorithm 4 Pseudo Code for setting CAPM migration rate.
1: currNode = NUMA_GetNumaNodeNumFromCPU(MY_CPU);
2: currNodeLatArray = NUMA_GetDynLatCyclesArray(currNode);
3: /* currNodeLatArray –> Latencies from the current Node to all the other nodes. minLatencyNode –> Node

incurring minimum latency from current Node. */
4: if currNode ! = minLatencyNode then
5: /* Local node is congested, pages are to be migrated from local current node to the neighboring remote

node. */
6: lat_gap = currNodeLatArray[currNode] - avgLatency;
7: if (lat_gap > (ηthresh ∗ avgLatency))&&(freespace_in_remote_node) then
8: Set migration rate here
9: else
10: migrationrate = 0;
11: end if
12: else
13: /* Neighboring remote NUMA node is congested, pages are to be migrated from neighboring remote

NUMA node to local current NUMA node. */
14: lat_gap = currNodeLatArray[neighboringNode] - avgLatency;
15: if (lat_gap > (ηthresh ∗ avgLatency))&&(freespace_in_local_node) then
16: Set migration rate here
17: else
18: migrationrate = 0;
19: end if
20: end if

in PTE and caches the translation in TLB and later re-poisons the PTE. Hence
the number of badgertraps accounted for each page can be used to distinguish an
accessed page from a non-accessed page in a given epoch. From our offline-analysis
of each application, we identified that in every epoch, total memory footprint of
the accessed pages is in the order of several Mega Bytes (MBs) which span over few
thousands of 4KB pages. In CAPM, the candidate pages to be migrated are only
chosen from the accessed set of pages. Hence the migration rates used in CAPM
will be in the order of few thousands per epoch to alleviate congestion.
Target Migration Rate per epoch: Migrating a candidate page from source
node to destination node incurs following steps: (a) allocating a new page in the
destination node, (b) copying the entire page contents from the source node memory
to the target node memory, (c) shooting down the cached translations inside the
TLB and (d) updating the page table entry. Prior work [65] accounted for the TLB
shootdown overheads to be as high as 11000 CPU cycles for 16 threads. Considering
the above overheads, the target migration rate per epoch, plays a significant role
in the overall system performance. Since our CAPM supports migration in both
the directions (local to remote and remote to local), the migration rate should be
chosen such that the overheads are minimal. A lower migration rate migrates fewer
pages per epoch, and hence it will take more time to alleviate congestion, resulting
in low improvement in performance. On the other hand, a high migration rate
causes more pages to migrate per epoch, thereby alleviating the congestion faster.
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Figure 4.15: Dynamic latencies without any migration.
However, at the end of the epoch, due to migration, the latency to the neighbouring
NUMA node will become higher than that to the local NUMA node. As a result,
pages are now migrated from the neighbouring node to the local node in the next
epoch, thereby causing the pages to migrate back-and-forth between the local and
the neighboring remote nodes, causing a ping-pong effect. Clearly, such a ping-pong
effect is not desirable warranting the migration rate to be chosen carefully.

When the local node is congested, it is clear from Figure 4.8 that, the maximum
performance is achieved when the measured end-to-end latencies between local and
neighboring nodes are close to each other in every epoch. Hence, the desired probed
latency at every epoch to both the local and remote nodes should be the average of
the observed latencies. The pseudo-code for setting the migration rate in CAPM is
presented in Algorithm 4. At the end of every epoch, for every node, the algorithm
involves identifying the congested node by comparing it’s local NUMA node latency
with the neighboring remote node. Once a congested node is identified, the lat_gap,
defined as difference in the latency to the congested node and the average expected
latency is computed, as shown in lines 10 and 18. If the lat_gap exceeds the
expected average by a threshold, denoted by ηthresh, CAPM migrates pages from
the congested node to the neighboring node5, else not. If ηthresh is too low, less
latency-gap can be tolerated and thus too many pages could be migrated which
could possibly trigger the ping-pong effect. If ηthresh is too high, too much latency
gap will be tolerated and consequently not enough pages are migrated, resulting in
low overall performance. Based on our experimentation on all our workloads, we
identified 5% to be a reasonable value for ηthresh(used as threshold in this work).

To explain various results in CAPM, we use the following heterogeneous work-
load: equake(2), povray(2), mgrid(2), mcf(2), swim(4). This heterogeneous work-

5Please note from lines 7 and 15 of Algorithm 4, migration rate will be 0 if there is no free space
available in the destination node. Hence, CAPM tries to alleviate congestion opportunistically as
long as there is freespace available in the destination node.
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Figure 4.16: (a) Static, (b) Dynamic migration rate results.
load contains multi-programmed and multi-threaded applications with varied mem-
ory intensities. Figure 4.15 represents the dynamic latencies measured in the
basecase where all the data is allocated on the local node. It can be observed that
the local node is congested for around 170 epochs (340 secs) since the latency to
the local node is higher compared to that to the remote node.
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Figure 4.17: (a) Static and (b) Dynamic migration rate results.

Once CAPM decides to migrate candidate pages based on the latency gap and
ηthresh, the next important question is how many candidate pages to migrate per
VM per epoch to get the best overall system performance. Migration rates per VM
can be set per epoch either statically or dynamically. As covered in “ Candidate
Pages for Migration" discussion, since the working set sizes of the accessed pages
are in the order of several MBs, few thousands of candidate pages need to be
migrated per epoch to alleviate congestion. Figure 4.16a shows the performance
improvements for the heterogeneous workloads when migration rate is varied from
2000 to 16000 candidate pages per VM. As the migration rate is increased from
2000 to 8000, performance improvement over the baseline increases from 7.2% to
10.3% and beyond 8000, the performance degrades from 10.3% to 7.45% as the
migration rate is further increased from 8000 till 16000. Hence, 8000 pages per
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epoch per VM is the best migration rate.
This variation can be quantified using following parameters:

1. Congestion duration in seconds,
2. Number of oscillations in the probed latencies, and
3. Average difference between probed latencies per epoch.

The congestion duration is defined as the time in seconds during which the
probed latency to the local node is higher than that to the remote node over
the entire execution. From Figures 4.15 and 4.17a, the congestion duration is
around 340 secs for the basecase. Smaller congestion duration indicates that a
specific migration rate could mitigate the congestion faster. As the migration rate
is changed from 2000 to 16000, the congestion duration changes from 120 secs to
22 secs.

The number of oscillations in probed latencies represents the ping-pong effect in
observed latencies due to back-and-forth migrations of pages between NUMA nodes.
With its value initialized to zero, once the migration is triggered due to congestion,
the value is incremented every time the probed latencies to local and remote nodes
cross each other. To get an understanding on how its value is calculated, for
example, for the basecase in Figure 4.15, initially as there is no congestion, its value
remains zero for few epochs as the local node is not congested. As the local node
gets congested over time, the first epoch when the latency to local node crosses the
remote node latency, its value is incremented to 1 and the value keeps incrementing
every time the latencies cross each other. As can be observed in Figure 4.17a, the
number of oscillations for basecase is 19, which is the lowest among the other values
for different static migration rates as the data is not migrated in the basecase. The
only oscillations that happen in latencies in basecase is because of the variations
in application behavior triggering changes in the overall memory intensity of the
socket. As the static migration rate increases from 2000 to 16000, the number of
oscillations increases from 19 to 49. With the higher migration rate, the pages keep
migrating back-and-forth between the local and remote nodes, thereby resulting
in higher number of oscillations. For a migration rate of 8000, the number of
oscillations suffered is 39.

The average difference in CPU cycles between the probed latencies per epoch
is defined as the average of absolute difference in probed latencies between the
local node and remote nodes at every epoch. Figure 4.17a shows how the average
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Figure 4.18: Overall execution time improvements for (a) Intel Haswell and (b)
Intel Westmere.
difference in CPU cycles is effected by the static migration rate. For the basecase,
as the data is not migrated, the local node is congested, and hence, the absolute
difference in probed latencies per epoch is as high as 93 CPU cycles. As the
migration rate is varied from 2000 to 16000, average value changes from 65 cycles
to 56 cycles with a minimum value of 54 cycles for a migration rate of 8000.

The maximum performance improvements occur when all the above mentioned
parameters experience lower values, which seems to be the case for a migration
rate of 8000. Though the static migration rates can improve performance, being
agnostic to the gap in probed latencies might not yield the maximum performance.
Observing this, we propose using the current absolute latency gap at the end of
the epoch, represented by ∆cycles, to calculate the dynamic migration rates so that
we migrate more pages if the latency gap is high and fewer pages if the latency gap
is not too high. Figure 4.16b shows the improvement in performance for different
dynamic migration rates, and the corresponding values for the three parameters
discussed above are plotted in Figure 4.17b (results for static migration rate 8000
is just shown for comparison). As can be observed, (∆cycles × 60) yields maximum
system performance with 12.1% in overall system performance6. Hence, CAPM is
successful in alleviating congestion in scenarios where CAMA is ineffective.

6In all our workloads, we observed that this heuristic yields maximum performance.
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4.6 Congestion-Aware Memory Management
(CAMM)
In this section, we discuss and evaluate how CAMA and CAPM interact with
each other. We refer to this combined scheme, which includes both CAMA and
CAPM, as Congestion-Aware Memory Management (CAMM). CAPM employed a
dynamic migration rate of ∆cycles × 60 and the epoch duration used is 2 secs. To
give an overall picture of how the overall system performance is impacted by our
schemes, we present the full evaluation results for CAMA, CAPM and CAMM using
homogeneous and heterogeneous workloads. Tables 4.4 and 4.5 show heterogeneous
workloads for Westmere and Haswell respectively. Apart from WL1 to WL10
heterogeneous workloads, we have three additional workloads, WL1_identical,
WL8_identical, WL10_identical where all the nodes in a machine execute the same
workloads thereby causing equal amount of congestion to their corresponding local
memories. Similarly we use mcf_identical, npb_is_identical and lbm_identical
homogeneous workloads that result in same amount of congestion in all the nodes of
a machine. In the heterogeneous workloads, since some applications finish execution
earlier, a node may not be congested allthrough the workload execution which
might not depict some real-world scenarios. To cover such scenarios, we restart
applications which finish earlier till the point where each application in the workload
finishes execution at least once.

Workloads MPKI Restart
Category Enabled?

WL-1 mcf(2), libquantum(3), is(3), milc(2), lbm(2), swim(1) H No
WL-2 hpccg(2), milc(1), is(1), libquantum(1), equake(1), specjbb(1), lbm(1) H+M No
WL-3 GemsFDTD(4), specjbb(1), equake(1), hpccg(2) M No
WL-4 hpccg, povray(2), cc(1), equake(1), mgrid(1), GemsFDTD(1) M+L No
WL-5 povray(4), scc(2), mgrid(2) L No
WL-6 povray(1), mcf(2), libquantum(2), cc(1), is(1), ua(1) H + L No
WL-7 GemsFDTD(1), mcf(1), povray(2), lbm(1),

milc(1), specjbb(1), libquantum(1), ua(1), swim(1), mgrid(1) H + M + L No
WL-8 mcf(2), libquantum(3), is(3), milc(2), lbm(2), swim(1) H Yes
WL-9 hpccg(2), milc(1), is(1), libquantum(1), equake(1), specjbb(1), lbm(1) H + M Yes
WL-10 povray(1), mcf(2), libquantum(2), cc(1), is(1), ua(1) H+ L Yes

Table 4.4: Heterogeneous workloads for Intel Westmere.

Overall CAMM results: In Haswell, CAMM improves the overall performance
on an averge by 9.5%, while CAMA and CAPM imrove the performance by 8.6%
and 8.2% respectively. Similarly, on Westmere, CAMM improved the performance
on an average by 7.2%, while CAMA and CAPM improved the performance by 5.1%
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Workloads MPKI Restart
Category Enabled?

WL-1 is(6), ua(4), mcf(4), libquantum(5), milc(4), swim(2), omnetpp(2) H No
WL-2 GemsFDTD(3), lbm(3), libquantum(2), mcf(3), omnetpp(3), M+ H No

is(4), ua(1), equake(2), swim(1)
WL-3 GemsFDTD(4), hpccg(3), equake(2), specjbb(3) M No
WL-4 equake(3), mgrid(2), GemsFDTD(4), specjbb(1), hpccg(1) M + L No
WL-5 povray(8), cc(3), scc(3), mgrid(1) L No
WL-6 lbm(2), libquantum(3), mcf(2), milc(3), omnetpp(2),cc(2), scc, is(2),

npb_ua(2), mgrid(1), swim(1), H+L No
WL-7 GemsFDTD(2), lbm(2), mcf(2), milc(1),

omnetpp(2), hpccg(1), cc(1), scc(2), is(1), ua(1), equake(1), swim(1) H+M+L No
WL-8 is(6), ua(4), mcf(4), libquantum(5), milc(4), swim(2), omnetpp(2) H Yes
WL-9 GemsFDTD(3), lbm(3), libquantum(2), mcf(3), omnetpp(3),

is(4), ua(1), equake(2), swim(1) H+M Yes
WL-10 lbm(2), libquantum(3), mcf(2), ua(2), mgrid(1)

milc(3), omnetpp(2), cc(2), scc, is(2), H+L Yes

Table 4.5: Heterogeneous workloads for Intel Haswell.
and 6.2% over the basecase, respectively. Since all the nodes are equally congested
in the heterogeneous WL1_identical, WL8_identical, WL10_identical workloads
and homogeneous mcf_identical, npb_is_identical, lbm_identical workloads, the
CAMM does not allocate/migrate any data to the remote node. This is because the
remote node probed latencies are greater than the local node probed latencies in
every epoch owing to the additional interconnect traversal latency thereby resulting
in 100% local accesses. As a result, there is no improvement in performance in
these workloads over the baseline as can be observed in Figures 4.18a and 4.18b.
Homogeneous-vs-Heterogeneous WL Results: From figures 4.18a and 4.18b
it can be observed that homogeneous workloads yield better improvements compared
to the heterogeneous ones. This is because, homogeneous workloads have high overall
memory intensity compared to the heterogeneous ones. For example, comparing
workloads WL8 and npb_is, which are highly memory-intensive in their respective
(heterogeneous/homogeneous) categories, the probed latencies look as follows: For
WL8: Node0→Node0: 434 cycles; Node0→Node1: 340 cycles; Delta: 94 cycles. For
npb_is: Node0→Node0: 630 cycles; Node0→Node1: 375 cycles; Delta: 255 cycles.
The homogeneous npb_is workload is around 2.7x more congested compared to
heterogenous WL8, resulting in larger improvements for npb_is. This variation in
memory intensities between homogeneous and heterogeneous workloads is primarily
due to application “phase behavior". In a homogeneous workload since the same
applications are run on all the cores, at any given moment all the applications are
in the same phase, a node is either highly congested or not. For heterogeneous-
workloads, since different applications are running concurrently, they are in different
phases at any given epoch, thereby causing lower congestion relatively.
Haswell-vs-Westmere Improvements: From Figures 4.18a and 4.18b, it can be
observed that the improvements on Haswell are relatively higher compared to the
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Westmere processor. This difference is because Haswell system runs 36 VMs per
socket, while Westmere only runs 20VMs per socket. Hence, in our experiments, we
observed that Haswell system is more congested overall compared to the Westmere
system. Since our mechanism is successful in alleviating congestion, CAMM yields
better improvements in Haswell compared to Westmere.
Dynamic Probing Overhead Analysis: In our dynamic probing code presented
in Algorithm 1, NUM_PROBED_PAGES and NUM_PROBES_PER_PAGE
play an important role in the overall performance improvement. Too few re-
quests might not give the accurate congestion information, and too many probe-
requests will interfere with on-demand requests issued by VMs. Based on experi-
mentation with all our workloads, we determined NUM_PROBED_PAGES and
NUM_PROBES_PER_PAGE with values 20 (per-node) and 8 respectively, could
capture the end-to-end congestion information accurately. For this configuration,
our probing-code accesses 160 cache lines from a node to determine the average
end-to-end access latency for every 2 secs epoch. The npb_is (homogeneous)
workload (which is the most memory-intensive workload among our workloads)
running on Haswell, experienced an average memory access latency of 630 CPU
cycles (per memory request) to the congested node (Node-0) in the baseline. In
such scenarios, our default probing overhead is 48 µsecs for every 2 secs probing.
However, with our proposed CAMM optimizations, average memory access latency
reduces significantly, further reducing probing overheads to few µsecs, which is
significantly better over prior proposals [58].
Comparison with AutoNUMA: The current version of Linux is NUMA-aware
and supports AutoNUMA [66] feature to minimize remote node accesses. AutoN-
UMA migrates threads/memory to co-locate threads and data to minimize remote
node accesses. It tracks local-vs-remote faults by invalidating few TLB entries,
generating page-faults when those pages are accessed. However, unlike CAMM,
autoNUMA does not migrate memory pages anymore if a workload incurs 100%
local accesses irrespective of the congestion. As can be observed in Figures 4.18a
and 4.18b (green-bar), congestion-agnostic autoNUMA implemented in ESXi infact
degraded the performance over the baseline on an average by 2.1% and 1.4% on
Haswell and Westmere respectively, as the additional time is spent servicing the
artificially induced page-faults.
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Chapter 5
Near-Data Computing in Manycores

5.1 Introduction
As we step into the exascale computing era, the performance and power/energy
costs of data movement are expected to be orders of magnitudes higher relative to
the corresponding computation costs [67]. In other words, most of the execution
cycles and power required to execute a large-scale application is expected to be
spent in moving data across different system components. Unfortunately, existing
hardware and software based data optimization techniques are not well-positioned
to address this growing data movement problem, mainly because “data” in those
techniques is taken into account as a “side effect” of performing computations, not
as a first-class optimization target.

This observation has motivated for a shift of focus from computation-centric
systems, which have dominated the parallelism landscape so far, to data-centric
systems, where data movement across different system components is treated as a
first-class optimization metric. The prime example of this shift is the emerging in-
situ computing paradigm [68] in supercomputing, in which computation is migrated
to where data are, instead of the other way around. While several recent works
[69–71] have investigated the mechanisms using which in-situ computing can be
enabled, their main focus is on large-scale cluster-based systems or supercomputers.

It is to be noted that in-situ computing is an example of the near-data computing
paradigm. With the emergence of manycore systems (e.g., Intel Xeon Phi with 60+
cores [72] and Tilera TILE-Gx with 9-72 cores [73]) where a large number of cores
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are connected to one another using an on-chip network, the cost of data movement
is increasingly becoming a concern at a node level as well. For example, moving
data from one corner of a node (a manycore architecture) to another can take a
significant number of cycles [74] and large amounts of energy [75].

Similarly, making an off-chip memory access can be tens to hundreds of times
more costly than making a first-level cache access. As a result, we believe that
near-data computing can be a viable paradigm in the context of a manycore system
as well. To our knowledge, there is no prior work that uses near-data computing
targeting emerging manycore systems.

One of the critical questions to address when considering near data computing
in the context of emerging manycores is its potential and limitations. That is, one
would be very much interested in an early assessment of the potential of near-data
computing in improving performance and reducing power/energy consumption. Also,
the prior near-data computing (NDC) research proposed in the past [76–78] proposed
off-loading computations to the stacked/off-chip DRAMs. The major challenges in
designing a NDC system using these prior NDC architectures as discussed in [76]
include: (1) the support for virtual memory and (2) data coherency, making the
overall system design more challenging. Using a set of multi-programmed and
multi-threaded workloads and focusing only on the performance aspect, this work
presents a detailed evaluation of the potential benefits and limitations of near-data
computing in an on-chip network-based manycore. The main contributions of
our work include:
•We conduct a “limit study” for near-data computing in manycores. Specifically,

we evaluate the potential of three alternative incarnations of near-data computing.
The first of these, referred to as NDC-1 in this work, brings the computation
to data, under a given data placement to memory. The second strategy, called
NDC-2, co-locates computation and data within the multicore chip, and finally, the
third strategy, referred to as NDC-3, goes one step further and takes computation
to DRAM. A common characteristic of these strategies is that they work under
the assumption of zero-cost data movement and infinite resources to offload the
computations to. Our extensive experiments with these strategies indicate that
NDC-1, NDC-2 and NDC-3 can improve application performance by 31%, 66%
and 75%, respectively, on average, evaluated with various multi-threaded and
multi-programmed workloads.
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•We discuss what type of architectural/system support is needed to approximate

near-data computing in multicores. Specifically, we present experimental results
with configurations where the assumptions we made in the previous step regarding
cost-free movement and infinite offload resources are relaxed. The results with these
more realistic configurations indicate that, with modest hardware support, such as
express virtual channels, near-data computing can bring great improvements (48%
on average, in application performance).

5.2 Background

5.2.1 Network-On-Chip (NoC) Basics

In an on-chip network, each node has a router associated with it. Consider the
example shown in Figure 2.1, where a data access by the core causes a miss in
the L2 cache. The request message passes through 4 routers on the way to its
destination L3. It is to be noted that, in x-y routing, the message first traverses
the network horizontally (along the x-axis) before going vertically (along y). Each
message is subdivided into flits (header flit and tail flits). These flits travel through
each router. On receiving a flit, a router first decodes it, buffers it at one of its
multiple input buffers, decodes its next router, and forwards it to the next router.

5.2.2 Memory Request Routing

When an application requests memory, the operating system (OS), which maintains
a free-list of memory blocks, allocates some portion of the physical memory in
the DRAM and then creates a corresponding virtual address to physical address
translation in the page table. At the hardware level, this physical memory location
is mapped to a memory controller based on the static address mapping. Memory
locations are generally interleaved across memory controllers at a page-level which
is usually 4KB or 8KB. For example, if a page is interleaved at a 8KB granularity,
the first 8KB of memory goes to the first controller, the next 8KB goes to the next
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memory controller, and so on. Figure 5.1 shows the parts of a memory address
for static address mapping at 8KB granularity. The first 13 bits in a memory
address represent the page-offset in a 8KB page. Assuming there are 4 memory
channels in the system, the next 2 bits represent the memory controller in which
this memory address resides. The next other bits to the left determines the other
sub-components like ranks/banks and sub-arrays. Hence, based on the interleaving
employed by the hardware, an access to a memory location can ends up in an access
to a corresponding memory controller on the chip.

5.2.3 Anatomy of a Memory Request

Once a core issues a LOAD or STORE request, first the address is looked up in the
local L1, then the L2. If the requested address is not present in the local private
caches (L1 and L2), a read command is sent to the L3 bank corresponding to
the address through the NoC. If the data is not present there either, an off-chip
request is forwarded to the MC that holds the address. The target MC for each
memory request depends on the OS address mapping. Figure 2.1 above shows
this pictorially. Note that the access latency is a function of multiple parameters.
The first is the distance between the core and the MC that serves the request.
The longer the distance between the core and MC, the higher the chances for the
packet to face network contention. The second factor in the access latency is the
on-chip network traffic. As the network is a shared resource that serves a lot of
requests and correspondingly a lot of responses, from L2 to L3, L3 to MC, and so
on. Thus, packets can be significantly delayed in the network because of contention
from other packets. The third factor contributing to access latency is MC queuing
which could inturn be effected by the DRAM refreshes [79] and finally the DRAM
service latency. This partly is determined by the row-buffer management (open
or closed page) and scheduling policies (e.g. first-come first-served, FR-FCFS [80],
etc.) employed at the MC.

5.2.4 Structure of our Target Applications

In this study, we target scientific applications from the high-performance computing
domain. These applications typically process extremely large datasets in an iterative
fashion. Their main kernels tend to repeat the same computation over these large
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Figure 5.2: High-level view of (a) the conventional computing model, (b) our
approach, and (c) Average uncore latency breakdown (for all workloads used in our
evaluation) of memory requests, including L2 to L3 accesses, L3 to memory, and
memory latency. The NoC latency includes transmission, processing and queuing
latencies.
data sets, for example to model a system over time or space, and as a result these
applications have high levels of data parallelism. In our chosen applications, the
kernels contain data-intensive phases and not computationally intensive phases.
These data-intensive phases of applications demand a lot of memory bandwidth
rather than compute power.

5.3 High-Level View of Our Approach and Execution
Model
In our target manycore architecture, we evaluate multi-programmed as well as
multi-threaded benchmarks. The applications whose computations are offloaded
closer to or at the DRAM are the referred to as target applications, while the other
applications running at the same time are referred to as the co-runner applications.
The computations for the co-runner applications are not offloaded and the data
required for the computation are pulled to the corresponding cores. The data
from the co-runner applications travel on-chip through various levels of memory
hierarchy including private L1 and L2 caches, and the shared SNUCA L3 cache.
As a result, these co-runner applications contribute to the interference for the
shared resources on-chip. Note that both the target and co-runner applications
can be single-threaded or multithreaded. In this work, we chose five common
kernels as our target applications that are frequently used in scientific computing:
stencil, sparse matrix-vector multiplication (SPMV), scan, histo, and sum of absolute
differences (SAD). These target kernels are evaluated for single-threaded as well
as multi-threaded executions. We have also evaluated multiple target applications
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running with other co-runner applications on the same manycore processor. The
co-runner applications chosen have varying memory footprints and hence they have
various on-chip network and memory bandwidth requirements, and put different
degrees of pressure on the target applications.

Figure 5.2(b) shows a high-level view of our approach compared to the con-
ventional model of computing on a manycore. In the conventional model, data
are moved from the DRAM into the on-chip caches before being operated on. As
shown in Figure 5.2(a), the core generates a cache miss that (1) travels through the
NoC to the memory controller, and (2) is sent to the memory. After the requested
data is fetched from the memory, it must be sent (3) back to the MC and (4) back
to the core via the NoC. Finally, once the core has all the data it needs, it can
complete the computation (5).

In contrast to the conventional model, in our near-data computing-based ap-
proach, the computation is assumed to take place at service cores located on-chip
next to the memory controllers1. As shown in Figure 5.2(b), the application first
indicates which computation is to be offloaded (1) to the MC. The MC (2) requests
and (3) receives the necessary data in the same way as the conventional approach
and provides it to the service core. Then, the computation (4) can be performed
close to the memory controller. Finally, the result of the computation is sent back
(5) to the application core. Depending on the application, this result data can
be much smaller than the original input data. Note that, depending on how the
data are distributed across the memory channels, parts of the computation may be
mapped to different memory controllers. In this case, the result of the computation
at the service core may be an intermediate result that will be combined with other
results once it reaches the application core. This is similar to the combination that
occurs after the join in fork-join parallelism. The application core itself may also
be using a similar parallel programming model with the intermediate results being
locally cached.

5.3.1 Cost of Data Movement

NoC queuing latency is one of the bottlenecks for memory requests in the system [81],
and it increases both by the distance (number of hops) a message must travel, and by

1In our limit study, we assume that the execution can use as many service cores as required.
Later, we relax this assumption, and investigate a more realistic implementation.
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Figure 5.4: Network latency effect on IPC for Histo over time.
contention with other messages in the router queues. Figure 5.2c shows the portion
of data access latency contributed by various components of the uncore (NoC and
memory). As expected, DRAM access time (steps 2 and 3 in the high-level view
shown in Figure 5.2(b)) is the largest portion; however, we observe that NoC latency
(which is a measure of data movement) is also a significant contributor to the overall
latency (about 26%). For this reason, our proposed near-data computing approach
tries to avoid sending messages in the network as much as possible. Figure 5.3
plots how the NoC queuing latency varies with the number of messages injected to
the on-chip network for histo, one of our applications. As expected, NoC queuing
latency increases with the increase in the number of messages injected into the
network. Figure 5.4 on the other hand shows how the IPC varies for the same
application with the NoC queuing latency over time. As can be observed, IPC
comes down with the increase in the NoC queuing and increases as the NoC queuing
decreases. Thus, one can conclude from Figures 5.2c, 5.3 and 5.4 that the number
of messages and hence NoC queuing plays a significant role in the performance of
this application. Similar observations are made in the other target applications as
well.
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5.4 Evaluated Kernels
In this section, we describe the various kernels that were used in our evaluation.
Each of these kernels is used as a “target application” on our simulation.

Algorithm 5 Sum of Absolute Differences
1: for each macroblock do
2: for each search position do
3: for each 4-by-4 block do
4: sad ← 0
5: for each pixel do
6: a ← pixel from image A
7: b ← pixel from image B
8: sad ← sad + (a - b)
9: end for
10: end for
11: end for
12: end for

Algorithm 6 7-point Stencil
1: for i = 1 to nx-1 do
2: for j =1 to ny-1 do
3: for k = 1 to nz-1 do
4: temp ← A0[i,j,k+1] + A0[i,j,k-1] + A0[i,j+1,k] + A0[i,j-1,k] + A0[i+1,j,k] + A0[i-

1,j,k]
5: temp ← temp × c1
6: Anext ← temp - c0 × A0[i,j,k]
7: end for
8: end for
9: end for

Algorithm 7 Scan
1: reference[0] = data[0]
2: for i = 1 to size do
3: reference[i] = data[i] + reference[i− 1]
4: end for

5.4.1 SAD

Sum of Absolute Differences (SAD) is a common kernel used in scientific as well as
multimedia applications. It is used to find out how well two images are correlated
and is also widely used in video encoding in benchmarks such as disparity from
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San Diego Vision Benchmark Suite [82] and X264 in Parsec [83]. This kernel, given
as Algorithm 5, goes through the entire image pixel-by-pixel and finds the sum of
absolute differences of corresponding pixels and hence is very data-intensive. As
it involves simple operations such as subtraction (for finding the difference) and
multiplication (for squaring), this is a very good candidate for offloading. The
version we use is from Parboil [84].

5.4.2 Stencil

Stencil computations are very common and are often found in computer simulations
for fluid dynamics, image processing, cellular automata and also for solving partial
differential equations (PDEs) such as the Jacobian method, etc. These computations
can operate on 1D, 2D and 3D grids depending on the application. A computation
involving n different points (a center point and its neighbors) called a n-point
stencil. This kernel has a regular access pattern, but updates to an element access
data in multiple dimensions, which can be distant in memory. In this work we
evaluate a data-intensive 7-point stencil on a 3D grid, shown in Algorithm 6. This
code is also from Parboil [84].

5.4.3 Scan

Scan is a common benchmark in most of the scientific kernels. It performs the
all-prefix-sums operation, which calculates the sum of an element and all previous
elements at each point in an array. This kernel, given as Algorithm 7, is widely
used in applications such as sorting, polynomial evaluation, string comparison,
and many others. Because of its regular, sequential access pattern, Scan has
good locality. However, because of the dependence between reference[i] and
reference[i-1], it is not simple to parallelize. We use the implementation from
Scalable Heterogeneous Benchmark Suite (SHOC) [85].

Algorithm 8 Sparse Matrix-Vector Multiplication
1: for each row in matrix do
2: sum = 0.0
3: for each nonzero in row do
4: sum ← sum + cur_vals[j] * x[cur_inds[j]]
5: end for
6: end for
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row_ptr = [ 0  2 4  5  8 ]

curr_vals = [ 2 3  1 9  5  4 3 8 ]
curr_inds = [ 0 1  0 2  3  1 2 3 ]

Number of nonzeros
2 3 0 0
1 0 9 0
0 0 0 5
0 4 3 8

Figure 5.5: SpMV compressed sparse row matrix format. row_ptr contains the list
start indices for each row. curr_vals contains values of the nonzero elements of
the matrix. curr_inds is a parallel array that contains the corresponding column
index of each nonzero element.

Algorithm 9 Histogram
1: for each pixel in image do
2: value ← img[i]
3: if histo[value] < 255 then
4: histo[value]++;
5: end if
6: end for

5.4.4 SpMV

Sparse Matrix Vector multiplication (SpMV) is a very commonly used scientific
kernel. We use the SpMV kernel from HPCCG in Mantevo [46]. This application
uses a compressed sparse row (CSR) format for matrices, shown in Figure 5.5. The
kernel given in Algorithm 8, has an irregular access pattern because the elements of
one array (cur_inds) are used as indices into another array (x, the column vector).
This access pattern is data-dependent and very difficult to analyze at compile time.

5.4.5 Histogram

The Histogram kernel, shown in Algoirthm 9 calculates the frequency of each color
in an image. This kernel is used to aid in image editing and in computer vision,
for example, in image segmentation. Like SpMV, it contains a data-dependent
irregular access where the value of the img array is used as an index into the histo
array. The version of histogram evaluated in this work is from Parboil [84].

5.5 Experimental Evaluation
In this section, we briefly explain our experimental setup. In all these simulations,
the service cores are assumed to be a Simultaneous Multi-threaded (SMT) core,
where the co-runner application and the off-loaded computation (from the target
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application) run in separate SMT ways. In other words, these service cores are
specialized cores with SMT such that they can run the co-runner application and
the offloaded computation simultaneously.

5.5.1 Benchmarks

Table 7.2 summarizes the applications used in our evaluations. The kernels described
in Section 5.4 are our “target applications” , while the “co-runner applications” are
used to fill the other cores on the chip. The co-runner applications (astar, mcf,
xalancbmk, povray, and omnetpp) are from SPEC CPU2006 suite [44]. Using our
target and co-runner applications, we formed different workloads to carry out our
study. These workloads are given in Table 6.2. We evaluated 11 workloads each
of them contain one target application running along with co-runner applications.
These co-runner applications are chosen such that they stress the NoC and memory
resources differently. These co-runner applications consist of mcf (very highly
memory-intensive), xalancbmk (memory-intensive), omnetpp (moderately memory-
intensive), and povray (not memory-intensive).

5.5.2 Simulation Platform

We use Sniper [86] as our evaluation platform to perform the limit study. We
simulate a Gainestown X86 Intel processor in System Emulation mode with 32
cores running at 2.66 GHz and an 8x4 mesh-based network on-chip interconnect.
In our simulations, we fast-forward the simulation up until the benchmarks are
done reading from the input files. We then simulate from the start of the region of
interest until the entire target kernel finishes execution. The salient characteristics
of our default system simulated in Sniper are listed in Table 7.1.

5.6 Ideal Near-Data Computing Strategies in Many-
cores
As stated earlier, in this work, we study the potential of three different versions
of near-data computing in manycores. In this section, we first describe our ideal
near-data computing strategies, and then show experimental results using these
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Application Description Input Size

Target
Applications

Histogram Histogram of image
pixel values

2×4MB

SAD Sum of Absolute Differ-
ences of two images

2×4MB

Scan Prefix sum 2×16MB
Stencil 3D 7-point Stencil 4MB
SpMV Sparse Matrix-Vector

multiplication
50× 50× 50

Co-runner
Appllica-
tions

astar Pathfinding for 2D
maps

ref

mcf Vehicle scheduling with
network simplex algo-
rithm

ref

xalancbmk XML processing/con-
version

ref

povray Image ray-tracing ref
omnetpp Discrete network event

simulation
ref

Table 5.1: Applications used in the experiments.

Workload Application Mix
WL 0 target app, mcf (31)
WL 1 target app, xalancbmk (31)
WL 2 target app, povray (31)
WL 3 target app, astar (31)
WL 4 target app, omnetpp (31)
WL 5 target app, mcf (1), xalancbmk (5), povray (9), astar

(7), omnetpp (9)
WL 6 target app, mcf (12), xalancbmk (5), povray (2), astar

(5), omnetpp (7)
WL 7 target app, mcf (1), xalancbmk (16), povray (2), astar

(5), omnetpp (7)
WL 8 target app, mcf (1), povray (5), astar (6), omnetpp (19)
WL 9 target app, mcf (1), povray (18), astar (5), omnetpp (7)
WL 10 target app, mcf (6), xalancbmk (3), povray (5), astar

(13), omnetpp (4)

Table 5.2: Workloads used in the experiments. The numbers within parantheses
indicate the number of instances of that application in the workload.
schemes. Note that, a perfect near-data computing system should incur 0 latency
when the computations are offloaded to the service cores. Also, results from the
offloaded computations should not incur any network latency and should not incur
additional latency due to the contention for computational resources at the service
cores.

Table 5.4 gives a summary of these versions, which we explain below using SAD
as a running example. Suppose we have two images with 8 pixels each (or blocks)
to be compared. Figure 5.6(a) shows how each pixel in the top image (capital
letters) correlates to a pixel in the bottom image (lowercase letters). The SAD
kernel will loop through both arrays of pixels and compute the absolute value of
the difference of each pair.
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Figure 5.6: Sum of Absolute Differences (SAD) example (a) Pairs of pixels from two
images to be compared (default). (b) baseline execution. (c) NDC-1. (d) NDC-2.
(e) NDC-3.
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Co-
runner
Core

22nm Ivy Bridge, 2.66 GHz

Service
Core

22nm Ivy Bridge, SMT Support, 2.66 GHz

L1
Cache

32KB, 8-way associative, access latency: 4 cycles

L2
Cache

256KB, 8-way associative, access latency: 8 cycles

L3
Cache

512KB per core (shared), 16-way associative, access la-
tency: 30 cycles

Coherence MESI
NoC 8x4 (32 cores), hop latency: 2 cycles, 32 bits/cycle
Memory DDR3-1600 DRAM, latency: 30 ns, 8KB Page, 4 Chan-

nels, Ranks per Channel: 4, Banks Per Rank: 8

Table 5.3: Simulated architecture specification

Placement Savings
Version Computation Data Memory NoC NoC Hop Hardware

Bandwidth Queuing + Processing Changes
Baseline application core default - - - none
NDC-1 service cores, if possible default - yes (offloaded yes (offloaded none

data) data)
NDC-2 service cores perfect - yes yes none
NDC-3 DRAM (off-chip) perfect yes yes yes PIM
NDC-4 service cores perfect - yes (EVC links) yes (EVC links) EVCs
NDC-5 service cores perfect - yes (EVC links) yes (EVC links) EVCs
NDC-6 service cores perfect - yes (fast NoC yes (fast NoC High

Freq.
links) links) Routers

NDC-7 service cores perfect - yes (fast NoC
links)

yes (fast NoC
links)

High
Freq.
Routers

Table 5.4: Summary of the near-data computing strategies evaluated in this work.
Note that NDC-1 only saves NoC latency for the fraction of computations that
were offloaded, and NDC-4 and NDC-5 save NoC latency only for EVC covered
links.

0

0.5

1

1.5

2

2.5

histo sad scan spmv stencil

N
or

m
al

iz
ed

 IP
C

NDC-1 NDC-2 NDC-3

Figure 5.7: Normalized IPC for the perfect schemes.

73



0%

20%

40%

60%

80%

100%

histo sad scan spmv stencil

%
 o

f C
om

pu
ta

tio
ns

MC0 MC1 MC2 MC3 App Core

Figure 5.8: Location of computation for each target application under NDC-1.
5.6.1 Description of Near-Data Computing Strategies

Our baseline (also called basecase) uses the default data placement (determined
by the OS) and runs all computations on the target application core. All data used
in the computation must be sent over the network. An example of this conventional
execution is illustrated in Figure 5.6(b). For the pair of corresponding data elements
A and a, A will come from MC0 (3 hops) and a will come from MC3 (7 hops), after
which the application core will compute |A− a| in one iteration of the kernel. In
this case, all 16 data elements needed for the complete execution will be sent from
the MCs over the network to the target application core in the center of the chip,
and all eight absolute differences will be computed there. Finally, all the differences
will be added together to produce the final sum.

NDC-1: Our first near-data computing strategy is called NDC-1. This scheme
uses the same default data placement (i.e., it does not modify the original data-to-
memory controller assignment), but tries to offload some of the computations to
the service cores near the memory controllers. Note that, computation will only be
offloaded if all data needed by that computation is assigned to the same memory
channel. If so, the computation will be moved to the core immediately next to the
MC for that channel. If the data items reside in multiple channels, they will be
sent over the network and used in the target application core as in the original case.
In our evaluation, the potential of this version of near-data computing, offloaded
computations incur no network queuing, transmission, or processing latency.

NDC-2: In NDC-1, the performance is limited by the default (imperfect) data
placement. Our second strategy, called NDC-2, assumes that all the data can be
assigned to memory channels perfectly such that every computation can be run
on the service cores. Figure 5.6(d), shows how perfect data placement can greatly
reduce the network traffic; in this example, it is possible to do all the computations
in the service cores near the memory controllers. Since there are multiple pairs
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of pixels being subtracted in each service core, the addition will also be partially
offloaded. For example, in MC1, the partial sum |C− c|+ |D− d| will be computed.
Finally, only the four partial sum results need to be sent to the application core,
greatly reducing the application’s network traffic. In quantifying the potential of
this scheme, we assume that all computations are offloaded and incur no network
latency.

NDC-3: Finally, we consider the extreme case where all computations are
further offloaded to the DRAM, called NDC-3. In this case, the perfect data
placement is also used. In addition to saving network latency, in our evaluation, we
assume that computations in the DRAM do not incur any memory queuing latency.
An example of NDC-3 is shown in Figure 5.6(e). As in NDC-2, none of the original
operands need to be sent over the network.

Table 5.4 summarizes all of the strategies evaluated in this work, including the
placement of computation and data, which parts of memory access latency are
saved, and any extra hardware required. Note that NDC-1, NDC-2, and NDC-3
can save NoC latency, while NDC-3 is the only scheme that can also save memory
bandwidth2) . NDC-4 through NDC-7 will be discussed in Section 5.7.

5.6.2 Results with Single-threaded Target Applications

The IPC results normalized with respect to the baseline (original execution without
any near-data computing) are summarized in Figure 5.7 3. For Histogram, the IPC
value for NDC-1 for is very close to the baseline, i.e., there is little improvement.
As shown in Figure 5.8, most of the computations in Histogram (about 75%) are
performed on the application core (not on the service cores) because they were not
able to be offloaded. This is not surprising considering the irregular access pattern
caused by indirect array accesses for Histogram.

In the case of Scan, NDC-1 brings a large improvement over the baseline and
approaches NDC-2 in terms of performance. We can see from Figure 5.8 that most

2To determine the best scheme suitable for a workload dynamically, the OS buddy allocator
which allocates data can be enhanced to take hints such that the memory channel bits in both the
virtual address and the physical address are the same. Hence if the virtual addresses of variables
used in a computation are mapped to the same memory controller, NDC-2 can be triggered, else
the other schemes can be triggered accordingly.

3Unless otherwise stated, all IPC (performance) numbers are normalized with respect to the
baseline execution.
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Figure 5.9: Normalized IPC Improvement with varying (a) core counts. (b) memory
channels.
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Figure 5.10: Normalized NoC queuing latency with respect to baseline for Scan
and Stencil applications.
of the computations in Scan are successfully offloaded to the service cores, even
under the default data placement. Scan has a very regular access pattern and
good locality. The performance improvements for Scan are also supported by the
reduction in NoC queuing latency, shown in Figure 5.10a. Compared to baseline,
there is almost no queuing latency for the core running Scan.

The results for Stencil in Figure 5.7 show that NDC-1 gives good improvements,
but there is still room for improvement from NDC-1 to NDC-2 and NDC-3. Only
about 13% of the computations for Stencil could not be offloaded to the service
cores. Also, observe in Figure 5.10b that the queuing latency reductions for Stencil
are more modest than for Scan. This application has reasonably good locality and
a regular access pattern, but some vertical accesses in the 3D grid may come from
different memory channels.

In the case of SPMV and Histo, since their codes involve irrregular data accesses,
as can be observed from Figure 5.8, a very low percentage of the data falls into the
same memory channel and consequently, NDC-1 achieves very low improvements
in performance. Note that these applications have very low locality and incur lot
of memory accesses. However, NDC-2 and NDC-3 show significant improvements
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Figure 5.11: (a) Normalized IPC with varying numbers of threads for SpMV, and
(b) shows IPC for the multi-target workloads.
in performance for both the benchmarks as their queuing latency goes down with
the offloaded computations. For the SAD benchmark, the two images compared
for a given data placement are not aligned completely and hence NDC-1 does
not bring any performance benefit compared to the baseline. Compared to other
target applications, SAD has relatively low memory pressure because of the high
spatial locality and, as can be observed from Figure 5.7, the average performance
improvements are relatively low compared to other applications.

5.6.3 Multi-threaded Target Application Results

In the multi-threaded target scenario, we have pinned the threads to consecutive
cores on the manycore and the co-runner applications run on the other cores.
As we increase the number of threads for the target applications, the number of
co-runner applications decreases; however, the memory pressure is still maintained
as now all the threads of the target application simultaneously request unshared
data. SpMV scales well with number of threads in the baseline. We present
IPC results with varying number of threads (4, 8, 16 and 24) in Figure 5.11(a).
The co-runner application in all these experiments is mcf from SPEC 2006 which
is highly memory-intensive. As expected, the in-memory computation (NDC-3)
yields the best performance as it has to only send back the results and does not
require high memory bandwidth. However, for the multi-threaded case, the gap
between the in-memory computation and the perfect data placement case widens
because, as thread-level parallelism increases, the memory queuing dominates.
Since this queuing latency is not incurred in the case of in-memory computation,
the performance is better with 16 and 24 threads. NDC-2 still yields significant
improvements.
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5.6.4 Results with Multiple Target Applications

We have also experimented with multi-targeted workloads, with histo and SAD
applications pinned to different cores. We present IPC results in Figure 5.11(b).
The co-runner application in all these experiments is mcf from SPEC 2006 which is
memory-intensive. As expected, the in-memory computation version (NDC-3) yields
the best performance as it has only to send back the results and does not require
high memory bandwidth. However, for the multi-threaded case, the gap between the
in-memory computation case and the perfect data placement case widens because
as thread-level parallelism increases, the memory queuing dominates. Since this
queuing latency is not incurred for in-memory computation, the performance is
better with 8 and 16 threads.

5.6.5 Results with Varying Core Counts

Results with varying core counts are shown in Figure 5.9(a). As can be observed,
performance benefits from 32 cores are higher than that of 16 cores while perfor-
mance benefits with a 48 core configuration are much greater than that of 16 core
and 32 core configuration. This shows that offloading computations to service
cores scales very well with increasing core counts. This is primarily because as
the core count increases, the congestion in the network-on-chip increases resulting
in increased NoC queuing. Since offloaded computation minimizes the number of
packets traversing the network, performance benefits are significant. We expect the
trend to continue with much higher core count.

5.6.6 Results with Varying Number of Memory Channels

Results with varying number of memory channels are plotted in Figure 5.9(b).
As can be observed, the performance improvement diminishes with the increased
number of memory channels. This is because, with the increased number of
channels, the number of hops to be traversed by each request before getting to
the off-chip memory decreases. As a result of this decrease, the NoC latencies for
each request decrease (especially the queuing latency). Since our schemes aim at
reducing the NoC latencies, increasing the number of channels reduces the potential
improvements considerably.
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Figure 5.12: Express virtual channels. (a) System with 4 EVCs shown in blue, no
NoC queuing latency is incurred and used for NDC-4 (b) System with 2EVCs (in
blue), NoC queuing latency incurred for vertical hops and used for NDC-5.

5.7 Realistic Near-Data Computing Strategies
In the previous section, we show results with a perfect (near-data computing) system
with infinite hardware resources at the service cores and zero on-chip latency for
offloaded computations. In this section, we relax these assumptions and evaluate
the resulting performance benefits. Our goal is to measure how closely one can
approach the results in the previous section by employing different architectural
enhancements. We discuss various extra hardware resources which are needed to
approximate the perfect near-data computing systems discussed so far.

5.7.1 Employing Express Virtual Channels

Express Virtual Channels (EVCs), proposed in [81], incur minimal additional
latency of 2 cycles compared to an ideal latency system. With EVCs in place,
the on-chip requests do not incur any queuing latency in the network on-chip
buffers and only incur the packet transmission and router processing latencies.
Furthermore, EVCs were proven to be deadlock-free and yield good improvements
in performance. However, EVCs require an extra overheads in terms of area and
power. Since they are the first step towards realizing a near-perfect system for
on-chip near-data computing, we experiment with varying number of EVCs and
report the performance results.

Figure 5.12(a) shows the configuration with four EVCs connecting the four
corners of the chip directly. Suppose that A and a are needed for the same
computation, but are in different memory channels. a can easily travel to A’s
service core using the EVCs. Only the transmission latency is considered for
messages using these EVCs. Using this system, we create a new version, NDC-4,
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Figure 5.13: Normalized IPC for the relaxed schemes. NDC-1 and NDC-2 are
shown for comparison.
which, similar to NDC-2, uses perfect data placement and computation on service
cores, but with the added NoC transmission latency. Figure 5.12(b) shows a
modified version in which messages can use express channels for the horizontal
hops, incurring only transmission latency, but use the normal on-chip routers for
the vertical hops, where both queueing latency and transmission latency are added.
This scheme is called NDC-5. Like NDC-4, it is a more realistic version of NDC-2
with perfect data placement and computation offloading.

Figure 5.13 shows the IPC results for each target application under these two
relaxed schemes, NDC-4 and NDC-5. NDC-1 and NDC-2 are shown for comparison
because NDC-2 represents in a sense an idealized version of these two schemes,
and NDC-1 represents the performance with some computation offloading but
less-than-perfect data placement. As can be observed, using 4EVCs (NDC-4) brings
better performance improvements compared to using 2EVCs (NDC-5) for all the
target applications. This is because NDC-5 incurs extra NoC queuing latency for
the vertical hops compared to NDC-4. This can also be verified from Figure 5.10a
and Figure 5.10b, for applications scan and stencil, respectively. We use the
same multithreaded target application as in the perfect system, SpMV, to perform
experiments with multiple threads. Using the same multi-target workload as in
the perfect system, we also present results for the relaxed schemes. Figure 5.14
shows the IPC values normalized to the baseline for two applications on separate
cores. For multi-threaded and multi-target workloads, NDC-4 performs better than
NDC-5 as latter incurs extra queuing latency for vertical hops.

5.7.2 Employing High Bandwidth Links

In the perfect scenario, explained in Section 5.6, we assumed a perfect NoC
which incurs zero latency by employing infinite bandwidth. In this subsection,
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Figure 5.15: Normalized IPC with variation in bandwidth. NDC-1 and NDC-2 are
shown for comparison.
we relax that constraint by assuming a finite bandwidth in the NoC links and
this bandwidth is modulated by controlling the NoC frequency. Specifically, we
change the bandwidth of each link by changing the frequency of the NoC router.
Figure 5.15 plots the improvement in performance as we increase the bandwidth of
each link. The NDC-6 version whose results are shown in Figure 5.15 provides 48
bits/cycle NoC bandwidth as opposed to the baseline of 32bits/cycle, while NDC-7
provides 64bits/cycle NoC bandwidth. As can be observed, while this technique
gives significant improvements compared to the baseline, it does not completely
eliminate the NoC queuing, router processing and hop latencies, as in the case
of Express Virtual Channels, and hence does not yield as much benefit as EVCs.
On the other hand, the advantage of such a technique is that we do not have to
add extra hardware like in the case of EVCs to get near-perfect improvements.
Adding extra virtual channels not only brings in an area overhead, but also brings
in extra overheads of ensuring that the added virtual channels do not result in
deadlock/livelock scenarios. Also, increasing the router frequency has its own
advantages, as it comes with power/thermal overheads, which need to be carefully
analyzed.
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5.7.3 Impact of the Service Core Count

In both the realistic scenarios evaluated above, we have relaxed the assumption
of having infinite NoC resources. However, the number of service cores employed
to perform the offloaded computations can also play a significant role in getting
near-ideal performance. In this section, we quantify the effect of changing the
number of service cores on the performance. As can be observed from Figure 5.16,
for benchmarks such as sad, scan, and stencil, with increased number of service
cores, offloaded computations incur minimum contention at the service cores, and
consequently the IPC improvements increase with the increase in the number of
service cores. However, other benchmarks such as histo and spmv do not gain
as much improvement as the amount of offloaded computations is very low. The
extra overhead with this approach is that each service core supports Simultaneous
Multi-Threading (SMT), which means that as we increase the number of service
cores, the number of SMT ways increases, resulting in an increase in the overall
core area. Please note that the computation offloaded to service-cores through a
fork-join approach is not a performance bottleneck, since the offloaded instructions
executed on the service cores are processor instructions and no-software related
overheads are incurred. As can be observed from Figures 5.13, 5.15 and 5.16,
number of service cores plays a minimal role in achieving the ideal performance for
single-threaded target applications, as compared to the NoC resources.

5.8 Related Work
The concept of moving computation close to the data has been studied since
the 1970s. For example, Stone [87] described a design for a logic-in-memory
array that would act as a cache and also directly operate on memory locations.
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Drapper et al. [88] fabiracted the first smart memory devices that are enabled
with Processing in-memory (PIM). Their results showed significant promise for
data-intensive applications. In the related area of non-volatile memory, De et
al. [89] move computation into the SSD controller to improve the performance of
I/O-intensive big data applications.

Pugsley et al. in [77] proposed a NDC architecture to accelerate Map-Reduce
workloads by integrating a Near Data Cores (NDCores) on the logic layer of the
3D-Stacked Memory. The NDCores are in-order low-EPI energy-efficient ARM
Cortex cores which are optimized for massively parallel execution code-bases like
Map-Reduce. While the same authors in [90] augmented the NDC-architecture
proposed in [77] by replacing the expensive HMC-based stacked DRAM with
LPDDRx powered NDC-Modules. Their evaluation is based on a highly optimized
ARM cortex based many-core processor as the baseline. Gao et al. [91] proposed
3D DRAM based Tetris to accelerate machine-learning kernels, while Chi et al [92]
employed non-volatile memory based 3D memory to accelerate machine learning
kernels. Each chip consists of SDRAM and logic for general-purpose computation
and communication. Several PIM chip can communicate independently of the
host. While these past designs incur significant improvements in performance, there
are major challenges in the overall system design for these architectures. These
challenges include: (a) Imposing non-cacheable on-chip cache accesses for the host-
processor so that the processing engines on the logic layer of the stacked memories
see the coherent data. (b) Enhanced virtual-memory support so that the processing
cores can access the data from correct physical locations in DRAM. (c) Pinned
physical locations in 3D stacked memories so that the data used by these processing
engines on stacked memories are not paged-out by the OS executing on the host-
processor. (d) Dynamically identifying the candidate code to be offloaded to the
specialised processing engines to reap maximum performance improvement. While
Hsieh et al. [76] identified the possible candidate code for offloading dynamically,
the other challenges still remain to be addressed, making the prior proposals tough
to implement.

Our approach instead of offloading the computations to DRAM, offload the
computations to service cores closer to the memory controllers. As a result, our
approach targets the on-chip latency instead of the memory bandwidth problem
unlike the prior approaches. As a result, our approach allows data accessed by
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the host-core to cache the data in on-chip caches. As the data accessed by the
service core will be taken care by the on-chip cache coherency. Similarly, the
on-chip coherent TLBs does not necessitate enhanced virtual-memory support nor
the static pinning of memory pages in main memory. By addressing these overall-
system design challenges imposed by the prior near-data computing techniques,
our proposed hardware-techniques can be readily adapted by industry to mitigate
some of the on-chip data movement costs.

To our knowledge, there is no work that tries to move computation into the
on-chip network structures such as routers.In comparison to these prior works, ours
is the first that quantifies the potential benefits of near-data computing in emerging
manycores.
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Chapter 6
Co-design to Optimize DRAM
Refresh Overheads

6.1 Introduction
Dynamic Random Access Memory (DRAM) is the predominant main memory
technology used in computing systems today. DRAM cells use capacitors as
data storage devices. Since capacitors leak charge over time, DRAM cells need
to be periodically refreshed inorder to preserve data integrity. These periodic
refresh operations block main memory accesses, therefore reducing main memory
availability and increasing effective memory latency. This problem is even more
accentuated in consolidated environments like virtualized systems.

Technology scaling trends have led to continuous increases in DRAM device
densities over the last several decades. These scaling trends have enabled higher
main memory capacities in all computing segments, paving the path for higher
system performance and increasingly sophisticated software. However, as the total
number of DRAM cells in a system continues to increase, the DRAM refresh
overheads are on the rise and are threatening to dampen the performance benefits
of DRAM capacity scaling. Recent studies have shown that for upcoming 32Gb
DRAM devices, DRAM refreshes can cause a 30% reduction in overall system
throughput [14].

Many recent works have proposed hardware [15] [93] [17] and software [94] [95]
solutions to mitigate the performance overheads caused by DRAM refreshes. These
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approaches can be broadly classified into two categories: (i) reducing the number
of refreshes, and (ii) overlapping memory accesses with refreshes. Techniques
belonging to the first category reduce refresh activity by refreshing each DRAM row
at a different rate, dictated by the cell with the lowest retention time in that row.
While these techniques can reduce the number of refresh operations substantially,
they rely on accurate retention time profiling, which is costly to implement and
is highly prone to erratic changes in DRAM cell retention times [93]. The second
category of techniques reduces the exposed refresh overhead by allowing regular
DRAM accesses to proceed in parallel with refresh operations. The key idea behind
these techniques is to confine the refresh activity to a portion of the DRAM (such
as a bank or a subarray), so that refresh operations in one portion will not interfere
with accesses to the other (non-refreshed) portions.

The most recent example of such finer-granularity refreshing adopted by the
DRAM industry is the per-bank refresh scheme supported in LPDDR3 [52] and
beyond. As opposed to the traditional all-bank refresh scheme in earlier LPDDRx
generations (and current DDRx generations), a refresh command in the per-bank
refresh scheme targets only one DRAM bank. Therefore, while a per-bank refresh
command is busy refreshing rows in one bank, all the other banks are available to
service regular DRAM accesses. In an ideal scenario, if all the DRAM requests that
arrive at the DRAM controller during a refresh operation are headed to the available
(non-refreshed) banks, then the refresh overhead can be fully hidden. However, in
realistic scenarios, since memory requests generated by typical programs are often
uniformly distributed across DRAM banks, the probability of a DRAM request
being blocked by a per-bank refresh is quite high. Therefore, as shown in prior
studies, per-bank refresh is only marginally effective in avoiding the DRAM refresh
overheads [15].

In this work, we propose a hardware-software co-design technique to mitigate the
DRAM refresh overheads. Our technique exposes per-bank refresh to the operating
system (OS) with the goal to enable higher overlap between refresh operations
and regular memory accesses. The key idea behind our technique is to incorporate
DRAM bank awareness and refresh schedule in the memory allocation and task
scheduling decisions made by the OS. Specifically, our technique proposes the
following two main changes to the operating system: (i) the OS memory allocator
confines the memory allocated by a task to a subset of the available DRAM banks,
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and (ii) the OS task scheduler chooses the tasks scheduled during a quantum in such
a way that the memory accesses made by these tasks do not span all the DRAM
banks in the system. Furthermore, our technique proposes the following change to
the refresh scheduler in the memory controller: rather than doing a round-robin
scheduling of refresh commands to individual banks, the memory controller refreshes
only those banks during a task scheduling quantum which are not expected to
receive any memory requests during that quantum. With this careful collaboration
between OS and the memory controller, our technique reduces the probability of
per-bank refreshes interfering with regular DRAM accesses.

Extensive evaluations of our proposed technique on multi-programmed SPEC
CPU2006 [44], STREAM [96] and NAS [97] workloads show that our technique
achieves 16.2% and 6.3% performance improvement over all-bank and per-bank
refresh for 32Gb DRAM chips, respectively. Our results also show that the co-
design improves the performance by 14.6% and 6.1% on an average compared
to previously proposed Adaptive Refresh (AR) [16] and per-bank Out-Of-Order
refresh [15] respectively, without necessitating any modifications to the internal
DRAM structures.

6.2 Motivation

6.2.1 Performance Degradation due to DRAM Refresh

As explained in Section 2.1.3.2, since all banks in a rank are not available during
refresh, all-bank refresh is more detrimental to performance compared to per-bank
refresh since in the latter only one bank will be refreshed during a refresh interval.
Figure 6.1 shows the performance degradation for different DRAM device densitities.
As can be observed, for operating temperatures below 85 deg C where the DRAM
retention time (tREFW) is 64 msecs, as the chip density increases from 8Gb to
32Gb, performance degrades from 5.4% to 17.2% for all-bank refresh on an average.
However, for per-bank refresh, the degradation on an average varies from 0.24% to
9.8%. This shows that refresh becomes much of a problem with growing DRAM
densities since tRFC, the refresh cycle time increases from 350nsec for 8Gb to
890nsec for 32Gb device densities. Also, as device density increases from 8Gb to
32Gb, per-bank refresh also degrades performance significantly, by as much as 9.8%
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Figure 6.1: Performance degradation due to refresh.
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Figure 6.2: IPC Improvements for various DRAM densities, normalized to a scenario
where each application uses all the 8 banks in a rank.
as can be observed from Figure 6.1.

DRAM refresh is much more detrimental to performance when the operating
temperature is beyond 85 deg C, where the retention is 32 msecs, meaning the
DRAM rows need to be refreshed twice as frequently. As can be observed from
Figure 6.1, all-bank refresh degrades the performance by up to 34.8% for 32Gb chips
on an average, while per-bank refresh degrades performance by up to 20.3%. This
shows that DRAM refresh is an important problem that needs to be addressed for
the future DRAMs with growing chip densities. The performance degradation due
to refresh is expected to be even more pronounced in multi-programmed workloads
where multiple high memory-intensive applications are often executed concurrently.

6.2.2 Refresh Cycle Time (tRFC) vs Bank Level Parallelism
(BLP)

As explained in Section 2.2.1, the traditional Linux OS is agnostic of DRAM bank
organization and allocates data for applications which span across all the DRAM
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increasing DRAM chip densities (normalized to total memory footprint).
banks. A positive side-effect of such an allocation scheme is increased bank level
parallelism (BLP). In our scheme, since the OS partitions memory across tasks, it
is important to understand how partitioning an application to access a subset of
banks effects performance. Memory-partitioning by OS can increase the DRAM
row-buffer locality for certain applications as there will not be any interference from
other applications. Since our hardware-software co-design requires partitioning
applications’ data across DRAM banks and our scheme will ultimately remove
the entire tRFC overheads, we present results of various such scenarios in Figure
6.2. As can be observed from this figure, confining applications to a subset of
available banks still yields better performance compared to the all-bank refresh if
the entire tRFC overheads can be eliminated. Furthermore, confining applications
to a maximum of 4 banks per rank (total of 8 banks per channel) still yields
improvement in performance in future (16Gb, 24Gb, 32Gb) high-density DRAM
chips. However, currently-available density of 8Gb with a lower tRFC, confining
an application to few banks degrades the performance as expected, since the BLP
is reduced.1 This result shows that confining applications to a subset of DRAM
banks can still yield significant improvements in performance if the entire DRAM
refresh related overheads are eliminated.

6.2.3 Feasibility of Bank-Partitioning from a Capacity Stand-
point

Having looked at the performance impact of memory-partitioning, we now evaluate
the feasibility of memory-partitioning from a capacity stand-point. Since confining
an application to a subset of banks limits the overall memory capacity available

1Since per-bank refresh yields maximum benefit in 8Gb chips, we do not consider 8Gb in our
experiments in the sub-sequent sections.
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for an application, it is important to understand the capacity demands imposed
by applications. If an application has high memory footprint, confining its data
to a subset of banks will increase the number of page-faults in the system even
though there is free memory available in the other DRAM banks. Such page-fault
scenarios can cause significant degradation in performance. In this subsection, we
evaluate the memory footprints of the SPEC CPU 2006 workloads using reference
(large) input datasets and the feasibility of bank-partitioning for these applications
from the capacity stand-point. Figure 6.3 shows the percentage of memory that
can be allocated on each bank with different chip densities, normalized to the total
footprint of each application. These results are collected by modifying the default
Linux kernel buddy memory allocator, such that the kernel tries to allocate the
maximum amount of memory on bank-0. If this cannot be done after a while, the
fall-back mechanism would allocate data on other banks using the buddy memory
allocator.

Figure 6.3 indicates that for the current-day DRAM chip density of 8Gb, on an
average, 68% of applications’ total footprint can fit into a single bank. And, this
percentage of footprint that can be fit in a single bank increases with the increase in
chip density, as can also be noted from Figure 6.3, making bank partitioning-based
memory allocator more and more feasible from a capacity stand-point.

6.3 Overview of Our Problem

6.3.1 Problem

Figure 6.4a depicts the modern day dual-core system, two cores C-0 and C-1
executing four tasks T0 - T3 (each denoted by a different pattern). As explained
in Section 2.2.1, Linux allocates data for these tasks in a DRAM-oblivious fashion
and hence the data for each task are allocated across all the DRAM banks. In
Figure 6.4a, the memory allocated for each task by the OS is depicted with the
same pattern as the task itself. Consequently, all the tasks T0-T3 can access data
from any of the DRAM banks B0 - B3. Figure 6.4b shows the implications of
all-bank refresh on a conventional system. Since none of the banks in a rank are
available to serve the on-demand requests in all-bank refresh, the probability of the
tasks T-0 and T-2 waiting on the data from the banks B0 - B3 is high. Figure 6.4b
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Figure 6.4: Implications of different refresh mechanisms on applications. Diagrams
depict (a) Conventional dual-core system executing 4 tasks, (b) worse-case scenario
where cores stalled due to all-bank refresh, (c) Not-so-worse scenario where only
one core is stalled due to per-bank refresh, and (d) worse-case scenario where both
cores can get stalled due to per-bank refresh.
depicts such a scenario where cores C-0 and C-1 are stalled on the outstanding loads
(depicted in the MC queue) to be served by the banks being refreshed. However, for
per-bank refresh, since only one bank will be busy refreshing, the probability that
both cores stalling due to a bank is low. As depicted in Figure 6.4c, there could be
not-so-worse scenarios where only one core could be stalled due to per-bank refresh.
However, since data of all the tasks are spread across all the DRAM banks, the
worst-case scenario of both cores stalling due to a refreshed bank is still possible
as depicted in Figure 6.4d. Hence, as observed in Section 6.2.1, allbank-refresh is
more detrimental to performance compared to perbank-refresh.

6.3.2 Our Solution

Building on the per-bank refresh support2, we propose a hardware-software co-design
to mitigate DRAM refresh overheads by making changes in both the hardware and
the OS. Our proposals are based on the observation that the DRAM retention
time (tREFW) and the OS time quanta are in the same order of milliseconds, and
include both hardware and software modifications with the goal of eliminating
entire DRAM refresh overheads. To this end, we propose a novel and simple
per-bank refresh schedule in the hardware which facilitates interesting solutions at
the software-level. At the software-level, we use a simple soft-partitioning based

2Note that, per-bank refresh already performs significantly better compared to the other prior
proposals which are built upon the all-bank refresh strategy as demonstrated in [15].
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memory allocator in the OS which augments the proposed per-bank refresh schedule
in the hardware. Together, the proposed memory allocator and the proposed per-
bank refresh scheduler enable the OS scheduler to schedule the applications in a
refresh-aware fashion. That is, our proposed hardware per-bank scheduler and
soft-partitioning based memory allocator present an opportunity for the OS to
schedule an application which does not access the bank being refreshed in it’s
entire time quantum. This in turn increases the probability that an applications’
on-demand requests are not stalled due to refresh.

6.4 Hardware-Software Co-design

6.4.1 Proposed Hardware Changes

Our proposed changes to the per-bank refresh schedule are depicted in Figure 6.5.
Comparing Figures 2.4b and 6.5, it can be observed that, in our proposed schedule,
in tREFIpb-1, instead of refreshing rows R-1 to R-N of Bank-1, we refresh rows
R-(N+1) to R-2N. That is, contrary to the default round-robin per-bank refresh
scheduler, our per-bank refresh scheduler schedules refreshes to the same bank
(to different rows) in successive refresh intervals until all the rows in a bank are
refreshed. The pseudo-code for our new per-bank refresh scheduler is given in
Algorithm 10.

Algorithm 10 Proposed per-bank refresh schedule algorithm.
1: /* nextRefreshBank and the nextRefreshRank represents the bank and the corresponding rank that will be

refreshed in the next tREFIpb. */
2: refreshBankIdx = (nextRefreshRank * numBanksPerRank) + nextRefreshBank
3: /* numRowsRefreshed keeps track number of rows refreshed in a bank.*/
4: numRowsRefreshed[refreshBankIdx] += RowsPerRefresh;
5: if numRowsRefreshed[refreshBankIdx] < numRowsPerBank then
6: nextRefreshBank = nextRefreshBank;
7: else
8: /* Done refreshing the entire bank. schedule the refresh to the next bank */
9: numRowsRefreshed[refreshBankIdx] = 0;
10: nextRefreshBank += 1
11: end if
12: if nextRefreshBank >= numBanksPerRank then
13: nextRefreshBank = 0;
14: nextRefreshRank = (nextRefreshRank + 1) % numRanks;
15: end if

Implications of our per-bank refresh schedule: Consider a typical system
operating in environments below 85 deg C with a tREFW of 64 msec, containing 2
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Figure 6.6: (a) Hard-partitioning, and (b) Soft-partitioning based memory alloca-
tors.
ranks and 8 banks per rank. In this system, with a total of 16 banks, using our
proposed per-bank refresh schedule, all the rows in Bank-0 are done refreshing at
the end of first 4msec. Since Bank-0 will be refreshed again only after the 64msec,
Bank-0 will be available to serve the on-demand memory requests uninterruptingly
after the first 4msecs in a 64msec refresh window. As covered in Section 2.2.2,
this duration of 4msec coincides with the process scheduling time quantum used
by the OS. Consequently, the new per-bank refresh scheduler enables interesting
options for task scheduling in the OS if the applications’ memory could be carefully
partitioned such that not all the banks contain data from all the applications.
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6.4.2 Proposed Software (OS) Changes

6.4.2.1 Memory Partitioning Based Allocator:

Various DRAM bank-aware memory partitioning algorithms have been proposed
in [20] [19] to alleviate the interference across applications running on different
cores. We envision two different ways of partitioning memory as depicted in Figures
6.6a and 6.6b.
Hard-partitioning based allocator: Figure 6.6a shows the hard-partitioning
based memory allocator. In such an allocator, each memory bank or a group of
banks can host data only from a certain task. As depicted in Figure 6.6a, task T0’s
data is allocated in bank B-0, task T1’s data is allocated in bank B-2, task T2’s
data is allocated in bank B-3, and T3’s data is allocated in bank B-1.3 Liu et al [19]
proposed such a hard-partitioning based memory allocator. By allocating a task’s
data exclusively on a subset of banks, such an allocator alleviates the memory
bank contention, thereby increasing row-buffer locality. However, there are certain
drawbacks to such an allocator:
• Confining applications to certain set of banks results in poor bank-level paral-

lelism (BLP) [21] for applications that do not have high row-buffer locality, e.g.,
irregular applications and pointer-based applications.

• Hard-partitioning can cause a task to page-fault when it is under-provisioned
in terms of the number of banks, even if the other banks contain free memory.
Such a scenario can be catastrophic to performance.

• With the increasing number of cores on-chip, hard-partitioning limits the overall
memory bandwidth available for a task causing the performance to degrade
compared to the baseline DRAM bank-agnostic memory allocation.

Soft-partitioning based allocator: An alternative to hard-partitioning is “soft-
partitioning" where a group of tasks share a subset of DRAM banks, as depicted in
Figure 6.6b. In the soft-partitioning scheme, instead of dedicating a DRAM bank
to an application, a DRAM bank is loosely partitioned such that a group of tasks
can share it. In Figure 6.6b, tasks T-0 and T-2 have data allocated in banks B-0
and B-2, while tasks T-1 and T-3 have data allocated in banks B-1 and B-3. Hence,
such a soft-partitioning based allocator increases the overall memory utilization by

3Note that though in this example each task’s data is allocated in only one bank, the OS can
allocate multiple banks to a task. However, other tasks cannot have data allocated in these banks.
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sharing the capacity with other tasks and is more likely to reduce the number of
the page-faults in a system. It also caters to the increased BLP, thereby increasing
the overall memory bandwidth available for a task at the cost of row-buffer locality.

Algorithm 11 Proposed memory-partitioning algorithm.
1: procedure get_page_from_freelist(..., unsigned int order, ..., struct zone *preferred_zone, int migrate-

type)
2: /* current –> pointer to the current task which requested the memory allocation */
3: /* free_list –> original free list maintained by the OS */
4: /* free_list_per_bank –> per bank free-list */
5: /* possible_banks_vector –> Bit mask representing bank bits.*/
6: /* lastAllocedBank represents the bank amongst the possible banks where the last memory request is allocated

for the current task. */
7: for each order in MAX_ORDER do
8: count = 0
9: for count < num_total_banks do
10: allocBank = current–>lastAllocedBank;
11: allocBank = (allocBank+1) % num_total_banks;
12: if current–>possible_banks_vector[allocBank] is set then
13: if free_list_per_bank[bank] is not empty then
14: /* Hit from a per bank free list */
15: page = free_list_per_bank[bank];
16: current–>lastAllocedBank = allocBank;
17: return page;
18: else
19: /* Fetch a page from OS free-list */
20: page = list_entry(free_list, ....);
21: nr_free--; /* Decrementing the number of OS free pages */
22:
23: /* Since OS is exposed with hardware address-mapping information, we can get the bank

id from the physical page address */
24:
25: bank = get_bank_id_from_page(page);
26:
27: if allocBank == bank then
28: /* Matches the round-robin bank */
29: current–>lastAllocedBank = allocBank;
30: return page;
31: else
32: /* Maintaining a cache of per bank free-lists*/
33: insert_in_to_free_list(free_list_per_bank, bank, page)
34: end if
35: end if
36: end if
37: count++;
38: end for
39:
40: end for
41: return NULL;
42: end procedure

Algorithm 11 shows the detailed pseudo-code for our general memory-
partitioning allocator which can either hard-partition or soft-partition data across
DRAM banks. We implemented and verified this algorithm in the actual Linux
buddy allocator for our experiments. As can be observed from lines 15 and 33, we
maintain a free-list of pages per bank so that a free page corresponding to a bank is
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known readily without traversing the OS free-list. Also, the possible_banks_vector
used in line 12 is a bit-mask which represents the possible list of banks that
contain data from this particular task. In our current implementation, this possi-
ble_banks_vectors bit-mask is an input taken from the user using debugfs [98] and
cgroups [99] features in Linux. Hence, our partitioning based allocation presented in
Algorithm 11 is generic for both the hard-and soft-partitioning schemes, and can be
configured dynamically based on the possible_banks_vector bit-mask. One more
important aspect to be noted in our implementation from lines 10-11 is that our
memory-partitioning allocator allocates pages such that the consecutive allocation
requests4 fall into different banks in a round-robin fashion by keeping track of
lastAllocedBank per task, thereby improving BLP. In our experiments, we observed
that soft-partitioning yields better performance as the number of applications
running concurrently increases. This is because the memory bandwidth per task
increases with soft-partitioning.

6.4.2.2 DRAM Refresh-Aware Process Scheduling:

The new per-bank refresh schedule and memory-partitioning proposed in the
previous subsections provide an opportunity for the OS to schedule tasks in a refresh-
aware fashion. The pseudo-code for the proposed refresh-aware process scheduler is
presented in Algorithm 12. As can be noticed in Algorithm 12, nextRefreshBank
represents the next bank to be refreshed based on our new per-bank refresh schedule.
The code-snippet in the algorithm is the actual implementation in the Linux CFS
scheduler, which returns the next task to be scheduled on a core. Our refresh-aware
implementation is depicted in line 27 where the next runnable task chosen is the
one that does not have any data allocated on the bank which will be refreshed in
the next time quantum. This task to be scheduled is one among the tasks to the
left in the red-black tree maintained by the CFS scheduler. Hence, by chosing the
task which is left among the runnable tasks in the red-black tree, our scheduler
tries to schedule a task which does not have any data allocated in the bank to be
refreshed.

4We do not consider large-pages in our evaluation, hence each allocation granularity is 4KB.
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Algorithm 12 Proposed refresh-aware process scheduling.
1: procedure pick_next_task(struct rq *rq)
2:
3: /* nextRefreshBank –> represents the next bank to be refreshed in DRAM based on the new per-bank

refresh schedule */
4:
5: struct task_struct *p;
6: struct cfs_rq *cfs_rq = &rq–>cfs;
7: struct sched_entity *se;
8: struct sched_entity *firstSchedEntity;
9:
10: if !cfs_rq–>nr_running then
11: return NULL;
12: end if
13: found_task_flag = false;
14: count = 0;
15:
16: do
17: count++;
18: se = pick_next_entity(cfs_rq);
19: set_next_entity(cfs_rq, se);
20: cfs_rq = group_cfs_rq(se);
21: p = task_of(se);
22:
23: if count == 1 && cfs_rq then
24: firstSchedEntity = se;
25: end if
26:
27: if cfs_rq && p–>possible_banks_vector[nextRefreshBank] is not set then
28: found_task_flag = true;
29: else if cfs_rq && count >= ηthresh then
30: found_task_flag = true;
31: p = task_of(firstSchedEntity);
32: end if
33: while !flag_found_task;
34: / ******* Some more Code ***/
35: return p;
36: end procedure
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Figure 6.7: Refresh-Aware process scheduler (with soft-partitioning allocator).
6.4.3 Putting It All Together

Figure 6.7 depicts the bigger picture of how our co-design works. As discussed in
Section 6.4.1, our proposed per-bank refresh schedule results in Bank B-0 being

97



Cores 2 cores @ 3.2GHz, Out-of-order, 8-wide issue,
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OS Scheduler CFS (round-robin).

Baseline
Allocator Buddy Allocator without any memory partitioning.
Co-design Allocator Soft-partitioning based memory allocator.

Table 6.1: Evaluated configuration.
refreshed in the first 4msec, bank B-1 in 4-8msec, and so on. Figure 6.7 shows
how data for tasks T0-T4 are allocated based on the soft-partitioning discussed
in Section 6.4.2.1. The data of tasks T0 and T2 are allocated on banks B0 and
B2, while T1 and T3 have their data allocated on banks B-1 and B-3. Since bank
B-0 containing data allocated by tasks T-0 and T-2 will be refreshed in the first
4msec, our refresh-aware OS scheduler schedules tasks T1 and T3 on cores C-0 and
C-1. After 4 msec, since bank B-1 will be refreshed from 4-8 msec, tasks T0 and
T2 will be scheduled by our refresh-aware scheduler, thereby ensuring that none of
the on-demand requests from the scheduled tasks are stalled by the refreshes.

6.4.4 Caveats

In a real-life system, there could be varying scenarios where the process scheduling
is disrupted by the external factors. Such scenarios include:
• A high priority task enters the system warranting for it to be scheduled for more

number of time quantums compared to the other tasks.
• It could be possible that the desired tasks to be scheduled (that do not have

data allocated on the bank to be refreshed) are not in runnable queue as they
are in other states e.g., sleep state.

• A non-maskable interrupt needs to be serviced immediately by the core.
In all the above scenarios, our refresh-aware scheduler might result in loss of

fairness. To address these issues, “fairness_threshold", denoted by ηthresh and
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depicted in line 29 of Algorithm 12, can be used to disable our refresh-aware co-
schedule immediately by setting this parameter to 1 or gracefully by setting to some
value like 2 or 3. This ηthresh parameter can be used by the user to over-ride the
refresh-aware scheduling decisions at-will using the sysctl_sched interface present
in the Linux kernel.
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Figure 6.8: IPC improvement results (normalized to all-bank refresh).
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Figure 6.9: Average memory access latency results.

6.5 Evaluation

6.5.1 Experimental Setup

We used a simulation based setup with modified Linux kernel to evaluate our
co-design. For the simulation setup, we used the gem5 [101] simulator with the out-
of-order CPU model integrated with NVMain [102] for the detailed memory model.
The evaluated system configuration is given in Table 7.1, unless otherwise explicitly
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stated. Our default experiments are evaluated with 4 threads consolidated per core,
with a default system executing 8 threads in total on 2 cores (a 1:4 consolidation
ratio). As mentioned in Section 2.2.2, by registering a callback to switch_to(
) Linux system call in the gem5 simulator, we observed that each task in our
workloads covered in Table 6.2 executes for a time-slice of 4msec. Hence, we use
the baseline round-robin schedule of tasks from this callback handler in our gem5
simulator.

We used benchmarks from the SPEC CPU2006 [44] suite with the reference
(large) input, STREAM [96] and UA from NAS [97] benchmark suite. We evaluated
various multi-programmed workloads shown in Table 6.2, each using a mix of these
benchmarks based on their memory intensities. We categorize an application with
Misses Per Kilo Instruction (MPKI) higher than 10 as high memory intensive
application, denoted by H in the table. Applications with MPKI values between 1
and 10 are categorized as medium, denoted by M, and those with MPKI values less
than 1 are categorized as low. As shown in Table 6.2, our workloads are formed such
that we cover a large spectrum of the memory intensity so that our performance
results reported are representative and are not biased by high memory intensive
workloads. For evaluation, we fast-forward applications to get to the region-of-
interest after which the workload executes 100 million instructions to warm-up the
LLC. We continue the simulation till each task in the workload executes a minimum
of 200 million instructions. Once the last task finishes executing its 200 million
instructions, we terminate the simulation and dump the statistics. Performance
improvements reported in this section are the improvements in harmonic mean
of the Instructions committed Per Cycle (IPC) of the workload relative to the
baseline.5

6.5.2 Co-design Results

Figure 6.8 shows the performance improvements of per-bank refresh and our refresh-
aware co-design normalized to all-bank refresh for a dual core system with a 1:4
consolidation ratio. Note that, in our baseline, memory is not partitioned across
tasks and a task can allocate data in all the 8 banks in a rank. For our co-design
experiments, we confine each task to 6 banks within a rank so that not all tasks

5Note that in our baseline, each task is executed in a round-robin fashion with a time-slice of
4msec.
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Benchmarks MPKI Category
WL-1 mcf(8) H
WL-2 povray(8) L
WL-3 h264ref(8) L
WL-4 povray(4), h264ref(4) L
WL-5 GemsFDTD(8) M
WL-6 mcf(4), povray(4) H + L
WL-7 stream(4), h264ref(4) M + L
WL-8 bwaves(4), h264ref(4) H + L
WL-9 npb_ua(4), povray(4) M + L
WL-10 mcf(4), bwaves(2), povray(2) H + L

Table 6.2: Workloads used in evaluating our co-design in a dual-core system (1:4
consolidation ratio).
have data allocated on all 8 banks in a rank. Confining a task to 6 banks6 in
a dual-core system is the sweet-spot as it gives us good BLP (thereby reducing
contention) as well as gives our co-design a flexibility to schedule tasks such that
none of the on-demand requests are stalled by refreshes. As can be observed, our
co-design scheme gives significant benefits over the all-bank refresh and per-bank
refresh. Our co-design on an average improves the performance by 16.2%, compared
to all-bank refresh, while it improves the performance by 6.3% over per-bank refresh
for 32Gb chips. For 24Gb chip density, our co-design improves the performance
by an average of 12.1% over all-bank refresh, and it improves the performance by
an average of 5.4% over per-bank refresh. Furthermore, as the refresh overheads
become less of a problem for 16Gb chips, our co-design improves the performance
by 9.03% and 2.5% over the all-bank and per-bank refresh schemes, respectively.
Figure 6.9 shows the corresponding average memory latencies in memory cycles per
workload (lower the better in this graphs). As expected, the average memory access
latencies are reduced significantly by our co-design as none of the tasks’ on-demand
requests are stalled by the refreshes.

The workloads WL-2, WL-3 and WL-4 are low memory-intensive, and hence not
many of their on-demand requests are stalled by the refreshes in the baseline itself.
Consequently, they do not get any improvement in performance from our co-design
(as can be noted from Figure 6.8). WL1 as presented in Table 6.2 comprises of
mcf applications which has a very high MPKI, compared to the other benchmarks
categorized as high. Since our approach confines each task to 6 out of the 8 banks,
the tasks executing at the same time contend for bandwidth from the confined
banks. As a result, the improvement in performance is significant but still not as

6We have experimented with 4 and 2 banks as well. While they improve performance,the
improvements are not as high as 6 banks case.
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Figure 6.10: Comparison with FGR in DDR4 (normalized to allbank-refresh DDR4-
1x mode baseline).
significant as other high MPKI workloads. As can be observed, WL5 comprising
of the medium intensive applications like GemsFDTD and WL8 comprising of a
mix of the high and low MPKI workloads give very good improvements as there
is not much contention for bandwidth in the confined banks. Our co-design gave
significant overall energy savings as well compared to the all-bank and per-bank
refresh scenarios. We could not present them in the interest of space.
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Figure 6.11: Results with the 32msec retention time.

6.5.3 DDR4 Fine Granularity Refresh Results

Figure 6.10 shows how our co-design fares with DDR4-1600. As discussed in
Section 2.1.3.2, DDR4 supports 1x, 2x and 4x refresh modes [51]. DDR4 1X mode
employs a tREFIab of 7.8 µsecs, while 2x and 4x modes employ 3.9 µsecs and
1.95 µsecs respectively. While the tREFIab is halved from 1x to 2x and 2x to
4x modes, tRFCab for 2x/4x modes is scaled only by a factor of 1.35x/1.63x as
observed in [15] [16]. Consequently, DDR4-2x and DDR4-4x modes fare worse than
DDR-1x as more number of refresh commands are issued in a given refresh window,
thereby causing more number of on-demand request stalls. To mitigate these refresh
overheads, Adapative Refresh (AR) [16] dynamically switches between the DDR4-1x
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and DDR4-4x modes by monitoring the DRAM channel utilization at runtime.
We present the comparison results of our co-design with AR in Section 6.5.5. As
the entire refresh overheads are masked in our co-design, our co-design performs
significantly better on an average compared to DDR4-1x, DDR4-2x and DDR4-4x
modes, as can be noted in Figure 6.10 as we schedule tasks in a refresh-aware
fashion.

6.5.4 Results with Lower DRAM Retention Time

As covered in Section 2.1.3.2, the DRAM retention time is halved to 32msecs in
environments operating beyond 85 deg C. As a result, the DRAM refresh overheads
become detrimental to the overall system performance. Using a refresh window,
tREFW of 32msec, Figure 6.11 shows the performance improvements acheived by
our co-design.7 As in other performance graphs, all the results are normalized to
all-bank refresh baseline. Our co-design refresh improves the performance in such
high temperature environments on an average by 34.1% over all-bank refresh and
6.7% over per-bank refresh for 32Gb chips. In 24Gb chips, our co-design improves
the performance on an average by 23.4% and 6.3% over the all-bank and per-bank
refresh, respectively, while in 16Gb chips, the average performance improvements
are 16.4% and 3.9%, respectively, over all-bank and per-bank refresh.
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Figure 6.12: Comparison results for 32Gb chips (normalized to all-bank refresh).

7Note that we used a 2msec time-slice for 32msec retention time in our experiments, which
still falls in typical OS time-slice duration of 1-5msec [24].
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6.5.5 Comparison with Previous Proposals

Figure 6.12 shows how our co-design fares over some of the previously proposed
hardware-only solutions. Since our mechanism is based on the per-bank refresh, we
compare it with the out-of-order (OOO) per-bank refresh proposed by Chang et
al [15]. Apart from doing a OOO per-bank refresh, they further propose parallelizing
accesses going to the refreshed bank by assuming sub-array support. Since our
mechanism does not assume these additional support (modifications) to a DRAM
bank, we compare our co-design only with OOO per-bank refresh. In OOO per-bank
refresh, while deciding which bank to be refreshed, they look at the transaction
queue and decide the target bank as the one with the lowest number of outstanding
requests. As can be observed in Figure 6.12, just performing an OOO per-bank
refresh does not improve the performance considerably. In our experiments, we
observed that this is primarily a timing issue. Even though there are no requests
queued to the target bank when deciding which bank to be refreshed, as the
refresh operation lasts for several hundred nanoseconds (tRFCpb), we observed
the outstanding requests to the bank being refreshed increased from the point
the decision is taken. This is primarily because the data of each task are spread
across all the banks. As a result, the average performance improvement brought
in by the OOO per-bank refresh is marginal compared to the per-bank refresh
but is significant around 9.5% compared to the all-bank refresh for 32Gb chips.
Our co-design performs significantly better compared to the OOO per-bank refresh
improving the performance on an average by 6.1%. In the interest of space, we
could not present the results for other chip densities, but they seem to follow the
same trend.

Figure 6.12 also presents results compared to another previously proposed
hardware-only solution, Adaptive Refresh (AR) [16]. As discussed in Section 6.6,
AR switches between the DDR4-1x and DDR4-4x modes dynamically by monitoring
the channel bandwidth utilization. AR is an optimization proposed on top of DDR4
all-bank refresh. As can be noted from Figure 6.12, AR improves the performance
by 1.9% on average compared to all-bank refresh but still does not perform as well
as the per-bank refresh. Similar observations have also been noted by Chang et
al [15]. Compared to AR, our co-design improves the performance on an average
by 14.6%.
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6.5.6 Sensitivity Results

Figure 6.13 shows the sensitivity results of our co-design with varying number of
cores and varying number of tasks per core. In the interest of space, we present
the average improvements over all the workloads (and not each workload result)
across different chip densities. As can be observed, our co-design consistently fares
better than both all-bank and per-bank refresh across various consolidation ratios.
Confining to use just 1 DRAM channel, in a dual-core system as the consolidation
ratio decreases from 1:4 to 1:2, a task’s data can only be allocated on 4 banks
per rank, as opposed to 6 banks per rank in the 1:4 consolidation ratio. This is
because, assigning more than 6 banks per rank for each task allows only one task
to be available to be scheduled on a dual-core system remaining the other core idle,
thereby resulting in the under-utilization of cores. Hence, on a dual-core system
with the 1:2 consolidation ratio, memory is partitioned such that each task allocates
data on 4 banks in a rank, making a total of 8 banks. Consequently, the available
BLP is reduced compared to the 1:4 consolidation ratio scenario. However, the 1:2
consolidation ratio still fares better compared to the all-bank and per-bank refresh.
Our co-design improves the performance by 14.2%,11.2%,8.9% over all-bank refresh
in 32Gb, 24Gb and 16Gb chips, respectively. However, by scaling up the number
of DIMMs per channel from 1 to 2, it is possible for each task to allocate data on
more number of banks, resulting in improved BLP and reduced contention and
ultimately higher performance benefits. As can be observed, our co-design also
gives good performance improvements as we increase the number of cores and the
corresponding number of tasks per bank over the all-bank and per-bank refresh
scenarios as well.
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Figure 6.13: Sensitivity results (normalized to all-bank refresh).
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6.6 Related Work
Many recent works have proposed hardware and software solutions to mitigate the
DRAM refresh overheads. These solutions reduce the DRAM refresh overheads
by either skipping unnecessary refreshes or allowing DRAM accesses to proceed in
parallel with refreshes.

Multiple previous works have exploited the fact that most of the DRAM cells
have high retention times and do not need to be refreshed as often as the small
number of weak cells with low retention times. Liu et al. proposed RAIDR [14], a
retention-aware refresh technique which enables 75% of the refresh activity to be
eliminated. Bhati et al. proposed modifications to the existing auto-refresh function-
ality in order to enable such refresh skipping [17]. Other software techniques such
as Flikker [94] and RAPID [95] take retention times into account while allocating
the critical program data and the OS pages, respectively. All these techniques rely
on building a retention time profile for the entire DRAM, which requires extensive
testing and could incur a substantial runtime overhead. Furthermore, recent work
has shown that DRAM cell retention times exhibit large variations with both time
and temperature [14] [93], making “retention time profiling" unreliable and difficult
to implement.

Other prior work attempts to reduce refresh overheads by scheduling refresh
commands in periods of low DRAM activity. Elastic Refresh proposed by Stuecheli
et al. [103] postpones up to 8 refresh commands in order to find idle periods when
these refresh commands could be scheduled. Similarly, Co-ordinated Refresh [104]
attempts to schedule refreshes when DRAM is in the self-refresh mode. While
these techniques could save refresh power for low memory intensity workloads, they
may not work well for memory-intensive workloads where periods of low memory
activity are scarce.

Another approach adopted by prior techniques to reduce refresh overheads is
to use finer granularity refresh modes. We already presented how our co-design
fares quantitatively relative to Adaptive Refresh [16] and DDR4 2x and 4x modes.
Adaptive Refresh (AR) chooses one of the three available refresh modes (1x, 2x
and 4x) in DDR4, based on monitoring the runtime DRAM bandwidth utilization.
Another technique, refresh pausing [105], aborts refresh commands upon receiving
DRAM requests and then resumes them subsequently. However, supporting this
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functionality requires the memory controller to have intricate vendor specific
knowledge of the refresh implementation within the DRAM device.

Finally, some recent works have proposed techniques to overlap memory accesses
with refreshes. The per-bank feature in LPDDR3 allows one DRAM bank to be
refreshed while other banks can be accessed in parallel. Chang et. al [15] and Zhang
et al. [106] have proposed techniques to enable bank-granularity and sub-array
granularity refresh commands in order to allow more parallelism between refreshes
and requests. These techniques require changes to the DRAM subarray architecture.
In comparison, our technique enables parallelism of refreshes and requests by careful
hardware-software co-design, without requiring any DRAM modifications. If such
DRAM modifications are incorporated into the future DRAMs, we expect our
co-design to yield even better performance improvements. This is because, exposing
the sub-array structures to the OS can enable soft-partitioning at a sub-array
granularity, resulting in reduced contention and increased BLP.
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Chapter 7
Dynamically Reconfigurable Memory
System

7.1 Introduction
Many client, mobile, and data-center applications have a growing demand for
memories with faster access latency, larger capacity and higher bandwidth. With the
increasing popularity of many data-intensive applications including high-resolution
graphics and machine learning, memory is increasingly becoming a performance
bottleneck. Due to the significant speed disparity between CPUs and memory,
improvements in memory latency and bandwidth lead to substantial performance
improvements in memory-bound applications. This demand can be alleviated using
die-stacked or on-die memories (e.g., HBM [3], MC-DRAM [72], HMC [107]). For
example, Intel KNL systems use a 16 GB of MC-DRAM [72].

Unfortunately, it is cost-prohibitive to use more expensive memories as a sole
memory component in a system. This observation led to developing heterogeneous
memory systems1 that combine a fast memory component (e.g., die-stacked DRAM)
with a (typically larger) relatively slow memory components (e.g., DDR3/DDR4,
GDDR DRAMs) [4, 108, 109]. Many prior proposals use fast memory in a heteroge-
neous memory system as a cache [110–119]. Caches provide performance advantages
due to spatial and temporal locality where a large fraction of memory references

1Note that a heterogeneous memory system can refer to memories differing in technology,
volatility, endurance etc. In this work however, heterogeneous memories refer to memories having
varying access-times/bandwidth.
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access fast memory. However, since caches duplicate data, they reduce the overall
OS-visible memory capacity which degrades performance for high memory-footprint
applications. This is especially a problem when fast memory constitutes a large
fraction of the overall memory capacity, and when a multi-program workload strains
memory capacity resources.

To enable the performance improvements of fast memories while avoiding the
capacity reduction of using them as caches, Part of Memory (PoM) architectures
which expose the stacked DRAM to OS to enhance the overall OS-visible capacity
have been proposed [120–123]. PoM architectures could be hardware-managed
[120,123] or could be used as an OS-managed NUMA system [121,122]. OS-managed
memory systems provide a low-overhead mechanism to achieve performance, but do
not react quickly to changing memory demands of running applications. Hardware-
managed PoM systems adapt quickly to changing memory demand and therefore
outperform OS-managed heterogeneous memory, but this comes at the expense of
higher area and power to manage hardware address indirection and large region
swaps between fast and slow memories [123]. Due to the necessity of swapping
large segments or pages between fast and slow memories, PoM incurs a large power
overhead, and could degrade performance when swaps interfere with on-demand
memory accesses.

In this work, we propose and evaluate a novel architecture, Chameleon, which
attempts to achieve the best of cache and PoM architectures using a hardware-
software co-design. Chameleon uses a hardware-managed PoM as the baseline
to achieve its capacity advantages. However, we rely on the operating system to
inform hardware of any pages that have been allocated or freed using two new
instructions: ISA-Alloc and ISA-Free. Based on this information from the OS,
Chameleon attempts to use freed pages in fast memory as a hardware-managed
cache, therefore avoiding the expensive page swap operations. Chameleon switches
between cache and PoM modes based on the available free-space.

To the best of our knowledge, this work represents the first work that provides
a hybrid solution that dynamically adapts separate memory regions to use as a
cache or PoM. More specifically, this work makes the following contributions:
1. We demonstrate that different workloads exhibit different memory-footprints

over time.
2. We propose a novel architecture, Chameleon, which uses free pages in fast
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memory to implement a hardware-managed cache. This architecture provides
PoM-like memory capacity with cache-like performance.

3. We propose simple changes in the instruction set architecture to support
Chameleon. With two new instructions, the OS can inform the hardware
when a page is freed or allocated, allowing Chameleon to use free pages as a
cache.

4. We show that Chameleon achieves the best of both PoM and cache architectures,
outperforming a PoM baseline by 11.6% and a latency-optimized cache by 24.2%.

7.2 Background and Related Work

7.2.1 Single-Socket Heterogeneous Memory System: NUMA
Dichotomy

With the advent of high-bandwidth stacked DRAM memories integrated on the
die through a silicon transposer, each socket is itself turning into a NUMA system.
This is because, accesses to the on-chip stacked DRAM are faster compared to
off-chip memory. Figure 7.1b shows a block-diagram of a heterogeneous system
containing both stacked DRAM and off-chip DRAM in the same socket.

7.2.2 NUMA-Aware System-Software Optimizations

7.2.2.1 NUMA-Aware Memory Allocator

Traditional NUMA-Aware Linux and VMware ESXi, by default, cater to the memory
allocation requests of a task by allocating the data in the same socket on which
the task is currently running to maximize local memory accesses [124,125]. This
is widely referred to as “first-touch” based allocation or local memory allocation
policy in Linux. These allocation policies improve performance by minimizing
remote memory accesses.

7.2.2.2 Linux Automatic NUMA Balancing (AutoNUMA)

Linux supports an advanced Automatic NUMA balancing mechanism to enhance
the locality between the executing task and its corresponding memory [66]. On a
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Figure 7.1: (a)Two-socket homogeneous memory system, and (b) Single-socket
heterogeneous memory system
multi-socket system, AutoNUMA keeps track of local-to-remote memory accesses
by poisoning some set of pages (i.e., invalidating the corresponding page table
entries). As a result, a processor load/store to the corresponding page results
in a page-fault. In a given epoch, referred to as “numa_balancing_scan_period”
in AutoNUMA, Linux calculates the “remote-to-local page-fault ratio”. At the
end of numa_scan_period epoch, if the remote-to-local page-fault ratio exceeds a
threshold (referred to as “numa_period_threshold”), the misplaced pages which
caused remote page-faults are migrated from the remote socket’s memory to the
local socket’s memory. Depending on the remote-to-local page-fault ratio, the
numa_scan_period is updated dynamically so that the misplaced pages can be
migrated quickly to the local socket.

One important issue in AutoNUMA is that memory pages are migrated from
the remote to local socket only till there is enough free space available in the local
socket’s memory. If there is no free space left in local sockets’ memory, misplaced
page migration fails with “-ENOMEM" error in AutoNUMA. If the remote-to-local
fault ratio continues to increase, since AutoNUMA can no longer migrate memory
pages to local socket, it migrates the task from a current socket (say socket-0) to
socket-1 to minimize remote memory accesses.

7.2.3 Hardware-Managed Heterogeneous Memory

In the context of single-socket heterogeneous memory systems, the hardware-
managed techniques for stacked DRAM primarily falls into three categories: (1)
cache-based systems and (2) extension to off-chip memory systems, and (3) statically
reconfigurable heterogeneous memories.
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7.2.3.1 Stacked DRAM as Cache

A large body of recent work has looked at utilizing stacked DRAM as another
cache between the last level cache (LLC) and system memory [112–117,119,126].
A DRAM cache provides good performance and software transparency, but needs
to appropriately organize the cache structure (data and tags). To study the
architectural implications of DRAM cache, prior proposals looked at direct-mapped
[117], set-associative [116, 119] and fully-associative [115] cache designs. The
DRAM cache design in [115] minimizes the cache-tag overheads by employing a
novel virtual-to-cache address mapping scheme (cTLB).

7.2.3.2 Stacked DRAM as Part of Memory

Recent work also studied the usage of stacked DRAM as an OS-visible extension
to off-chip memory [120,123,127–129]. In particular, [127,128] proposed software-
hardware approaches require OS to detect and collect page access information by
identifying the first requested pages and the hot pages (FTHP). However, other
proposals [120,123] explored hardware-based redirection by employing a hardware
remapping table to ensure high stacked DRAM hit rates. PoM [123] used 2KB
segments while CAMEO [120] used 64B segments. Hence, PoM had lower meta-data
overhead while CAMEO used less bandwidth.

7.2.3.3 Statically Reconfigurable Heterogeneous Memories

Realizing the importance of stacked DRAM capacity, Intel KNL supports various
modes [72] of stacked DRAM (referred to as MC-DRAM) operation. These modes
includes entire 100% cache-mode and 100% OS-visible flat (memory) mode. KNL
also supports a hybrid-mode where it can be statically split to use 25% of stacked
DRAM as cache while 75% is used as OS-visible memory; or to use 50% of MC-
DRAM as a cache and 50% as memory.
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Figure 7.2: (a) NUMA-Aware Allocator (b) AutoNUMA Stacked DRAM hit rates,
(c) Cloverleaf AutoNUMA timeline (for 90% threshold).
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Figure 7.3: Inter-Workload Memory Footprint Variation Over Time (spanning over
2 days).

7.3 Challenges in Architecting Performance-
Optimized Heterogeneous Memory
In this section, we describe some OS- and hardware-managed alternatives that
could improve the performance of a heterogeneous memory system. We illustrate
the role of memory capacity on overall system performance, and show that dif-
ferent workloads exhibit different memory usage over time. We explain some of
the challenges facing these architectural alternatives to motivate our Chameleon
architecture.

7.3.1 OS-based NUMA Allocation

7.3.1.1 NUMA-Aware Memory Allocator

The Linux NUMA-aware “First-touch" allocator (Section 7.2.2.1, [130]) tries to
allocate as many pages as possible in the faster, stacked DRAM to increase the
stacked DRAM hit rate. Figure 7.2a shows the stacked DRAM hit rate for high
memory footprint workloads in a system containing 4GB stacked DRAM and
20GB off-chip DRAM. The average stacked DRAM hit rate for these high footprint
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workloads is as low as 18.5%. This low stacked DRAM hit rate is due to two main
factors. First, the non-proportional capacity of the stacked DRAM compared to
the off-chip DRAM limits the data that a stacked DRAM can accommodate (4GB
in our experiments) before it runs out of memory. Second, the OS lacks adequate
hot-page prediction mechanisms. Employed page allocation strategies can result in
some of the hot-pages getting allocated in the off-chip DRAM, reducing stacked
DRAM hit rate.

Our results demonstrate that the NUMA-Aware first-touch memory allocator
policy is not optimal for heterogeneous memory systems as it results in severe
under-utilization (low hit rate) of the faster stacked DRAM.

7.3.1.2 Linux AutoNUMA

Some of the shortcomings mentioned in Section 7.3.1.1, are successfully handled
by Linux AutoNUMA [66]. Figure 7.2b shows the stacked DRAM hit rate for a
4GB stacked + 20GB off-chip DRAM system for different numa_period_threshold
values (70%, 80% and 90%). The higher numa_period_threshold yields better
stacked DRAM hit rates, on an average of 64.4% as the mis-placed (off-chip DRAM)
pages are migrated more rapidly in to the stacked DRAM. Though the average
hit rate of AutoNUMA is better compared to the NUMA-Aware allocator, the
hit rates are still not desirably high. Specifically, the workloads like Cloverleaf
have a cumulative hit rate as low as 30.7% (for 90% threshold). Figure 7.2c, a
timeline graph helps us reason about the lower hit rate in the Cloverleaf workload.
The primary Y-axis represents the number of pages migrated per epoch, while the
secondary Y-axis shows the stacked DRAM hit rate2. The X-axis represents the
timeline where each epoch is 10 million processor cycles. With time, as the number
of mis-placed pages migrated from off-chip DRAM to the stacked DRAM increases,
the stacked DRAM hit rate increases, reaching a maximum of around 77.1% at the
81st epoch. However, after epoch 81, as can be observed, the stacked DRAM hit
rate reduces gradually from 77.1% to 30.7%. This is because as pages are migrated
from the off-chip to the stacked DRAM, the stacked DRAM capacity becomes
full. With no free space available to accommodate the mis-placed pages in stacked
DRAM, no more pages are migrated and hence the hit rate drops with time ending

2Note that there are already pre-allocated memory pages in the stacked DRAM as it is exposed
to OS in AutoNUMA.
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Figure 7.4: Impact of capacity on overall system performance, normalized to a
system with 16GB overall capacity.
with 30.7%. The lower stacked DRAM hit rates in AutoNUMA is attributed to the
following reasons:
• The single-socket heterogeneous systems contains a non-proportional stacked

DRAM capacity unlike the multi-socket systems which contain local memory
capacity similar to that of remote memory. Hence, there is a high chance that
AutoNUMA can find free memory available in the case of multi-socket system
compared to single-socket stacked DRAM system. As a result, AutoNUMA
optimized for multi-socket systems does not consider evicting pages from local
memory to accommodate misplaced pages to be migrated from the remote
memory.

• Even if there is no free space available in the multi-socket system to migrate
pages, AutoNUMA increases the local memory accesses by migrating the task
to the remote socket. However, this is not feasible in single-socket systems.

• Even in a system with higher free memory space available, since the
numa_balancing_scan_period is on the order of milliseconds, the page mi-
gration happens at a very coarse – millions of CPU cycles – granularity, as
identified in [123].
Summarizing the observations from Sections 7.3.1.1 and 7.3.1.2, the OS-based

NUMA optimizations for multi-socket systems do not fare well in single-socket
heterogeneous memory systems. They under-utilize the faster stacked DRAM
severely, resulting in lower stacked DRAM hit rate. This motivates hardware-
managed schemes which can respond to applications’ access patterns at a finer –
tens to hundreds of CPU cycles – granularity, with flexibility to evict pages from
stacked DRAM without necessitating task migrations.
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Figure 7.5: Impact of capacity on pagefaults and CPU Utilization for high memory
footprint workloads.
7.3.2 Memory Free Space over Time

Figure 7.3 shows the free memory space over time in a system with 24GB overall
DRAM capacity. These experiments are conducted on an Intel Xeon CPU E5-2620
(more details about the machine configuration can be found in [131]) running
workloads sequentially one after the other spanning over more than 2 days. Each
workload in this experiment contains 12 copies of the same application executed in
the rate mode [132]. The applications chosen are from SPEC2006 [44], NAS [133],
stream [96], and Mantevo [46] suites. The applications used in the workloads
for Figure 7.3 can be observed on the X-axis in Figure 7.4. The free memory
information is collected using numastat [134] tool in Linux, periodically once every
2 mins.

Figure 7.3 shows that workloads exhibit varying demands on memory over
time. The amount of free space in the system can vary from few (including zero)
MegaBytes (MBs) to several GigaBytes (GBs).

7.3.3 Impact of Memory Capacity on Performance

As discussed in Section 7.3.2, different workloads are effected differently based on
the OS-visible memory capacity. Figure 7.4 shows the ramifications of limiting
the overall capacity of a workload as the overall OS-visible capacity is varied from
16GBs to 28GBs, in steps of 2GB, on our Intel Xeon CPU machine [131]. Some
applications are agnostic to this variation as their entire memory footprint fits into
smaller memory capacity. However, some workloads are sensitive to the overall
capacity. The performance improvements reported in Figure 7.4 are normalized to
a system with 16GB capacity and is calculated as follows:

%ImprovementxGB =
((Exec.T ime)16GB − (Exec.T ime)xGB) ∗ 100

(Exec.T ime)16GB

. (7.1)
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As the capacity increases from 18GB to 24GB, the average execution time
improvement across all the workloads improves from 29.5% to 75.4%, saturating
at 75.4% for 26GB and 28GB capacities. The results in Figure 7.5 help us un-
derstand the variation of performance with the memory capacity. The results on
the primary and secondary Y-axes represent the average number of page-faults
(in millions) encountered by the workload and the average CPU utilization of the
tasks respectively at the corresponding memory capacity. With the increase in the
capacity, the average number of page-faults encountered by OS decreases and the
average CPU utilization increases. At lower capacities, most of the time is spent
swapping the pages between the DRAM and secondary storage, resulting in poor
CPU utilization as the tasks wait in Uninterruptible (“D") state in Linux during
the swap. As the capacity increases, page-faults reduce, thereby enabling the tasks
to continue in Running (“R") state resulting in 100% CPU utilization.

From Figures 7.4 and 7.5, we can conclude that insufficient memory capacity
can result in severe performance degradation. It is also clear (Figure 7.3) that
memory demand is a function of the workload running on the system. The design
decision of stacked DRAM plays a critical role in overall system performance.

7.3.4 Stacked DRAM as A Cache

While a cache adapts quickly to changing workload behavior, dedicating a memory
region as a cache can significantly degrade performance. For example, in Figure 7.3,
using 6GB out of the total 24GB capacity as a cache can cause severe performance
degradation for workloads operating in regions 1 , 2 , 3 , 4 and 5 . This is
because the overall OS-visible capacity of the system will only be 18GB causing
the workloads with higher memory footprints to experience page-faults. A 4GB
stacked DRAM cache limits the overall capacity to 20GB, degrading workloads
operating in regions marked by 1 , 2 , 3 and 5 . Even a 2GB stacked DRAM
cache would degrade workloads in regions 1 and 5 . Hence, depending on the
capacity of stacked DRAM, the decision of using stacked DRAM as a cache will
have adverse-effects on performance/energy of some workloads.
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7.3.5 Stacked DRAM as PoM

To avoid memory capacity loss incurred by caches, stacked DRAM can be used
as Part of OS-visible Memory (PoM). However, PoM can substantially increase
demand for both on-chip and off-chip memory bandwidth. For example, for a
stacked DRAM with capacity 6GB out of 24GB, workloads operating in all the
regions except 1 - 5 will have to swap segments between stacked and off-chip
DRAM on every stacked DRAM miss. Such a PoM design would even swap
segments from unallocated OS addresses containing invalid data thereby wasting
memory bandwidth. For smaller (e.g., 2GB and 4GB) stacked DRAMs, swaps and
wasted bandwidth would increase further. Hence, the static decision of designing
a stacked DRAM as PoM can result in free-space agnostic swapping, resulting in
severe performance degradation, as will be demonstrated in Section 7.6.

7.3.6 Ideal Heterogeneous Memory System

An ideal heterogeneous memory design would dynamically provide maximum
performance by:
• Reducing page faults for capacity-limited workloads by dynamically operating

in the part-of-memory (PoM) mode.
• Optimizing the overhead of swaps for the OS-visible free space by operating in

cache mode.
• Optimizing the meta-data (remapping table) overheads.

We propose a novel hardware-software co-design based system which dynamically
reconfigures the heterogeneous memory system based on the overall system state.
Our proposed system opportunistically converts the OS-visible free space in the
system to be used as a hardware-managed cache, while switching to part-of-memory
mode for capacity-limited workloads. Based on the free space available in the
system, our co-design can operate certain memory regions in the PoM mode while
operating the rest in the cache mode. We propose two incarnations of our co-design:
(1) CHAMELEON and (2) CHAMELEON-Opt.
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7.4 CHAMELEON: Software Support
To communicate the allocated/unallocated3 physical addresses to hardware, we
propose two new processor ISA instructions: ISA-Alloc and ISA-Free. These
instructions are used by OS.

Algorithm 13 OS Memory Allocator Routine
struct page * __alloc_pages(gfp gfp_mask, unsigned int order, struct zonelist zonelist, nodemask_t
nodemask) {
...
page = get_page_from_freelist(gfp_mask, order) if (page != NULL) goto out ...
page = alloc_pages_slowpath(gfp_mask, order) out:
if (page != NULL) {
pageNum = page_to_pfn(page) pageSize = 0 if (gfp_mask contains (GFP_TRANSHUGE or
GFP_TRANSHUGE_LIGHT ) set) {
pageSize = HPAGE_PMD_SIZE } else {
pageSize = PAGE_SIZE }
numIterations = pageSize/SegmentSize for (i: 0, numIterations-1) {

segmentNum = pageNum + (i * segmentSize) ISA_Alloc(segmentNum)
}
}

return page;

}
static inline void ISA_Alloc(volatile void *p) {
asm volatile ("isaalloc %0" : "+m"(*(volatile unsigned int *)p));
}

Apart from traditional 4KB pages [135], the OS employs transparent huge-pages
(THPs) [136] and giant pages [137], to reduce the page-table overheads for workloads
with huge memory footprint. Hence, in Chameleon, depending on the granularity
of a segment in a segment-group and depending on the granularity of the page
being allocated/unallocated, each call to the OS memory allocator/reclamation
(free) routines can result in multiple correspondng ISA-Alloc/ISA-Free invocations.
In a Chameleon system, Algorithms 13 and 14 present the memory allocator and
free routines in OS instrumented with ISA-Alloc and ISA-Free invocations.

As can be observed in line 12 of Algorithm 13, the “gfp_mask" flag in Linux
contains the necessary bits to identify the corresponding granularity of allocation.
GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT flags represent the THP
allocation requests in Linux and help us detect the granularity of allocation. How-
ever, while reclaiming the free-space, since gfp_mask flag is not passed around, the
“order" used by Linux can aid in detecting the granularity of the page being freed.

3We use the terms unallocation, reclamation and freed synonymously in the rest of the work.

119



The order is formally defined in [138] and equals log2(pageSize). The ISA-Free
invocation in Linux can be observed in line 19 of Algorithm 14.

Algorithm 14 OS Reclamation Routine
static inline void __free_one_page(struct page * page, unsigned long pfn, struct zone * zone, unsigned
int order, int migratetype) {
pageNum = page_to_pfn(page)
...
list_add(&page–>lru, &zone–>free_area[order].free_list[migratetype]);
out:
zone–>free_area[order].nr_free++;

if(page != NULL) {
pageNum =page_to_pfn(page)
pageSize = 0

if (order == HPAGE_PMD_ORDER) {
pageSize = HPAGE_PMD_SIZE } else {
pageSize = PAGE_SIZE }
numIterations = pageSize/segmentSize for(i: 0, numIterations-1) {
segmentNum = pageNum + (i * segmentSize) ISA_Free(segmentNum)
} }
return 0;
}
static inline void ISA_Free(volatile void *p) {
asm volatile ("isafree %0" : "+m"(*(volatile unsigned int *)p));
}

The “segmentSize" in Algorithms 13 and 14 refers to the segment size employed
by Chameleon. The various segment granularities supported by the hardware in
Chameleon can be easily detected by the OS during boot time. Based on the
segment and the allocation granularities, the number of ISA-Alloc and ISA-Free
invocations vary. For a 2MB THP allocation/reclamation and for a 2KB segment
employed in PoM [123], ISA-Alloc/ISA-Free is invoked 1024 times. However, for a
64-byte cache-line segment employed by CAMEO [120], ISA-Alloc/ISA-Free needs
to be invoked 32,768 times. By communicating the allocated/unallocated physical
addresses to hardware, hardware can make informed decisions on the operating
mode of corresponding memory region.

7.5 CHAMELEON: Hardware Support
Based on the communication from the OS to hardware via the ISA-Alloc and ISA-
Free instructions, hardware dynamically reconfigures the heterogeneous memory
such that certain sections of the overall-memory will operate in PoM-mode while
the others in cache-mode.
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As covered in Section 7.2.3.2, Sim et al in [123] proposed a hardware remapping
based PoM management scheme. In their design, stacked DRAM is exposed to
the OS and the segments from off-chip DRAM and swapped with a segment in
stacked DRAM. Each segment is 2KB in granularity in their approach. To reduce
the remapping meta-data overheads, Sim et al. employed a Segment-Restricted
Remapping technique in [123]. In this technique only the segments with in a
“Segment Group" can be swapped with one another. Each Segment Restricted
Remapping Table entry in their approach employs a “Shared counter" which aids in
swapping the most-frequently used off-chip segment with the corresponding stacked
DRAM segment. In summary, combined with coarse 2KB segment granularity
and the Segment Restricted Remapping, their technique minimizes the meta-data
overheads while successfully mapping the most-frequently accessed segments in
stacked DRAM, allowing higher stacked DRAM hit rates. In our Chameleon co-
design, we augment the Segment-Restricted Remapping Table (SRRT) employed
in [123]4, as shown in Figure 7.6, with additional hardware structures.

The augmented data-structures are shown in red-color (pattern) in Figure 7.6.
Apart from the remapping tag-bits and the shared counter in [123], each SRRT
entry contains additional Alloc Bit-Vector (ABV), the mode-bit, and the dirty-bit.

In a segment-group, the Alloc Bit-Vector (ABV) signifies whether the correspond-
ing segments have been allocated by the OS (communicated via ISA-Alloc/ISA-Free)
or not. If a segment is allocated, the corresponding bit in the ABV is set to 1; else,
it is set to 0 (indicating the segment is free). The number of entries in the ABV is
equal to the number of segments per segment-group, which is in turn effected by
the capacity-ratio between the stacked and off-chip memories. When the system is
initially booted, all the bits in the ABV are set to 0, and the bits will be set to 1
as and when the ISA-Alloc is invoked by the OS allocation routine. The mode-bit
signifies the operating mode of the segment-group. The mode-bit is set to 0 if the
segment-group is operating in the part-of-memory (PoM) mode, and is set to 1 if
it is operating in cache-mode. Further details involved in the transitions between
PoM- and cache-modes are covered in later part of this section. If a segment-group
is in the cache-mode, the dirty-bit in the SRRT indicates if the segment currently

4Note that as CAMEO [120] employs a finer-granular 64-byte segments. They employ a huge
LLT to track the remapped cache-lines. Though, our Chameleon can augment the CAMEO
design, as explained in Section 7.4, the number of segment-groups impacted by an ISA-Alloc or
ISA-Free is quite high in CAMEO compared to PoM [123].
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Figure 7.6: Segment Restricted Remapping Table (SRRT) Entry used in our
Chameleon co-design.
residing in stacked DRAM is modified or not. As a result, the dirty-bit indicates if
the segment needs to be written-back to off-chip memory or not during eviction
from stacked DRAM. If the segment is modified, the dirty-bit is set to 1; else, it is
set to 0. If the segment-group is operating in PoM-mode, the dirty-bit is set to a
don’t care “XX" state.

Having understood the SRRT in Chameleon, let us now look at how the hardware
dynamically re-configures the heterogeneous memory system to switch between
the PoM- and cache-modes based on the allocated/unallocated physical addresses
communicated by the OS. At a very high-level, an ISA-Alloc instruction can
transition segment-group(s) from the cache-mode to PoM-mode, while an ISA-Free
instruction can transition the segment-group operating in the PoM-mode to the
cache-mode. However, not all the ISA-Alloc and ISA-Free instructions for the
physical addresses in a segment-group will trigger the transitions. This is because,
the overall state of a segment-group, i.e., the number of allocated/unallocated
segments governs whether an ISA-Alloc or ISA-Free instruction will trigger a
transition or not.

Before looking into the scenarios which trigger the transitions, it will help
to understand the notation in SRRT shown in Figure 7.6. The segments- A,
B, C, D, E and F shown in the SRRT represent the actual physical segments
that are part of a segment-group represented by SegGrp-X in the figure. For a
4GB stacked DRAM, a segment from stacked DRAM will have physical address
in the range [0, 0xFFFFFFFF]5 , while off-chip segments will belong to range
[0x100000000, 0x5FFFFFFFF]5 for a 20GB off-chip DRAM. The tag-bits in Figure
7.6 signify where a corresponding physical address is remapped to (or cached at) in
a segment-group.

5Aligned at the 2KB segment boundary
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Figure 7.7: Chameleon ISA-Alloc Transition Flow-chart.
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Figure 7.8: Chameleon ISA-Alloc Transition (Example).
7.5.1 Chameleon Design

In our basic Chameleon co-design, OS-visible free-space available in the stacked
DRAM can only be leveraged as a cache. As a result, the transitions from PoM- to
cache-mode and vice-versa in Chameleon is only triggered by ISA-Alloc/ISA-Free
for addresses belonging to the stacked DRAM address range.

7.5.1.1 ISA-Alloc Transitions

Figure 7.7 shows the flow-chart for ISA-Alloc transitions in Chameleon. If the
ISA-Alloc is for a off-chip DRAM physical address, as can be observed in the flow
1 → 2 → 4 → 5 in Figure 7.7, the segment-group continues to operate in the
previous mode without any transitions. However, if the ISA-Alloc is for a stacked
DRAM physical address, the segment-group will be operating in the cache-mode
before encountering this ISA-Alloc. However, by the time ISA-Alloc is encountered,
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the segment in stacked DRAM could be caching an off-cip segment or not.
Figure 7.8(a) represents a scenario where ISA-Alloc is encountered when none

of the off-chip segments is cached in the stacked DRAM (tag-bits representing: 00).
In such a scenario, ISA-Alloc will follow the flow: 1 → 2 → 3 → 7 → 8 . From
Figure 7.8(a), since segment-A is not allocated, the ABV for segment-A is still 0
while the segment-group (Grp-X) is operating in cache mode (mode-bit: 1). As
shown in Figure 7.8(b), after ISA-Alloc, the ABV for segment-A is set to 1 and the
segment-group transitions to PoM-mode.

For the other scenario, where an off-chip segment is cached in the stacked
DRAM indicated by the tag-bits. If the dirty-bit is set, the corresponding segment
is written back to the original segment, else the tag-bits can be simply over-written
indicating that the original stacked DRAM segment itself resides in stacked DRAM.
This is represented by the flow: 1 → 2 → 3 → 6 → 8 in flow-chart in Figure
7.7. Finally, the ABV for the stacked DRAM segment is set to ’1’ indicating that
it is allocated.

7.5.1.2 ISA-Free Transitions

Figure 7.9 shows the flow-chart for ISA-Free transitions in our Chameleon design. As
discussed before, for an ISA-Free to off-chip physical address, there is no transition
in segment-group modes; just the corresponding ABV bit is set to ’0’.

If an ISA-Free is encountered for stacked DRAM physical address, prior to
encountering ISA-Free, the segment-group will be operating in PoM-mode. Similar
to the discussion in ISA-Alloc transitions, there are two scenarios for ISA-Free
depending on whether the segment to be freed is remapped with something else
or not. If the tag-bits indicate the segment to be freed is not re-mapped, the
corresponding ABV bit is set to ’0’ and the segment-group transitions to cache-
mode following the flow: 1 → 2 → 3 → 7 → 8 . The tag-bits are set to ’00’
indicating none of the segments are cached in stacked DRAM.

If the segment to be freed is currently not in stacked DRAM as depicted in
Figure 7.10(a). As shown in the figure, the original stacked DRAM segment ’A’ is
remapped to off-chip DRAM segment ’C’, while ’C’ is itself is remapped to ’B’. This
can happen with the following re-mappings. Initially the state is: A, B and C, with
A in stacked DRAM and B, C in off-chip DRAM. If segment-C is accessed more
frequently, based on the fast-swaps implemented in [123], C will be swapped with
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Figure 7.10: Chameleon ISA-Free Transition (Example).
A making the state: C, B and A. This ensures that the most-frequently accessed
segment-C resides in stacked DRAM. After such a remapping, in the next program
phase, segment-B is accessed more frequently, resulting in swapping of segments-
C and B, arriving at a state in Figure 7.10(a) . Now, if ISA-Free happens for
segment-A which is the original stacked DRAM segment, the segment-A needs
to be swapped with the current segment-B in stacked DRAM before it is freed.
Finally, after swapping, as shown in Figure 7.10(b), the segment-A’s ABV is set to
’0’ and the segment-group transitions to cache-mode from PoM-mode following the
flow: 1 → 2 → 3 → 6 → 8 .

7.5.2 Optimized Chameleon (Chameleon-Opt) Design

The Chameleon design discussed in Section 7.5.1 can only leverage the OS-visible
free-space in stacked DRAM to be used as a cache even though there are available
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free segments in the off-chip memory. Consequently, Chameleon is not optimal
in terms of leveraging the total available free-space in the system. To overcome
these limitations, we present an optimized co-design,Chameleon-Opt, which can
pro-actively remap segments in the stacked DRAM to off-chip memory. Such a
design can convert the free-space available in both the stacked DRAM and off-chip
DRAM to be used as a cache. This optimized design outperforms the Chameleon
design, as will be demonstrated in Section 7.6.

7.5.2.1 ISA-Alloc Transitions

Figure 7.11 shows the flow-chart for an ISA-Alloc instruction in Chameleon-Opt.
The ABV bits play a crucial role in Chameleon-Opt as they signify when to switch
the segment-group from one mode to another. At a very high-level, in Chameleon-
Opt, a segment-group remains in cache-mode as long as one of its ABV bits is 0,
and it switches to the PoM-mode when all the ABV bits are 1. The test-condition in
10 in Figure 7.11 represents this check. Hence, unlike Chameleon, a segment-group
in Chameleon-Opt continues to stay in the cache-mode even if it’s corresponding
stacked DRAM address has been allocated by the OS. Similarly, it switches to the
cache-mode even if an off-chip physical address has been unallocated (while stacked
DRAM segment still remains allocated). This is possible because Chameleon-Opt
pro-actively remaps the current segment residing in stacked DRAM to make the
OS-visible free-space available in either of the stacked or off-chip DRAM to be
available as a free-space in stacked DRAM to leverage as cache.

Unlike Chameleon, in Chameleon-Opt, the segment-group which encounters an
ISA-Alloc would already be operating in cache-mode. This is because the very
reason that ISA-Alloc is encountered infers that there is at least one OS-visible free
segment in the segment-group. As a result, in Chameleon-Opt, the segment-group
prior to executing ISA-Alloc always operates in cache-mode. The actions triggered
for ISA-Alloc depends on the segment currently residing in the stacked DRAM
as well as whether the ISA-Alloc is for a stacked DRAM physical address or not.
Following flow: 1 → 2 → 3 → 4 → 5 → 6 in Figure 7.11, as the segment-group
operates in cache-mode and there is no segment cached in stacked DRAM (as the
tag-bits match the segment being allocated). Therefore, the ISA-Alloc will directly
set the ISA-Alloc’ed segments’ ABV to ’1’ and transitions the segment-group to
PoM-mode. This is because condition-check at 4 confirmed that there is no other
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Figure 7.11: Chameleon-Opt ISA-Alloc Transition Flow-chart.
OS-visible free segments in the segment-group.

BA

00Grp - X 1

C

0 cntr

ABV

0 1 001 10

Mode Dirty C B

10 1

A

0 cntr

ABV

1 1 001 00

Mode Dirty

Grp - X

Before ISA-Alloc After ISA-Alloc

(a) (b)
‘A’ is pro-actively re-mapped to C.

Figure 7.12: Chameleon-Opt ISA-Alloc Transition (Example-1).

Figure 7.12(a) shows one possible scenario for a state prior to executing ISA-
Alloc instruction following flow: 1 → 2 → 3 → 4 → 7 → 8 → 6 of the
flow-chart in Figure 7.11. As can be observed, segments- A and C are not allocated,
while B is allocated, represented by ABV bits: 0 1 0. And, currently the segment-
group is operating in cache-mode (mode-bit: 1). As the stacked DRAM tag-bits
match for segment-A, no other segment is currently cached in stacked DRAM. For
ISA-Alloc to segment-A, in Chameleon, segment-A is allocated in stacked DRAM
(setting it’s ABV bit to 1) and the segment-group would have transitioned to
PoM-mode. However, in Chameleon-Opt, as depicted in Figure 7.12(b), segment-A
is pro-actively remapped to Segment-C in off-chip DRAM. Hence, tag-bits in C is
set to "00" while the stacked DRAM segment is set to that of "10" aka segment-C.
Since segment-C is never allocated, it will never result in a stacked DRAM hit
allowing for either of segments- B or C to be cached. As a result, in Chameleon-Opt,
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the segment-group still operates in cache-mode unlike Chameleon. This clearly
demonstrates how Chameleon-Opt retains free-space in stacked DRAM to be used
as a cache.
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Figure 7.13: Chameleon-Opt ISA-Alloc Transition (Example-2).

Figure 7.13(a) shows a possible scenario for a state prior to executing flow:
1 → 2 → 9 → 8 → 10 → 6 . As can be observed, following pro-active re-
mapping explained in Figure 7.12(b), segment-A is remapped to off-chip memory
and stacked DRAM caches an off-chip segment B in stacked DRAM as depicted
in Figure 7.13(a). Since the segment-group is in cache-mode, the ISA-Alloc’ed
segment-C will be allocated in stacked DRAM, changing the corresponding tag-bits
to ’10’ as shown in Figure 7.13(b). As all the ABV bits are ’1’, the segment-
group transitions to PoM-Mode. While in flow 1 → 2 → 9 → 8 → 10 → 11 ,
since there are more unallocated segments, segment-group continues to operate in
cache-mode.

The other flows in Figure 7.11 are pretty straight-forward. For example, flow:
1 → 2 → 3 → 8 → 10 → 6 tackles a scenario where the ISA-Alloc to off-
chip address which is not remapped with any other segments with all the other
segments allocated by OS. In this case, the segment is allocated at the original
off-chip address and the segment-group transitions to PoM-mode. While in flow
1 → 2 → 3 → 8 → 10 → 11 , since there are more unallocated segments,
segment-group continues to operate in cache-mode.

7.5.2.2 ISA-Free Transitions

The ISA-Free instruction has a little complicated flow-chart in Chameleon-Opt
design as can be observed in Figure 7.14. This is because apart from the free-space
available in stacked DRAM, Chameleon-Opt pro-actively converts the free-space
available in off-chip DRAM to be visible as free-space in stacked DRAM to be
leveraged as cache. The pro-active free-space creation in Chameleon-Opt can be
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Figure 7.14: Chameleon-Opt ISA-Free Transition Flow-chart.
observed in the flow: 1 → 2 → 3 → 4 → 5 → 7 . Figure 7.15 presents a
scenario which demonstrates this flow before and after ISA-Free for an off-chip
segment. In Figure 7.15(a), it can be observed that the segment-group is operating
in PoM-mode as all the segments are allocated by the OS. As the ISA-Free for
off-chip segment-C is encountered, segment-C ’s ABV bit is set to ’0’. However,
the stacked DRAM segment, segment-A is remapped to C before switching to the
cache-mode as can be observed in Figure 7.15(b).
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Figure 7.15: Chameleon-Opt ISA-Free Transition (Example).

The other flow, 1 → 2 → 3 → 4 → 5 → 6 , represents a scenario similar to
the one depicted in Figure 7.15(a), except that the segment-group is already in the
cache-mode as there are more free-segments in the segment-group. As a result, the
segment-group continues to operate in cache-mode, just the corresponding ABV
bit is set to ’0’. The flows 1 → 2 → 3 → 12 → 13 → 14 and 1 → 2 →
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Figure 7.16: PoM to Cache mode segment group distribution.
3 → 12 → 13 → 15 represent scenarios, where the ISA-Free is encountered for
stacked DRAM addresses that are neither caching nor remapped with any off-chip
segments, respectively. ISA-Free transitions the segment-group to cache-mode if
it was previously operating in PoM-mode. The various other flows in Figure 7.14
correspond to cases where if segment being freed is re-mapped with other segments
or not and are easy to follow.

To summarize, as demonstrated in Figures 7.12(b) and 7.15(b), Chameleon-Opt
can opportunistically retain/create more free-space to be used as a cache compared
to Chameleon.

7.6 Evaluation

7.6.1 Experimental Setup

We evaluated our proposals using GEM5 simulator [101] executing a modified Linux
kernel. ISA-Alloc/ISA-Free are invoked in the OS memory allocator/reclamation
code using the pseudo-instruction support in GEM5 [139]. Our stacked and off-chip
DRAM models are based on the memory controller support in GEM5. Table 7.1
summarizes our simulated configuration. We simulated applications from various
suites discussed in Section 7.3.2 whose characteristics are presented in Table 7.2.
Our workloads are fast-forwarded to the region of interest and caches are warmed-up.
Our simulations execute a minimum of 500 million instructions per application.
With 12 copies, we simulate a minimum of 6 billion (500M*12) total instructions.
All the reported results are based on 4GB stacked and 20GB off-chip DRAM,
unless otherwise stated. In all the performance results reported in Section 7.6.2,
the performance reported is the geometric mean of Instructions committed Per

130



Cores 12 @ 3.6GHz (each), ALPHA ISA, out-of-order
L1(I/D) 32KB, 4-way associative, 64B cacheline
L2 Cache 256KB (private), 8-way associative, 64B cacheline
L3 Cache 12MB (shared), 16-way associative, MESI, 64B cacheline

Stacked DRAM Bus Frequency: 1.6GHz (DDR 3.2GHz),
Bus Width: 128 bits/channel, Capacity: 4GB,
2 channels, 2 ranks/channel, 8 banks/rank, 2KB row buffer,
tCAS-tRCD-tRP-tRAS: 11-11-11-28, tRFC: 138 nsecs

Off-chip DRAM Bus Frequency: 800MHz (DDR 1.6GHz),
Bus Width: 64 bits/channel, Capacity: 20GB,
2 channels, 2 ranks/channel, 8 banks/rank, 2KB row buffer,
tCAS-tRCD-tRP-tRAS: 11-11-11-28, tRFC: 530 nsecs

Table 7.1: Simulated Configuration.

Suite WL LLC- MF Suite WL LLC- MF
MPKI MPKI

SPEC2006

bwaves 12.91 21.86

Mantevo

cloverleaf 30.33 23.01
lbm 29.55 19.17 comd 0.71 23.52
cactusADM 2.03 20.12 miniAMR 1.44 22.40
leslie3d 12.18 21.65 hpccg 7.81 22.15
mcf 59.804 19.65 miniFE 0.48 22.55
GemsFDTD 20.783 22.56 miniGhost 0.19 20.68

NAS SP 0.87 21.72 Stream Stream 35.77 21.66

Table 7.2: Workload Characteristics (MF: Memory Footprint, WL: Workload,
MPKI: Misses Per Kilo Instructions)
Cycle (IPC) of all the benchmarks in a workload normalized with respect to the
corresponding baselines.

7.6.2 Results

Figure 7.16 shows the breakdown of the percentage of segment groups operating in
cache mode and PoM mode in Chameleon and Chameleon-Opt designs. On average,
9.2% of the segment groups operate in the cache mode in Chameleon compared to
40.6% in Chameleon-Opt. This is because Chameleon-Opt leverages the free space
available in the off-chip DRAM to be used as cache.

Figure 7.17 presents the stacked DRAM hit rate for the latency-optimized Alloy
Cache [117], PoM and both Chameleon designs. Since Alloy Cache employs a
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Figure 7.17: Stacked DRAM hit rate results.
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Figure 7.18: Normalized Swaps results.
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Figure 7.19: Swaps timeline for lbm workload.
latency-optimized direct-mapped cache design with 64B lines, it has the lowest
stacked DRAM average hit rate of 62.4%, while PoM with 2KB segments has
an average hit rate of 81%. In comparison, Chameleon and Chameleon-Opt have
average hit rates of 84.6% of 89.4%, respectively. This higher hit rates in Chameleon
and Chameleon-Opt can be attributed to more segment groups operating in cache
mode. As discussed in Section 7.3.5, PoM employs a “threshold" which signifies
the minimum number of accesses to an off-chip DRAM segment before it can be
swapped with a stacked DRAM segment. Since Chameleon does not employ any
such threshold for segment groups operating the in cache mode, it has a higher
stacked DRAM hit rate compared to PoM. Since more such segment groups operate
in cache mode in Chameleon-Opt, its hit rate is higher than Chameleon.
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Figure 7.20: Normalized IPC results.
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Figure 7.21: Average Memory Access Latency results.
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Figure 7.22: Normalized IPC results comparison.
Figure 7.18 quantifies the number of swaps incurred in PoM, Chameleon and

Chameleon-Opt designs. The results reported are normalized to the number of
swaps incurred in PoM. Due to many segment groups operating in the cache mode,
the overall number of swaps is reduced on an average by 14.4% and 43.1% in
Chameleon and Chameleon-Opt, respectively vs. PoM. Note that for a segment
group operating in cache mode, evicting a modified (represented by dirty bit)
stacked DRAM segment results in a writeback to off-chip DRAM before the stacked
DRAM segment is filled with an off-chip segment. This is effectively still a swap, as
the writeback of the modified segment still consumes both the stacked and off-chip
memories’ bandwidth. Hence in our Chameleon results reported, these scenarios
are still considered as swaps. Figure 7.19 shows the number of swaps-per-epoch
over time (each epoch 10 million CPU cycles) for lbm workload. Chameleon-Opt
consistently experiences a lower number of swaps over PoM and Chameleon.

Figure 7.20 shows the normalized IPC of various designs including Alloy Cache,
PoM, Chameleon, and Chameleon-Opt. There are two variant baseline systems,
both without stacked DRAM and the total capacity coming from off-chip DRAM.
While one baseline offers 20GB overall capacity, the other offers 24GB overall
capacity. The 24GB baseline does not incur any page faults unlike the 20GB
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capacity. The 24GB baseline system improves the Geometric Mean of IPC by
35.6% over the 20GB capacity baseline. As mentioned in Section 7.6.1, Alloy
Cache, PoM, Chameleon and Chameleon-Opt configurations all use a 4GB stacked
and 20GB off-chip DRAM, thereby having a total capacity of 24GB. Alloy Cache
experiences page faults for workloads with high memory footprints similar to both
baselines since it sacrifices total capacity to use as a cache. As a result, though it
improves the performance over the baselines, its performance is lower than other
alternatives for many workloads, as can be observed in Figure 7.20. PoM improves
the performance (Geometric Mean of IPC) over the 20GB and 24GB capacity
baselines by 85.2% and 36.5%, respectively. Chameleon improves the Geometric
Mean of IPC for all the workloads by 96.8% and 45.1% over the 20GB and 24GB
baseline systems respectively, and by 6.3% and 18.5% over PoM and Alloy Cache,
respectively. Chameleon-Opt improves the performance by 106.3% and 52.0% over
the 20GB and 24GB baseline systems respectively, and by 11.6% and 24.2% over
PoM and Alloy Cache, respectively. Such an improvement over the baseline systems
is mainly because Chameleon manages to cater for the high memory footprint by
averting page-faults, and could utilize the high bandwidth stacked DRAM more
efficiently, averting slow off-chip DRAM accesses. The success of Chameleon and
Chameleon-Opt over PoM is because of the increased stacked DRAM hit rate as
well as the reduced number of swaps, which reduces the average memory access
latency in Chameleon and Chameleon-Opt, as shown in Figure 7.21. Further, as
Chameleon-Opt can retain/create more free space in the stacked DRAM compared
to Chameleon, it achieves a higher hit rate with a lower number of swaps, thereby
lowering the overall memory access latency. Hence, Chameleon-Opt improves the
performance further by 4.8% over Chameleon.

7.6.3 Comparison with OS-based solutions

As discussed in Sections 7.3.1.1 and 7.3.1.2, the NUMA-Aware Memory Allocator
and AutoNUMA under-utilize stacked DRAM resulting in an stacked DRAM hit
rates of 18.5% and 64.4%. Therefore, these OS-based solutions do not leverage the
full potential of high-bandwidth stacked DRAM. Figure 7.22 shows that Chameleon
has an average improvement of 28.7% and 19.1% over NUMA-Aware Memory Allo-
cator and AutoNUMA respectively, while Chameleon-Opt improves the performance
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Figure 7.23: Polymorphic Memory [140] Comparison.
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Figure 7.24: Sensitivity distribution results for Chameleon-Opt.
by 34.8% and 24.9%.

7.6.4 Comparison with Polymorphic Memory

Chung, et al. [140] proposed a hybrid architecture which can leverage the free
memory available in stacked DRAM as cache. This patent is the closest work to
our proposal. Their proposed architecture could leverage the OS-visible stacked
DRAM free space as a cache, but it does not leverage the free space available
in off-chip DRAM to be used as a cache (unlike Chameleon-Opt). Though this
proposal achieves the same amount of free space as our original Chameleon design,
our original Chameleon co-design still outperforms their proposal by 10.5% as can
be observed in Figure 7.23. This is because Polymorphic Memory does not swap
the most frequently used pages from the off-chip DRAM with the ones in stacked
DRAM for OS allocated pages. Thus, apart from the cached segments, only pages
allocated by OS in stacked DRAM incur stacked DRAM hits thereby under-utilizing
the stacked DRAM. Chameleon and Chameleon-Opt improve the Geometric Mean
of the IPC by 10.5% and 15.8% over Polymorphic Memory, respectively.
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Figure 7.25: Sensitivity IPC results for Chameleon-Opt.
7.6.5 Sensitivity Results

Figure 7.24 shows the cache and PoM mode distribution for different ratios of stacked
and off-chip DRAM capacities. For a 1:3 ratio, the stacked DRAM contributes
a total capacity of 6GB, while the off-chip DRAM contributes 18GB and for 1:7
ratio, stacked DRAM contributes 3GB, while the off-chip contributes 21GB. As
the ratio of stacked-to-off-chip DRAM increases from 1:3 to 1:7, the number of
segment groups operating on an average increases from 33% to 48.7% vs 40.6% in
1:5 configuration. This is because as the number of segments per segment group
increases from 3 to 7, the probability of finding at least one free segment increases
in Chameleon-Opt thereby increasing the cache mode segment groups. Figure 7.25
represents the normalized performance corresponding to these ratios, and shows
that Chameleon-Opt consistently performs better across all ratios. For 1:3 ratio,
Chameleon and Chameleon-Opt improve the performance by 5.9% and 7.6% over
PoM respectively, while in 1:7 ratio, Chameleon and Chameleon-Opt improve the
performance by 8.1% and 12.4% over PoM, respectively.
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Chapter 8
Conclusion and Future Work

8.1 Conclusion
My thesis broadly looked at addressing the “memory wall” problem. At a high-
level my dissertation can be classified in to a three-pronged approach: hardware-
only, software-only and hardware-software co-design approaches to address the
performance-gap between the processor and memory.

As a hardware approach, I proposed Re-NUCA, a complete hardware approach
which wear-levels the Re-RAM based last-level caches in a performance-conscious
manner in a manycore processor. Re-NUCA is based on the notion that not all the
loads are critical for performance. As a result, Re-NUCA employs a hybrid NUCA
mapping policy which wear-levels the cache banks such that the critical cache-lines
are mapped using R-NUCA policy, while the non-critical cache lines are mapped
using Static NUCA policy. By performing a performace-conscious wearleveling,
Re-NUCA achieves best of both worlds interms of performance and lifetime.

Next in a large NUMA system, I proposed CAMM, a complete software approach
evaluated in VMware ESXi which detects and alleviates congestion dynamically.
CAMM estimates congestion by probing certain set of pages in a non-cacheable
manner and based on the congestion detected, CAMM employs Congestion-Aware
Memory Management (CAMA) or Congestion-Aware Page Migration (CAPM) or a
mixture of both to alleviate congestion. Our CAMM does not warrant reading any
performance counters and is successful in alleviating congestion quiet successfully
with minimal overheads.

137



The scaling in DRAM chip density has undesirable overheads on the overall
performance due to the inherent DRAM refresh overheads. To address these
performance bottlenecks, I proposed a hardware-software co-design where hardware
employed DRAM refresh schedule is changed slightly and exposed to the OS. Based
on the updated refresh schedule, OS employs a soft-partitioned memory allocation
strategy. The updated memory allocation in OS and the new DRAM refresh
schedule in hardware further provided the avenues for OS to schedule a task that is
minimally impacted by the DRAM refreshes, thereby alleviating the DRAM refresh
overheads.

With the advent of emerging stacked DRAMs, the design decision of how to
integrate these stacked DRAMs in to the systems became an interesting challenge
for the computer architects. Prior designs have proposed using stacked DRAM as a
hardware-managed cache or OS-visible extension to off-chip DRAM. Motivated by
the fact that such static design decisions cannot unravel the full-potential of these
stacked DRAMs, I proposed Chameleon, a dynamically reconfigurable memory
systems. Based on the workloads currently executing on the system the Chameleon
will dynamically reconfigure the heterogeneous memory system to operate certain
sections of memory in the part of memory mode and other sections in the cache
mode. The proposed Chameleon system showed good improvement in performance
compared to a statically designed cache and part-of-memory systems.

8.2 Future Work
We are at an interesting juncture in the computer architecture era with plethora
of emerging memory technologies available in the markets. Few such offerings
include Intel 3D X-point, Micron’s HMC, AMD’s HBM memories to name a few.
The integration of these memories at various levels in the un-core hierarchy to
achieve maximum performance and energy-efficiency still has tremendous scope
for improvement. As part of my future work, I will continue investigating in these
directions especially at optimizing the overall system for energy-efficiency.
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Publications and Patents

1 Main Publications
[ISCA 2018, Under Submission]
Jagadish B.Kotra, Haibo Zhang, Alaa R. Alameldeen, Chris Wilkerson, Mahmut
T. Kandemir
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Memory System,
In 45th ACM International Symposium on Computer Architecture
(ISCA), 2018.

[ASPLOS 2017]
Jagadish B.Kotra, Narges Shahidi, Zeshan A. Chisthi, Mahmut T. Kandemir
Hardware-software co-design to mitigate DRAM refresh overheads. A case for
refresh-aware process scheduling,
In 22nd ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017.

[IISWC 2017]
Jagadish B.Kotra, Seongbeom Kim, Kamesh Madduri, Mahmut T. Kandemir
Congestion-Aware Memory Allocation and Migration Schemes for Virtualized
NUMA Platforms: A VMware ESXi case study,
In IEEE International Symposium on Workload Characterization
(IISWC), 2017.
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[MASCOTS 2017]
Jagadish B.Kotra, Diana Guttman, Nachiappan Chidambaram, Mahmut T.
Kandemir, Chita R. Das
Quantifying the Potential Benefits of Near-Data Computing in Manycores
processors,
In 25th IEEE International Symposium on the Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2017.

[IPDPS 2016]
Jagadish B. Kotra, Mahommad Arjamond, Diana Guttman, Mahmut T. Kan-
demir, Chita R. Das
Re-NUCA: A Practical NUCA Architecture for ReRAM based last-level caches,
In International Parallel and Distributed Processing Symposium
(IPDPS), 2016.

2 Other Significant Publications
[CVPR 2018, Under Submission]
Huaipan Jiang, Anup Sharma, Jihyun Ryoo, Jagadish B. Kotra, Meena
Kandasamy, Chita R. Das, Mahmut Kandemir
A Tiling-based Hierarchial Neural Network Approach for Biomedical Image
Segmentation,
CVPR, 2018.
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Chun-yi Liu, Jagadish B. Kotra, Myoungsoo Jung, Mahmut Kandemir
CHIMERA: Designing a Hybrid Architecture for Reliable, High-Density 3D Flash
Storage,
ISCA, 2018.
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Sumitha George, Minli Liao, Huaipan Jiang, Jagadish B. Kotra, Mahmut
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Kandemir,John Sampson, Vijaykrishnan Narayanan
MDACache: Caching for Multi-Dimensional-Access Memories,
ISCA, 2018.

[FAST 2018, Under Submission]
Chun-yi Liu, Jagadish B. Kotra, Myoungsoo Jung, Mahmut Kandemir
PEN: A Design of Partial-Erase for 3D NAND-based High Capacity SSDs,
FAST, 2018.
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Karakoy
Location-Aware Computation Mapping for Manycores,
PLDI, 2018.
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Orhan Kislal, Jagadish B. Kotra, Xulong Tang, Mahmut Kandemir, Mustafa
Karakoy
Location-Aware Computation Mapping for Manycores,
In proceedings of The 26th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2017.

[Parlearning (IPDPS Workshop), 2016]
Orhan Kislal, Mahmut T. Kandemir, Jagadish B. Kotra
Cache-Aware Approximate Computing for Decision Tree Learning,
In International Workshop on Parallel and Distributed Computing for
Large Scale Machine Learning and Big Data Analytics (ParLearning),
2016.

[MICRO 2016]
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Improving Bank-Level Parallelism for Irregular Applications,
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