
Congestion-Aware Memory Management on NUMA
Platforms: A VMware ESXi case study

Jagadish B. Kotra, ∗Seongbeom Kim, Kamesh Madduri, Mahmut T. Kandemir
The Pennsylvania State University, ∗Google Inc.

{jbk5155, kamesh, kandemir}@cse.psu.edu, ∗kimsbeom@gmail.com

Abstract—he VMware ESXi hypervisor attracts a wide range
of customers and is deployed in domains ranging from desktop
computing to server computing. While the software systems
are increasingly moving towards consolidation, hardware has
already transitioned into multi-socket Non-Uniform Memory
Access (NUMA)-based systems. The marriage of increasing
consolidation and the multi-socket based systems warrants low-
overhead, simple and practical mechanisms to detect and address
performance bottlenecks, without causing additional contention
for shared resources such as performance counters. In this paper,
we propose a simple, practical and highly accurate, dynamic
memory latency probing mechanism to detect memory congestion
in a NUMA system. Using these dynamic probed latencies, we
propose congestion-aware memory allocation, congestion-aware
memory migration, and a combination of these two techniques.
These proposals, evaluated on Intel Westmere (8 nodes) and Intel
Haswell (2 nodes) using various workloads, improve the overall
performance on an average by 7.2% and 9.5% respectively.

I. INTRODUCTION

Multi-socket architectures have become quite common over
the past decade in the server domain, and many existing
systems today employ them. One of the fundamental char-
acteristics of these architectures is the “non-uniformity” they
impose on data access latencies. More specifically, data ac-
cesses made from a core to the memory of the same socket is
much faster compared to accesses made to remote sockets’
memory. This local/remote dichotomy introduced by such
Non-Uniform Memory Access (NUMA) architectures have
important consequences spanning thread and data placement.

The conventional wisdom in dealing with NUMA systems
has always been maximizing local accesses through techniques
such as careful partitioning of data by OS or compiler across
the sockets [1]–[4], co-locating data and computations, and
data migration to adapt to dynamic changes in working sets
and data access patterns. Increasing number of sockets (from 2
to 16 [5]) in recent architectures further emphasizes this local
memory-centric view of NUMA optimization since data access
latencies are now exhibiting even larger variances compared
to the past – as in some cases a data access may now require
several hops to reach the target memory. However, there are
two complementary trends against this local memory-centric
view. First, with transistor scaling, each socket itself can now
host numerous hardware threads which contend for shared
resources like last-level caches and memory resources. Second,
application dataset sizes keep increasing [6]–[18]. Although
the capacities of the last-level caches (LLC) also increase
correspondingly, the dominant increase in the applications’
footprint saturate memory bandwidth, thereby causing the
memory wall to grow higher and higher with each generation

of processors. Consequently, the performance of a node can
degrade with increasing number of hardware threads and
increasing working set sizes. This performance degradation is
more pronounced in the virtualized environments where a large
number of VMs can be consolidated on a single socket. Recent
work [19] showed that the performance degrades by 22.1%
on an average when 2 VMs are consolidated on the same
socket, and further degrades by an additional 18.4% when 8
VMs are consolidated due to memory controller contention for
cloud applications. Motivated by this, researchers [1, 2] pro-
posed congestion-aware task/memory management techniques
to mitigate contention. In this work, we propose and evaluate
a strategy, which, instead of evading the remote accesses, tries
to use remote memory bandwidth dynamically.

Our specific contributions include:
• We present detailed experimental data showing that the

performance degradation due to increasing consolidation.
For example, going from 18 VMs to 36 VMs can degrade
the performance by up to 92%. Observing that the first step
in any data allocation strategy that intends to use remote
memory is to gauge the dynamic congestion on different
nodes, we propose a dynamic latency probing mechanism.

• Taking the end-to-end congestion information as a feedback
and observing that in many applications data allocations
spread over the entire execution, we propose congestion-
aware memory allocation (CAMA). CAMA evaluated in
VMware ESXi hypervisor improved the overall system
performance on an average, by 8.6% and 5.1% in Intel
Haswell and Intel Westmere, respectively.

• To optimize for other types of applications where the
memory allocation is done initially and accessed later, we
propose congestion-aware page migration (CAPM) opti-
mization. The results collected on our Intel Haswell and
Intel Westmere based systems indicate average performance
improvements of 8.2% and 6.2% respectively. Furthermore,
combining CAMA and CAPM, we propose CAMM which
further take these savings to 9.5% and 7.2%.

II. BACKGROUND AND EXPERIMENTAL SETUP

A. NUMA architecture

Figure 1 shows the basic block diagram for Intel Haswell
system. The nodes1 in Haswell (similar to Westmere) pro-
cessor are connected to one another through an Intel Quick
Path Interconnect (QPI) [20]–[22]. A socket consists of a local
memory which is managed by a local memory controller (MC)

1We use socket and node interchangeably in the rest of this paper.

LLC

Memory
(Node-0)

MC

Node-0

Cores

LLC

Memory
(Node-1)

MC

Node-1

Cores

Intel QPI

Fig. 1: Haswell block diagram.

TABLE I: Haswell config.
Nodes 2
Cores/socket 18
Core Freq. 2.3GHz
LLC Size 45MB
QPI Speed 9.6GT/sec
DRAM (Capacity) DDR4-2133 (512GB)

Nodes 8
Cores/socket 10
Core Freq. 2.27GHz
LLC Size 24MB
QPI Speed 6.4GT/sec
DRAM (Capacity) DDR3-1333 (1TB)

TABLE II: Westmere config.

From/To
Cycles N-0 N-1 N-2 N-3 N-4 N-5 N-6 N-7
N-0 290 454 735 736 840 835 839 843
N-1 454 290 734 748 865 860 864 868
N-2 735 734 290 452 839 863 888 863
N-3 736 748 452 290 840 861 862 864
N-4 839 862 839 840 290 451 734 750
N-5 835 860 863 861 451 290 741 739
N-6 839 863 885 863 734 729 290 454
N-7 843 868 863 864 748 739 454 290

TABLE III: Westmere access latencies (in
CPU cycles).

From/To
Cycles N-0 N-1
N-0 229 319
N-1 319 229

TABLE IV: Haswell
access latencies (in
CPU cycles).

-100

-80

-60

-40

-20

0

%
 E

xe
c

Ti
m

e
 Im

p
.

24VMs 30VMs 36VMs

Fig. 2: Performance degradation with varying consolidation
scenarios on Intel Haswell.
as shown in the Figure 1, and is a Chip Multi-Processor (CMP)
containing cores; all cores share a last-level cache, represented
by LLC in the figure. A local memory access incurs a DRAM
access delay and, if the DRAM banks are busy, an additional
MC queuing delay as well. However, since the remote memory
access involves moving data from the remote socket over the
QPI, an additional interconnect latency is incurred. Tables III
and IV show the latencies in CPU cycles after a system bootup
without any guest VMs running inside the ESXi for Westmere
and Haswell systems, respectively. In these tables, the value
in row-x and column-y represent memory access latency in
CPU cycles observed from Node-x when accessing the data
allocated in the local memory of Node-y. Hence, values in the
diagonal (bolded) represent the local memory access latencies.
From these tables, it can be observed that the local latency
incurred is always lower than the remote latency.
B. Experimental setup

We used two Intel NUMA based systems, Haswell and
Westmere to conduct our experiments. Tables I and II summa-
rize the configurations of these machines. The Intel Haswell
system shown in Table I contains 2 NUMA sockets. In each
socket, there are total 36 hardware (2-way hyper-threaded)
threads sharing an LLC of size 45MB. Intel Westmere system2

shown in Table II contains 8 NUMA sockets and each socket
contains 20 hardware threads (2-way hyper-threaded) per
socket. The applications presented in Table V are run inside
the guest VMs running on ESXi hypervisor. Each guest VM
runs a RHEL 6.0 Operating System. For simplicity, we assume
each guest VM to be running a single application, though
our analysis and evaluations hold equally well for multiple
applications running inside a guest VM. For our evaluations,
we used multi-threaded and single-threaded applications from
various benchmarks suites from HPC domain viz., NAS [24],
SPEC CPU2006 suite [25], SPECOMP [26], MANTEVO [27],
also the SPECJBB [28] suite and finally the graph parallel-
processing multistep [29] suite. The specific applications from
these suites are further categorized in to high (represented
by H), medium (M) and low (L) based on their memory-
intensities, measured by LLC Misses Per Kilo Instruction

2In the interest of space, we could not present the Westmere block diagram.
Please find it in slide-12 of [23].

0

200

400

600

800

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1M
e

m
o

ry
 A

cc
e

ss

La
te

n
cy

(C

P
U

 C
yc

le
s)

Epoch (2secs)

Local Latency (to Node 0) Remote Latency (to Node 1)

Fig. 3: Memory access latencies noted from Node-0 in a
congested environment on Haswell for npb is workload.
(LLC-MPKI) as depicted in Table V. Applications with LLC-
MPKI greater than 15 are categorized as H, while those with
LLC-MPKIs between 5-15 (inclusive) are categorized as M
and the ones with LLC-MPKIs below 5 are categorized as L.

We further used homogeneous and heterogeneous workloads
formed using the applications in Table V to quantify the bene-
fits of our optimizations. The homogeneous workloads execute
same applications while the heterogeneous workloads execute
different applications on a given socket. To simulate real-world
scenarios, where different nodes on the same machine exhibit
varying degrees of congestion, in some workloads, we map
high/medium/low-memory intensive applications on different
nodes. However, to replicate scenarios where all the nodes
experience the same degree of memory congestion, we map
different instances of the same workload on all the nodes in
a machine, there by covering the entire spectrum of the real-
world scenarios.

In the rest of the paper, the % Execution Time Improvement
(or degradation) results reported in various figures for each
workload is the geometric mean of individual applications’
execution time improvement (or degradation) over the corre-
sponding applications’ baseline execution time.

III. MOTIVATION

As can be observed from Tables III and IV, the access
latency to local node is around 40% lower in both the systems
compared to access to the neighboring remote nodes. ESXi is
NUMA-aware [30] and hence tries to allocate memory from
the local node, whenever possible, for better performance.
However, when a high number of memory-intensive VMs are
consolidated on a single node, the MC queuing and DRAM
access latencies can dominate the additional interconnect la-
tency incurred by the remote access.

A. Effect of increasing consolidation

Figure 2 shows how performance changes with increasing
number of VMs consolidated on a socket for our homogeneous
workloads on Intel Haswell system. In this experiment, each
VM is pinned to a hardware thread on a processor socket.
The performance degradation reported is normalized to the
basecase which executes 18 VMs. As can be observed from

Benchmark Suite Multi-threaded ? LLC-MPKI Category Benchmark Suite Multi-threaded ? LLC-MPKI Category

mcf SPEC2K6 No 66.9 H GemsFDTD SPEC2K6 No 13.33 M
npb is NPB No 43.51 H HPCCG mantevo No 11.81 M
npb ua NPB No 42.72 H equake SPECOMP Yes 7.24 M

Omnetpp SPEC2K6 No 23.01 H specjbb SPECJBB Yes 6.48 M
swim SPECOMP Yes 22.162 H CC MULTISTEP Yes 2.45 L
lbm SPEC2K6 No 21.62 H mgrid SPECOMP Yes 1.95 L

libquantum SPEC2K6 No 19.52 H SCC MULTISTEP Yes 2.45 L
milc SPEC2K6 No 18.28 H povray SPEC2K6 No 0.07 L

TABLE V: Benchmarks used in our evaluation.
Figure 2, performance degrades as the number of VMs con-
solidated increases and is as high as 92% for npb is [24]
which is highly memory-intensive, while it is almost 0%
for low memory-intensive applications like povray as such
applications rarely access memory.

To further explain the degradation in Figure 2, we present
the access latencies for npb is homogeneous workload. Fig-
ure 3 shows the memory access latencies incurred from Node-
0 to both Node-0 and Node-1 on our Intel Haswell system
running homogeneous npb is workload. As can be observed,
initially when there is no congestion in the system the local
node (Node-0) access latency is lower than the remote node
(Node-1) access latency. However, around the 11th epoch (23
secs), the local latency to Node-0 starts increasing and be-
comes greater than the remote nodes’ access latency indicating
that the Node-0’s memory bandwidth is saturated resulting in
congestion. Note that, after the 11th epoch, the Node-0 latency
continues to dominate the latency to Node-1 till the end of the
workload execution in the 105th epoch. In such scenarios, the
overall system performance would improve if the neighboring
remote nodes’ bandwidth could be utilized. However, to use
the remote memory bandwidth effectively, one needs to answer
the following questions:
1) When to allocate data in the remote node ?
2) What percentage of data needs to be allocated in the remote

node for a specific topology NUMA system?
3) In which remote node (number of hops from the source

node) should the data be allocated ?
These questions are important, because if data is allocated

on the remote node when there is no congestion, system
performance can degrade significantly as extra cycles are spent
on the interconnect traversal while accessing data. Conse-
quently, it is important to detect the congestion in the system
dynamically so that the data can be allocated in the most
appropriate node. Once the congestion is detected and the
decision to allocate data in the remote node is taken, it is
important to determine how much data needs to be allocated in
the remote node. This decision is also important because if too
less data is allocated in the remote node, system performance
further degrades as the local node will still be congested.
However, if a high percentage of data is allocated on the
remote node, local node memory bandwidth will be under-
utilized, thereby resulting in performance degradation.
B. Static allocation results

Figure 4 plots the percentage execution time improvement
when a fixed fraction of data is allocated in the remote node
on our Intel Haswell 2 NUMA node system. All the results
presented are normalized to the basecase where all the data
are allocated on the local NUMA node, Node-0. We present
results for different allocation ratios, for example, the bars

0

10

20

30

40

%
E

x
e

c
 T

im
e

 I
m

p
.

50_50 60_40 70_30 80_20 90_10

Fig. 4: Execution time improvements with different static
allocation ratios on Intel Haswell.

-15
-10

-5
0
5

10
15
20

%
 E

x
e

c
T

im
e

 I
m

p 50_50 60_40 70_30 80_20 90_10

Fig. 5: Execution time improvements with various static allo-
cation ratios on Westmere only using 2 of 8 NUMA nodes.
marked using 60 40 in Figure 4 represents the execution time
improvement when 60% of memory is allocated on the local
node, and the remaining 40% is allocated on the neighboring
remote node. As can be observed, in this system, allocating
10% of data in the remote node (90 10 ratio) does not alle-
viate congestion and incurs considerably lower performance
improvement of around 7.5% on an average. On the other
hand, allocating 50% of data on the remote node alleviates
congestion; however, it results in under-utilizing the local node
memory bandwidth and yields a performance improvement of
12.6% on an average, which is still not very high. Allocating
60% on the local node and 40% on the remote node is optimal
in this case, giving a performance improvement of 19.1% on
an average. Figure 5 shows the performance improvement
when only 2 NUMA nodes out of 8 are used in our Intel
Westmere system. In these experiments, memory is allocated
only on Node-0 and Node-1. Node-0 is the source node,
and Node-1 is the neighboring remote destination node for
VMs running on Node-0. As can be observed from Figure 5,
70% local node allocation and 30% remote node allocation
result in the maximum performance improvement of 11.4%
on an average. Similarly 70 30 yielded better performance
considering 4 NUMA nodes out of 8 NUMA nodes, i.e, 30%
data is spread the rest three other remote nodes. Beyond 4
NUMA nodes, latency to the remote node dominates the extra
bandwidth provided by the remote node. Consequently, we do
not see any performance improvement when data is allocated
in the remote node beyond 4 NUMA nodes in Westmere.

Summarizing the results from Figures 4 and 5, one can
conclude that memory congestion can be alleviated by using
the extra memory bandwidth from the target remote nodes.
There is no one common ratio in distributing the data across
the local and remote nodes to achieve maximum performance.
That is, different workloads prefer different ratios depending
on the hardware configuration. Thus, we need a mecha-
nism which can dynamically identify how congested different
shared resources in a NUMA system are oblivious to the

0
200
400
600
800

1000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8M

e
m

o
ry

 A
cc

e
ss

La

te
n

cy

(C
P

U
 C

yc
le

s)

Epoch (2secs)

Local Latency (to Node 0) Remote Latency (to Node 1)

Fig. 6: CAMA latencies for NPB IS on Haswell.
hardware configuration. These shared resources include local
memory bandwidth, interconnect bandwidth, and the remote
memory bandwidth. The proposed scheme should be suc-
cessful in identifying congestion oblivious to the underlying
hardware configuration. Hence, such a scheme should estimate
congestion accurately in diversified environments employing:
• homogeneous/heterogeneous link bandwidth interconnects

like AMD Bulldozer [20] and
• homogeneous/heterogeneous bandwidth memories including

DRAM [31, 32], AMD’s HBM [33], Intel’s MCDRAM
[34], non-volatile memories like Intel 3D XPoint [35] and
futuristic phase-change memory (PCM) [36]

IV. DYNAMIC LATENCY PROBING

Past congestion detection techniques [1, 3, 4, 19] relied
on reading the performance counters to estimate the per-
socket memory intensity. However, since performance counters
are shared resources, these mechanisms limit the number of
performance counters [37] that can be used for other runtime
optimizations. We implemented our dynamic probing mecha-
nism in VMware’s ESXi3 on a real system, and observed that
it gives the end-to-end information on how congested different
shared resources in a NUMA system are very accurately.

Algorithm 1 Pseudo-Code for Dynamic Latency Probing.
1: procedure NUMA PROBEDYNLATENCIES(my numa node)
2: for each numa node do
3: NUMA ProbeDynLatency(my numa node, numa node);
4: end for
5: end procedure
6:
7: procedure NUMA PROBEDYNLATENCY(srcNode, tgtNode)
8: totalAccessCycles = 0
9: for each page in NUM PROBED PAGES do

10: startCycle = RDTSC();
11: for each probe in NUM PROBES PER PAGE do
12: /* Access the tgtNode pages (by issuing processor-loads) in a non-

cacheable manner using volatile constructs. */
13: end for
14: endCycle = RDTSC();
15: /* Let pageAccCycles represent the elapsed cycles */
16: totalAccessCycles + = pageAccCycles;
17: end for
18: /* Measure and record the avgAccessLatency in the table corresponding to row

srcNode and column tgtNode */
19: currNodeLatArray[tgtNode] = average;
20: end procedure

Our dynamic latency probing mechanism is based on pe-
riodically accessing the non-cacheable pages in each node
from every node. Algorithm 1 presents the pseudo-code for our
dynamic probing mechanism. NUMA ProbeDynLatencies pro-
cedure is invoked periodically on each NUMA node through
timer callbacks already implemented in ESXi. From every
source node, represented by srcNode in the pseudo-code,
NUMA ProbeDynLatency routine is invoked by ESXi passing

3We would like to emphasize again that though we implemented and
evaluated the mechanism in ESXi, this mechanism is general and can be
adapted by any runtime or OS and is not limited to ESXi.

0

10

20

30

40

%
E

xe
c

T
im

e
Im

p

50_50 60_40 70_30 80_20 90_10 CAMA_2secs

Fig. 8: CAMA results for Intel Haswell processor.
the target node as an argument. To ensure only one Physical
CPU (PCPU) per node probes pages from the target nodes,
NUMA ProbeDynLatencies callback code is only scheduled
on the first PCPU of every NUMA node, except for the node
where the current Timing Loop code is being executed. On
this node, instead of scheduling the probing code on first
PCPU, our dynamic probing latency code is executed on the
same PCPU. Such an optimization prevents the pre-emption
of the code currently being executed on the first PCPU for
the current node. This can be observed in the pseudo-code for
the timing loop presented in Algorithm 2. This timing loop in
Algorithm 2 is responsible for scheduling the dynamic latency
probing code in Algorithm 1 on each node periodically.

Algorithm 2 Pseudo-Code for Dynamic Latency Probing.
for each numa node in TOTAL NUMA NODES do

2: currNumaNode = NUMA GetNumaNodeNum(MY CPU);
if numa node == currNumaNode then

4: NUMA ProbeDynLatencies(currNumaNode);
else

6: fCPU=NUMA GetFirstCPUOnNode(numa node);
Timer Add(fCPU, NUMA ProbeDynLatencies, numa node);

8: end if
end for

As can be observed in lines 2-4 for procedure
NUMA ProbeDynLatencies in Algorithm 1, the for-loop
code passes each node as the target node for procedure
NUMA ProbeDynLatency. Consequently, the source node can
itself be the destination target node. In such a scenario, the
PCPU running on source node accesses pages in local node.

Having understood how the dynamic probing latency code
is triggered on each NUMA node, we can now look at the
latency probing algorithm itself which is covered in procedure
NUMA ProbeDynLatency in Algorithm 1. We modified the
ESXi code to allocate extra specified set of ‘probe pages’
on each NUMA node. Each ‘probed page’ is 4KB4 in size
and is used only by ESXi for probing periodically. In the
dynamic probing algorithm, these probed pages allocated per
NUMA node are accessed using “volatile” construct so that
the processor loads generated by accessing these probed pages
do not get cached in the on-chip cache hierarchy. Hence,
accesses to these probed pages always result in memory access
to corresponding NUMA nodes. Since processor stores going
to the memory are buffered in a separate write-queue and are
drained based on the low/high watermarks set at the MC, non-
cacheable stores do not truely reflect the congestion of the
memory subsystem. As a result, our probing code only issues
non-cacheable processor-loads to to estimate congestion. The
for-loop in lines 9-19 of Algorithm 1 represents the PCPU on
the source NUMA node accessing the probed pages from the
target NUMA node. We use RDTSC() function to read the
time-stamp counter (TSC) provided by the hardware to record
the processor cycles lapsed in accessing these probed pages.

4We do not consider large-pages in our evaluation, but our mechanism holds
equally well for large pages.

0

500

1000

1500

2000

2500

0
0

:0
0

.0

0
1

:4
3

.0

0
3

:2
6

.0

0
5

:0
8

.0

0
6

:5
1

.0

0
8

:3
3

.0

1
0

:1
6

.0

1
1

:5
9

.0

1
3

:4
1

.0

1
5

:2
4

.0

1
7

:0
7

.0

1
8

:5
1

.0

2
0

:3
4

.0

2
2

:1
7

.0

2
3

:5
9

.0

2
5

:4
2

.0

2
7

:2
4

.0

2
9

:0
7

.0

3
0

:4
9

.0

3
2

:3
2

.0

3
4

:1
5

.0

3
5

:5
7

.0

3
7

:3
9

.0

3
9

:2
2

.0

4
1

:0
5

.0

4
2

:4
9

.0

4
4

:3
2

.0M
e

m
o

ry
 C

o
n

su
m

e
d

 (
M

B
) libquantum

(a)

0

500

1000

1500

2000

00
:0

0.
0

00
:0

7.
0

00
:1

5.
0

00
:2

3.
0

00
:3

1.
0

00
:3

8.
0

00
:4

6.
0

00
:5

4.
0

01
:0

2.
0

01
:0

9.
0

01
:1

7.
0

01
:2

5.
0

01
:3

3.
0

01
:4

1.
0

M
em

or
y

Co
ns

um
ed

 (
M

B
) npb_is

(b)

0

200

400

600

800

1000

1200

00
:0

0.
0

00
:1

5.
0

00
:3

0.
0

00
:4

6.
0

01
:0

1.
0

01
:1

7.
0

01
:3

2.
0

01
:4

8.
0

02
:0

3.
0

02
:1

9.
0

02
:3

4.
0

02
:4

9.
0

03
:0

5.
0

03
:2

0.
0

03
:3

5.
0

03
:5

1.
0

04
:0

6.
0

04
:2

2.
0

04
:3

7.
0M

em
or

y
Co

ns
um

ed
 (M

B)

specjbb

(c)
Fig. 7: Esxtop output showing the memory allocation behavior of applications over time (in minutes).

Note that the dynamic probing code itself is an additional
overhead incurred by ESXi. There is a clear trade-off on
how frequently the probing code can be triggered versus
the accuracy of the memory latency information provided by
probing. Probing code triggered very frequently not just pre-
empts the execution of VM(s) running on the corresponding
PCPUs but also causes additional memory traffic. However, if
the probing code is sampled very infrequently, the memory la-
tencies reported by the dynamic latency probing might become
stale and may not be useful in alleviating memory congestion
and sometimes could result in a proposed optimization to
degrade the overall system performance. Two parameters in
our algorithm effect the accuracy vs performance trade-off,
viz, sampling interval and number of memory probes.

In the next three sections, we show how dynamic probing
is used to guide memory allocation and migration strategies.
Though our mechanism can be used in migrating VMs, we do
not consider VM migration for the following reasons:
• VM migration is often an expensive operation, since mi-

grating VM not only involves migrating the execution
context, but also migrating the entire memory footprint of
the corresponding VM to the remote node. Migrating the
entire memory footprint is an expensive operation in terms
of both energy and performance considering how quickly
the memory footprint is growing in the emerging workloads
[6, 17]. Migrating just the VM without it’s corresponding
memory results in overwhelming number of remote node
memory accesses thereby degrading performance.

• VM migration from one node to another in highly consol-
idated environments often necessitates swapping the VMs
between the source and destination nodes. This is due to the
unavailability of a free PCPU that can excute the migrated
VM on the target node. This VM swapping is an expensive
operation as it involves not just migrating the memory, but
also the cost involved in other hardware structures including:
flushing the deep processor pipelines, disrupting the branch
predictors, flushing TLB entries, and the locality lost in
private L1D/L1I and last-level caches. And such a cost
increases with increase in number of VMs to be migrated
(swapped) and also by the frequency of migration.

V. CONGESTION-AWARE MEMORY ALLOCATION (CAMA)

Before we look into the optimizations based on the dynamic
latency probing, Figures 7a, 7b and 7c plot the memory alloca-
tion behavior of libquantum, npb is and specjbb applications,
respectively, collected using esxtop utility. As can be observed,
in these applications, the memory footprint grows over time
and hence provides an opportunity for the memory allocator
to allocate some of the data on the remote nodes dynamically
when the local node is congested. In this section, we dis-

-10

0

10

20

30

%
 E

xe
c

Ti
m

e
Im

p

50_50 60_40 70_30 80_20 90_10 CAMA_2secs

Fig. 9: CAMA results for Intel Westmere processor.

0
10
20
30
40

%
 E

xe
c

Ti
m

e
 Im

p 50_50 60_40 70_30 80_20 90_10 CAMA_2secs CAMA_0.2secs

Fig. 10: 0.2 secs epoch CAMA Improvements on Haswell.
cuss Congestion-Aware Memory Allocation (CAMA), which
guides allocation of data on the remote node dynamically.

Upon receiving a memory allocation request from a VM
running on a source node, CAMA decides the target node
based on the latencies incurred from the source node to the
other nodes in the previous epoch. The target node chosen
for allocation in CAMA is the one which incurred the lowest
probed latency in the previous epoch. The intuition is that, the
probed latencies recorded at the end of previous epoch gives an
approximate idea of how congested different shared resources
would be in the current epoch. This simple modification in the
ESXi memory allocator can automatically consider the end-to-
end access latencies and can account for the congestion on dif-
ferent shared resources. The shared resources include the local
nodes’ memory controllers, the inter-socket interconnect (Intel
QPI/AMD HT interconnect), and the remote nodes’ memory
controllers. Also, this simple change in the memory allocator
is flexible enough to pick the local node automatically when
the access latency to the local node is lower.

In Figure 8, the last bar for each workload shows the
performance improvement for the homogeneous workloads
with CAMA. All the results presented are normalized to the
basecase, where all the memory is allocated in the local node.
The other bars representing the static allocation are shown
there for comparison. The epoch duration used in these experi-
ments is 2 secs, that is, the dynamic latencies are updated every
2 secs. As can be observed, CAMA improves the performance
by 18.49% on an average and a maximum of up to 34.2%
for npb is, and also on an average CAMA is within 1%
compared to the best in static allocation schemes. Figure 6
shows the dynamic latencies measured on our Haswell system
from Node-0 to both Node-0 and Node-1 for CAMA in ESXi.
One can see from this figure that the local and remote node
latencies are almost the same at every epoch for CAMA unlike
in Figure 3 where the local node latency is much higher than
the remote node latency. Figure 9 shows the performance
improvements in for CAMA on Intel Westmere processor;
the static allocation results are reproduced for comparison.
It can be observed that on an average CAMA improves the

0

100

200

300

400

500

600

700
1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1M
e

m
o

ry
 A

cc
e

ss
 L

a
te

n
cy

(C

P
U

 C
y

cl
e

s)

Epoch (2 secs)

Local Latency (to Node 0) Remote Latency (to Node 1)

(a)

0

100

200

300

400

500

600

700

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1M
e

m
o

ry
 A

cc
e

ss
 L

a
te

n
cy

(C

P
U

 C
y

cl
e

s)

Epoch (0.2secs)

Local Latency (to Node 0) Remote Latency (to Node 1)

(b)

0
20
40
60
80

100

C
u

m
u

la
ti

v
e

 %
 o

f
d

a
ta

a

ll
o

ca
te

d
 o

n
 l

o
ca

l
N

o
d

e Epoch 2 secs Epoch 0.2 secs

(c)
Fig. 11: Dynamic latencies for VMs running mcf with epoch duration of (a) 2 secs, (b) 0.2 secs and (c) Cumulative percentage
of data allocated on local node in Haswell by CAMA.
performance by 10% for Westmere. Also, from Figures 8, 9
and 11c, comparing the static allocation and CAMA results,
we note that same percentage of data allocated on local node
could result in varying performance improvements.
Impact of epoch duration on CAMA: Since we use the
probed latencies from the previous epoch to govern the mem-
ory allocations in the current epoch, one crucial parameter in
our setup which governs the performance improvements is the
epoch duration itself. Since our epoch of 2 secs translates to
billions of core cycles (with a processor frequency in the order
of GHz), it may be beneficial to trigger the probed latencies
more frequently. Probing more frequently can give us the more
up-to-date congestion information and can help the memory
allocator to respond to the dynamic modulations in the ap-
plication phase behavior more rapidly. Figure 10 shows the
performance benefits when we sample the probing code more
frequently at 0.2secs epoch on the Haswell processor. For high
memory-intensive applications like libquantum, npb is, lbm
we can see that the performance degrades with 0.2 secs epoch
compared to 2 secs epoch. This degradation in performance
is due to the fact that the probed memory accesses interfere
with applications’ on-demand memory accesses resulting in
increased memory access latencies for the on-demand memory
requests. The performance degradation in these applications is
as high as 10% for npb is compared to the case with epoch
duration of 2 secs. However, applications like mcf, npb ua,
milc, GemsFDTD and omnetpp benefit from 0.2 secs epoch
duration. This improvement in performance is because CAMA
could adjust to subtle changes in congestion rapidly.

Figures 11a and 11b show the memory access latencies for
homogeneous mcf workload for 2 secs and 0.2 secs epochs,
respectively. For an epoch duration of 2 secs in Figure 11a, we
can see the bubbles formed due to gap in latencies between
the local and remote nodes around epochs 141, 301, 381,
481 and 541. This result indicates that there is still some
scope for improvement when using an epoch duration of 2
secs. For epoch duration of 0.2 secs, one could see that the
latencies to local and remote nodes match at every instant.
This is because, all the shared resources viz., local memory
bandwidth, interconnect bandwidth and remote bandwidth are
utilized optimally making the end-to-end latencies to match at
every instant. Hence, in workloads that benefit from smaller
epoch of 0.2 secs, the performance improvement is as high
as 4.5% for omnetpp, compared to an epoch duration of 2
secs. On an average, an epoch duration of 0.2 secs yields
17.5% increase in performance compared to the basecase and
the corresponding performance improvement for an epoch
duration of 2 secs is 18.4%. Figure 11c gives the cumulative
percentage of data allocated on the local node for epochs of

2 secs and 0.2 secs using CAMA. For both the epochs, high
memory-intensive applications like mcf and npb is have more
than 30% of their data in the remote node.

VI. CONGESTION-AWARE PAGE MIGRATION (CAPM)

CAMA is ineffective in the following scenarios:
1) Memory system is congested during data allocation, but it

is no longer congested when the data is being accessed.
2) Memory subsystem is not congested during data allocation,

however, it gets congested during execution of workload.
Figures 12a, 12b and 12c, show the memory allocation

behavior of different classes of applications over time. As can
be observed, all of the data is allocated in the first few seconds
of the program execution. In such scenarios, as local node
memory will not be congested initially, CAMA allocates all
the data in the local node it cannot alleviate congestion.

Therefore, we need a dynamic mechanism which can fix
the incorrect decisions made by CAMA at runtime or aug-
ment CAMA to reap maximum overall system performance.
Motivated by this, we propose our second optimization, Con-
gestion-Aware Page Migration (CAPM) which dynamically
migrates pages across nodes based on the probed latencies
described in Section IV. In this section, we elaborate on the
intricacies in designing CAPM in isolation in the absence
of our first proposed optimization CAMA. From Figures 6
and 11b, in presence of congestion, it can be observed that
maximum overall performance is obtained when the shared
resources are utilized optimally, i.e, when the gap between
end-to-end memory latencies of the local node and the remote
node is minimum in every epoch. Hence, based on dynamic
probed latency in the previous epoch, CAPM tries to migrate
pages such that the latencies to the local node and remote
node(s) match in every epoch. When local node becomes
congested, CAPM migrates the data from local node to the
remote node, but when the latency to the remote node increases
later, data is migrated back from remote node to local node
in next epoch to balance end-to-end latencies. The key factors
that effect improvements in CAPM are:
• Candidate pages chosen to migrate from source to destina-

tion nodes.
• Number of such candidate pages to be migrated per epoch,

referred to as migration rate.
Candidate Pages for Migration: Since programs exhibit
locality [38] during execution, not all the pages allocated are
accessed in all the epochs. In VMware ESXi and traditional
OS’s like Linux, such pages accessed can be identified by
poisoning the page table entry (PTE) by setting its reserved bit
similar to [38]. Such a poisoned page is flushed from the TLB
and a corresponding processor load/store will incur a TLB
miss. Upon a miss, a hardware pagetable walk is triggered

0

400

800

1200

00
:0

0.
0

00
:1

8.
0

00
:3

6.
0

00
:5

5.
0

01
:1

3.
0

01
:3

1.
0

01
:4

9.
0

02
:0

7.
0

02
:2

5.
0

02
:4

3.
0

03
:0

1.
0

03
:1

9.
0

03
:3

7.
0

M
em

o
ry

 C
o

n
su

m
ed

(M

B
)

EQUAKE

(a)

0

1000

2000

3000

4000

00
:0

0.
0

00
:1

2.
0

00
:2

5.
0

00
:3

8.
0

00
:5

1.
0

01
:0

4.
0

01
:1

6.
0

01
:2

9.
0

01
:4

2.
0

01
:5

4.
0

02
:0

7.
0

02
:2

0.
0

M
em

o
ry

 C
o

n
su

m
ed

(M

B
)

HPCCG

(b)

500

700

900

1100

0
0

:0
0

.0

0
1

:1
2

.0

0
2

:2
4

.0

0
3

:3
6

.0

0
4

:4
8

.0

0
6

:0
1

.0

0
7

:1
3

.0

0
8

:2
6

.0

0
9

:3
9

.0

1
0

:5
1

.0

1
2

:0
4

.0

1
3

:1
7

.0

1
4

:3
0

.0

1
5

:4
4

.0

M
e

m
o

ry
 C

o
n

su
m

e
d

(M

B
)

npb_ua

(c)

200
300
400
500
600
700
800

1
1

8
3

5
5

2
6

9
8

6
1

0
3

1
2

0
1

3
7

1
5

4
1

7
1

1
8

8
2

0
5

2
2

2
2

3
9

2
5

6
2

7
3

2
9

0
3

0
7

3
2

4
3

4
1

3
5

8
3

7
5

3
9

2
4

0
9

4
2

6
4

4
3M

e
m

o
ry

 A
cc

e
ss

La

te
n

cy
 (

C
P

U
 C

y
cl

e
s)

Epoch (2 secs)

0_0 0_1Congestion
(~170 epochs)

(d)
Fig. 12: Esxtop output showing memory allocation behavior of the applications over time (in minutes) in (a), (b), (c) and (d)
Dynamic latencies without any migration.
Algorithm 3 Pseudo Code for setting CAPM migration rate.
1: currNode = NUMA GetNumaNodeNumFromCPU(MY CPU);
2: currNodeLatArray = NUMA GetDynLatCyclesArray(currNode);
3: /* currNodeLatArray –> Latencies from the current Node to all the other nodes.

minLatencyNode –> Node incurring minimum latency from current Node. */
4: if currNode ! = minLatencyNode then
5: /* Local node is congested, pages are to be migrated from local current node to

the neighboring remote node. */
6: lat gap = currNodeLatArray[currNode] - avgLatency;
7: if lat gap>(ηthresh*avgLatency) and freespace available in remote node

then
8: Set migration rate here
9: else

10: migrationrate = 0;
11: end if
12: else
13: /* Neighboring remote NUMA node is congested, pages are to be migrated from

neighboring remote NUMA node to local current NUMA node. */
14: lat gap = currNodeLatArray[neighboringNode] - avgLatency;
15: if lat gap>(ηthresh*avgLatency) and freespace available in local node then
16: Set migration rate here
17: else
18: migrationrate = 0;
19: end if
20: end if

following which a BadgerTrap routine [39] is executed ac-
counting for the page access. BadgerTrap handler further resets
(unpoisons) the reserved bit in PTE and caches the translation
in TLB and later re-poisons the PTE. Hence the number of
badgertraps accounted for each page can be used to distinguish
an accessed page from a non-accessed page in a given epoch.
From our offline-analysis of each application, we identified
that in every epoch, total memory footprint of the accessed
pages is in the order of several Mega Bytes (MBs) which span
over few thousands of 4KB pages. In CAPM, the candidate
pages to be migrated are only chosen from the accessed set
of pages. Hence the migration rates used in CAPM will be in
the order of few thousands per epoch to alleviate congestion.

Target Migration Rate per epoch: Migrating a candidate
page from source node to destination node incurs following
steps: (a) allocating a new page in the destination node,
(b) copying the entire page contents from the source node
memory to the target node memory, (c) shooting down the
cached translations inside the TLB and (d) updating the
page table entry. Prior work [40] accounted for the TLB
shootdown overheads to be as high as 11000 CPU cycles
for 16 threads. Considering the above overheads, the target
migration rate per epoch, plays a significant role in the overall
system performance. Since our CAPM supports migration in
both the directions (local to remote and remote to local), the
migration rate should be chosen such that the overheads are
minimal. A lower migration rate migrates fewer pages per
epoch, and hence it will take more time to alleviate congestion,
resulting in low improvement in performance. On the other
hand, a high migration rate causes more pages to migrate per
epoch, thereby alleviating the congestion faster. However, at

the end of the epoch, due to migration, the latency to the
neighbouring NUMA node will become higher than that to the
local NUMA node. As a result, pages are now migrated from
the neighbouring node to the local node in the next epoch,
thereby causing the pages to migrate back-and-forth between
the local and the neighboring remote nodes, causing a ping-
pong effect. Clearly, such a ping-pong effect is not desirable
warranting the migration rate to be chosen carefully.

When the local node is congested, it is clear from Fig-
ure 6 that, the maximum performance is achieved when the
measured end-to-end latencies between local and neighboring
nodes are close to each other in every epoch. Hence, the
desired probed latency at every epoch to both the local and
remote nodes should be the average of the observed latencies.
The pseudo-code for setting the migration rate in CAPM is
presented in Algorithm 3. At the end of every epoch, for every
node, the algorithm involves identifying the congested node by
comparing it’s local NUMA node latency with the neighboring
remote node. Once a congested node is identified, the lat gap,
defined as difference in the latency to the congested node and
the average expected latency is computed, as shown in lines
10 and 18. If the lat gap exceeds the expected average by a
threshold, denoted by ηthresh, CAPM migrates pages from the
congested node to the neighboring node5, else not. If ηthresh
is too low, less latency-gap can be tolerated and thus too
many pages could be migrated which could possibly trigger
the ping-pong effect. If ηthresh is too high, too much latency
gap will be tolerated and consequently not enough pages are
migrated, resulting in low overall performance. Based on our
experimentation on all our workloads, we identified 5% to be
a reasonable value for ηthresh(used as threshold in this paper).

0

3

6

9

12

15

2K 4K 6K 8K 12K 16K%
 E

xe
c

Ti
m

e
Im

p
.

Migration Rate (per VM)

(a)

0

3

6

9

12

15

8K Δ*30 Δ*40 Δ*60 Δ*70

%
 E

xe
c

Ti
m

e
Im

p

Migration Rate (per VM)

(b)
Fig. 13: (a) Static, (b) Dynamic migration rate results.

To explain various results in CAPM, we use the follow-
ing heterogeneous workload: equake(2), povray(2), mgrid(2),
mcf(2), swim(4). This heterogeneous workload contains multi-
programmed and multi-threaded applications with varied
memory intensities. Figure 12d represents the dynamic laten-
cies measured in the basecase where all the data is allocated
on the local node. It can be observed that the local node is
congested for around 170 epochs (340 secs) since the latency

5Please note from lines 7 and 15 of Algorithm 3, migration rate will be 0
if there is no free space available in the destination node. Hence, CAPM tries
to alleviate congestion opportunistically as long as there is freespace available
in the destination node.

to the local node is higher compared to that to the remote
node.

0
20
40
60
80

100
120

Avg Diff Cycles

of oscillations

Congestion (Secs)

fixed_16k

fixed_12k

fixed_8k fixed_6k

fixed_4k

fixed_2k

no_migration

340

(a)

0
20
40
60
80

100
120 fixed_8k

Δ*30

Δ*40Δ*60

Δ*70

(b)
Fig. 14: (a) Static and (b) Dynamic migration rate results.

Once CAPM decides to migrate candidate pages based on
the latency gap and ηthresh, the next important question is how
many candidate pages to migrate per VM per epoch to get the
best overall system performance. Migration rates per VM can
be set per epoch either statically or dynamically. As covered in
“Candidate Pages for Migration” discussion, since the working
set sizes of the accessed pages are in the order of several MBs,
few thousands of candidate pages need to be migrated per
epoch to alleviate congestion. Figure 13a shows the perfor-
mance improvements for the heterogeneous workloads when
migration rate is varied from 2000 to 16000 candidate pages
per VM. As the migration rate is increased from 2000 to 8000,
performance improvement over the baseline increases from
7.2% to 10.3% and beyond 8000, the performance degrades
from 10.3% to 7.45% as the migration rate is further increased
from 8000 till 16000. Hence, 8000 pages per epoch per VM
is the best migration rate.

This variation can be quantified using following parameters:
1) Congestion duration in seconds,
2) Number of oscillations in the probed latencies, and
3) Average difference between probed latencies per epoch.

The congestion duration is defined as the time in seconds
during which the probed latency to the local node is higher
than that to the remote node over the entire execution. From
Figures 12d and 14a, the congestion duration is around 340
secs for the basecase. Smaller congestion duration indicates
that a specific migration rate could mitigate the congestion
faster. As the migration rate is changed from 2000 to 16000,
the congestion duration changes from 120 secs to 22 secs.

The number of oscillations in probed latencies represents
the ping-pong effect in observed latencies due to back-and-
forth migrations of pages between NUMA nodes. With its
value initialized to zero, once the migration is triggered due
to congestion, the value is incremented every time the probed
latencies to local and remote nodes cross each other. To get an
understanding on how its value is calculated, for example, for
the basecase in Figure 12d, initially as there is no congestion,
its value remains zero for few epochs as the local node is not
congested. As the local node gets congested over time, the
first epoch when the latency to local node crosses the remote
node latency, its value is incremented to 1 and the value keeps
incrementing every time the latencies cross each other. As
can be observed in Figure 14a, the number of oscillations
for basecase is 19, which is the lowest among the other
values for different static migration rates as the data is not
migrated in the basecase. The only oscillations that happen in
latencies in basecase is because of the variations in application
behavior triggering changes in the overall memory intensity of

the socket. As the static migration rate increases from 2000
to 16000, the number of oscillations increases from 19 to
49. With the higher migration rate, the pages keep migrating
back-and-forth between the local and remote nodes, thereby
resulting in higher number of oscillations. For a migration rate
of 8000, the number of oscillations suffered is 39.

The average difference in CPU cycles between the probed
latencies per epoch is defined as the average of absolute
difference in probed latencies between the local node and
remote nodes at every epoch. Figure 14a shows how the
average difference in CPU cycles is effected by the static
migration rate. For the basecase, as the data is not migrated,
the local node is congested, and hence, the absolute difference
in probed latencies per epoch is as high as 93 CPU cycles. As
the migration rate is varied from 2000 to 16000, average value
changes from 65 cycles to 56 cycles with a minimum value
of 54 cycles for a migration rate of 8000.

The maximum performance improvements occur when all
the above mentioned parameters experience lower values,
which seems to be the case for a migration rate of 8000.
Though the static migration rates can improve performance,
being agnostic to the gap in probed latencies might not yield
the maximum performance. Observing this, we propose using
the current absolute latency gap at the end of the epoch,
represented by ∆cycles, to calculate the dynamic migration
rates so that we migrate more pages if the latency gap is high
and fewer pages if the latency gap is not too high. Figure 13b
shows the improvement in performance for different dynamic
migration rates, and the corresponding values for the three
parameters discussed above are plotted in Figure 14b (results
for static migration rate 8000 is just shown for comparison). As
can be observed, (∆cycles × 60) yields maximum system per-
formance with 12.1% in overall system performance6. Hence,
CAPM is successful in alleviating congestion in scenarios
where CAMA is ineffective.

VII. CONGESTION-AWARE MEMORY MANAGEMENT
(CAMM)

In this section, we discuss and evaluate how CAMA and
CAPM interact with each other. We refer to this combined
scheme, which includes both CAMA and CAPM, as Congest-
ion-Aware Memory Management (CAMM). CAPM employed
a dynamic migration rate of ∆cycles × 60 and the epoch
duration used is 2 secs. To give an overall picture of how
the overall system performance is impacted by our schemes,
we present the full evaluation results for CAMA, CAPM and
CAMM using homogeneous and heterogeneous workloads.
Tables VI and VII show heterogeneous workloads for West-
mere and Haswell respectively. Apart from WL1 to WL10
heterogeneous workloads, we have three additional workloads,
WL1 identical, WL8 identical, WL10 identical where all the
nodes in a machine execute the same workloads thereby caus-
ing equal amount of congestion to their corresponding local
memories. Similarly we use mcf identical, npb is identical
and lbm identical homogeneous workloads that result in same
amount of congestion in all the nodes of a machine. In

6In all our workloads, we observed that this heuristic yields maximum
performance.

-5
0
5

10
15
20
25
30
35
40

W
L1

W
L2

W
L3

W
L4

W
L5

W
L6

W
L7

W
L8

W
L9

W
L1

0

W
L1

_i
d

en
ti

ca
l

W
L8

_i
d

en
ti

ca
l

W
L1

0_
id

en
ti

ca
l

m
cf

lib
q

u
an

tu
m

n
p

b
_i

s

n
p

b
_u

a

m
ilc

G
em

sF
D

TD lb
m

o
m

n
et

p
p

p
o

vr
ay

m
cf

_i
d

en
ti

ca
l

n
p

b
_i

s_
id

en
ti

ca
l

lb
m

_i
d

en
ti

ca
l

A
ve

ra
ge

Heterogeneous WLs Homogeneous WLs Overall

%
 E

xe
c.

 T
im

e
Im

p

CAMA CAPM CAMM AutoNUMA

(a)

-5
0
5

10
15
20
25
30

W
L1

W
L2

W
L3

W
L4

W
L5

W
L6

W
L7

W
L8

W
L9

W
L1

0

W
L1

_
id

e
n

ti
ca

l

W
L8

_
id

e
n

ti
ca

l

W
L1

0
_

id
e

n
ti

ca
l

m
cf

lib
q

u
a

n
tu

m

n
p

b
_

is

n
p

b
_

u
a

m
ilc

G
e

m
sF

D
T

D

lb
m

o
m

n
e

tp
p

p
o

vr
ay

m
cf

_
id

e
n

ti
ca

l

n
p

b
_

is
_

id
e

n
ti

ca
l

lb
m

_
id

e
n

ti
ca

l

A
ve

ra
ge

Heterogeneous WLs Homogeneous WLs Overall

%
 E

xe
c.

 T
im

e
 Im

p

CAMA CAPM CAMM AutoNUMA

(b)
Fig. 15: Overall execution time improvements for (a) Intel Haswell and (b) Intel Westmere.

the heterogeneous workloads, since some applications finish
execution earlier, a node may not be congested allthrough the
workload execution which might not depict some real-world
scenarios. To cover such scenarios, we restart applications
which finish earlier till the point where each application in
the workload finishes execution at least once.

Workloads MPKI Restart
Category Enabled?

WL-1 mcf(2), libquantum(3), is(3), milc(2), lbm(2), swim(1) H No
WL-2 hpccg(2), milc(1), is(1), libquantum(1), equake(1), specjbb(1), lbm(1) H+M No
WL-3 GemsFDTD(4), specjbb(1), equake(1), hpccg(2) M No
WL-4 hpccg, povray(2), cc(1), equake(1), mgrid(1), GemsFDTD(1) M+L No
WL-5 povray(4), scc(2), mgrid(2) L No
WL-6 povray(1), mcf(2), libquantum(2), cc(1), is(1), ua(1) H + L No
WL-7 GemsFDTD(1), mcf(1), povray(2), lbm(1),

milc(1), specjbb(1), libquantum(1), ua(1), swim(1), mgrid(1) H + M + L No
WL-8 mcf(2), libquantum(3), is(3), milc(2), lbm(2), swim(1) H Yes
WL-9 hpccg(2), milc(1), is(1), libquantum(1), equake(1), specjbb(1), lbm(1) H + M Yes
WL-10 povray(1), mcf(2), libquantum(2), cc(1), is(1), ua(1) H+ L Yes

TABLE VI: Heterogeneous workloads for Intel Westmere.
Workloads MPKI Restart

Category Enabled?

WL-1 is(6), ua(4), mcf(4), libquantum(5), milc(4), swim(2), omnetpp(2) H No
WL-2 GemsFDTD(3), lbm(3), libquantum(2), mcf(3), omnetpp(3), M+ H No

is(4), ua(1), equake(2), swim(1)
WL-3 GemsFDTD(4), hpccg(3), equake(2), specjbb(3) M No
WL-4 equake(3), mgrid(2), GemsFDTD(4), specjbb(1), hpccg(1) M + L No
WL-5 povray(8), cc(3), scc(3), mgrid(1) L No
WL-6 lbm(2), libquantum(3), mcf(2), milc(3), omnetpp(2),cc(2), scc, is(2),

npb ua(2), mgrid(1), swim(1), H+L No
WL-7 GemsFDTD(2), lbm(2), mcf(2), milc(1),

omnetpp(2), hpccg(1), cc(1), scc(2), is(1), ua(1), equake(1), swim(1) H+M+L No
WL-8 is(6), ua(4), mcf(4), libquantum(5), milc(4), swim(2), omnetpp(2) H Yes
WL-9 GemsFDTD(3), lbm(3), libquantum(2), mcf(3), omnetpp(3),

is(4), ua(1), equake(2), swim(1) H+M Yes
WL-10 lbm(2), libquantum(3), mcf(2), ua(2), mgrid(1)

milc(3), omnetpp(2), cc(2), scc, is(2), H+L Yes

TABLE VII: Heterogeneous workloads for Intel Haswell.

Overall CAMM results: In Haswell, CAMM improves the
overall performance on an averge by 9.5%, while CAMA
and CAPM imrove the performance by 8.6% and 8.2%
respectively. Similarly, on Westmere, CAMM improved the
performance on an average by 7.2%, while CAMA and
CAPM improved the performance by 5.1% and 6.2% over the
basecase, respectively. Since all the nodes are equally con-
gested in the heterogeneous WL1 identical, WL8 identical,
WL10 identical workloads and homogeneous mcf identical,
npb is identical, lbm identical workloads, the CAMM does
not allocate/migrate any data to the remote node. This is
because the remote node probed latencies are greater than
the local node probed latencies in every epoch owing to the
additional interconnect traversal latency thereby resulting in
100% local accesses. As a result, there is no improvement in
performance in these workloads over the baseline as can be
observed in Figures 15a and 15b.
Homogeneous-vs-Heterogeneous WL Results: From fig-
ures 15a and 15b it can be observed that homogeneous
workloads yield better improvements compared to the het-
erogeneous ones. This is because, homogeneous workloads
have high overall memory intensity compared to the het-
erogeneous ones. For example, comparing workloads WL8

and npb is, which are highly memory-intensive in their re-
spective (heterogeneous/homogeneous) categories, the probed
latencies look as follows: For WL8: Node0→Node0: 434
cycles; Node0→Node1: 340 cycles; Delta: 94 cycles. For
npb is: Node0→Node0: 630 cycles; Node0→Node1: 375 cy-
cles; Delta: 255 cycles. The homogeneous npb is workload is
around 2.7x more congested compared to heterogenous WL8,
resulting in larger improvements for npb is. This variation in
memory intensities between homogeneous and heterogeneous
workloads is primarily due to application “phase behavior”. In
a homogeneous workload since the same applications are run
on all the cores, at any given moment all the applications are
in the same phase, a node is either highly congested or not.
For heterogeneous-workloads, since different applications are
running concurrently, they are in different phases at any given
epoch, thereby causing lower congestion relatively.
Haswell-vs-Westmere Improvements: From Figures 15a
and 15b, it can be observed that the improvements on Haswell
are relatively higher compared to the Westmere processor.
This difference is because Haswell system runs 36 VMs per
socket, while Westmere only runs 20VMs per socket. Hence,
in our experiments, we observed that Haswell system is more
congested overall compared to the Westmere system. Hence,
CAMM yields better improvements in Haswell over Westmere.
Dynamic Probing Overhead Analysis: In our dynamic prob-
ing code presented in Algorithm 1, NUM PROBED PAGES
and NUM PROBES PER PAGE play an important role in
the overall performance improvement. Too few requests
might not give the accurate congestion information, and
too many probe-requests will interfere with on-demand re-
quests issued by VMs. Based on experimentation with all
our workloads, we determined NUM PROBED PAGES and
NUM PROBES PER PAGE with values 20 (per-node) and
8 respectively, could capture the end-to-end congestion in-
formation accurately. For this configuration, our probing-
code accesses 160 cache lines from a node to determine the
average end-to-end access latency for every 2 secs epoch. The
npb is (homogeneous) workload (which is the most memory-
intensive workload among our workloads) running on Haswell,
experienced an average memory access latency of 630 CPU
cycles (per memory request) to the congested node (Node-0) in
the baseline. In such scenarios, our default probing overhead is
48 µsecs for every 2 secs probing. However, with our proposed
CAMM optimizations, average memory access latency reduces
significantly, further reducing probing overheads to few µsecs,
which is significantly better over prior proposals [3].
Comparison with AutoNUMA: The current version of
Linux is NUMA-aware and supports AutoNUMA [41] feature

to minimize remote node accesses. AutoNUMA migrates
threads/memory to co-locate threads and data to minimize
remote node accesses. It tracks local-vs-remote faults by in-
validating few TLB entries, generating page-faults when those
pages are accessed. However, unlike CAMM, autoNUMA does
not migrate memory pages anymore if a workload incurs
100% local accesses irrespective of the congestion. As can
be observed in Figures 15a and 15b (green-bar), congestion-
agnostic autoNUMA implemented in ESXi infact degraded the
performance over the baseline on an average by 2.1% and
1.4% on Haswell and Westmere respectively, as the additional
time is spent servicing the artificially induced page-faults.

VIII. RELATED WORK

NUMA-aware proposals: The numactl [42] feature in Linux
provides the user with a flexbility to choose the node on which
a task can execute and a node on which data can be allocated
statically based on various policies like localalloc, interleaved,
etc., which govern where the tasks’ data can be allocated. This
numactl [42] feature abides by the policy specified by the user
and hence is congestion-agnostic. All NUMA-aware proposals
[2, 30, 41]–[43] target co-locating tasks and memory on the
same node to enhance locality and are agnostic to congestion.
Congestion-aware proposals: The prior congestion-aware
proposals [1, 3, 4, 19] employ reading performance coun-
ters to estimate the congestion information. Sharanyan et al
[3, 4] read various counters to estimate number of memory
accesses and use this information to isloate the inter-node
coherence traffic and the main memory traffic by reading
the performance counters. Liu et al [19] proposed a NUMA
overhead-aware buddy allocator. In this work, authors infer
congestion by reading performance counters that count the
LLC hitrates, cycle loss due to LLC misses, and IPC ratio
between local and remote nodes. Sergey et al [1] proposed a
dynamic scheduling algorithm, DINO, which migrates threads
and the corresponding memory between sockets to mitigate
the memory congestion based on profiled information from
perfmon. Perfmon internally reads performance counters [44].
Almost all the commerical processors available today impose
constraints on how many performance counters can be moni-
tored simultaneously (Intel Ivybrige allows only four [3, 37]).
Reading these counters itself result in overheads in the order
of several µsecs for every 1sec sampling interval [3]. Also,
inferring the shared interconnect contention information is not
straightforward in processors like AMD as demonstrated by
Lepers et al [2], and hence the past proposals do not have one
generic mechanism which works on all the machines oblivious
to the hardware unlike our CAMM.

IX. CONCLUSION

We proposed a generic, novel, accurate and practical dy-
namic probing mechanism which can aid in detecting con-
gestion in a NUMA-based system. Our proposed mechanism
does not necessitate reading performing counters to detect
and mitigate congestion. We proposed and evaluated CAMA,
CAPM and CAMM in ESXi. We observed that CAMM,
a combination of CAMA and CAPM improved the overall
performance, on an average, by 9.5% and 7.2% in Haswell
and Westmere systems, respectively.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of
NSF under the grants 1439021, 1439057, 1409095, 1626251,
1629915, 1629129 and 1526750.

REFERENCES

[1] S. Blagodurov et al., “A case for NUMA-aware contention management
on multicore systems,” in USENIX ATC, 2011.

[2] B. Lepers et al., “Thread and memory placement on NUMA systems:
Asymmetry matters,” in USENIX ATC, 2015.

[3] S. Srikanthan et al., “Data sharing or resource contention: Toward
performance transparency on multicore systems,” in USENIX ATC, 2015.

[4] Sharanyan et al., “Coherence stalls or latency tolerance: Informed cpu
scheduling for socket and core sharing,” in USENIX ATC, 2016.

[5] “Bullion(16-socket) System,” https://goo.gl/WTRoKn.
[6] M. Ferdman et al., “Clearing the clouds: A study of emerging scale-out

workloads on modern hardware,” in ASPLOS, 2012.
[7] J. B. Kotra et al., “Re-NUCA: A practical nuca architecture for reram

based last-level caches,” in IPDPS, 2016.
[8] Kislal et al., “Location-aware computation mapping for manycore pro-

cessors,” in PACT, 2017.
[9] O. Kislal et al., “Cache-aware approximate computing for decision tree

learning,” in IPDPSW, 2016.
[10] H. Zhang et al., “Race-to-sleep + content caching + display caching: A

recipe for energy-efficient video streaming on handhelds.”
[11] X. Tang et al., “Improving bank-level parallelism for irregular applica-

tions.”
[12] J. D. Booth et al., “Phase detection with hidden markov models for dvfs

on many-core processors,” in 2015 IEEE 35th International Conference
on Distributed Computing Systems, 2015.

[13] J. Liu et al., “Network footprint reduction through data access and
computation placement in noc-based manycores,” in DAC, 2015.

[14] K. Swaminathan et al., “Thermal-aware application scheduling on
device-heterogeneous embedded architectures,” in VLSID, 2015.

[15] P. Yedlapalli et al., “Meeting midway: Improving cmp performance with
memory-side prefetching,” in PACT, 2013.

[16] J. Kotra et al., “Quantifying the potential benefits of on-chip near-data
computing in manycore processors,” in MASCOTS, 2017.

[17] L. Wang et al., “Bigdatabench: A big data benchmark suite from internet
services,” in HPCA, 2014.

[18] J. B. Kotra et al., “Hardware-software co-design to mitigate dram refresh
overheads: A case for refresh-aware process scheduling,” in ASPLOS,
2017.

[19] M. Liu et al., “Optimizing virtual machine consolidation performance
on NUMA server architecture for cloud workloads,” in ISCA, 2014.

[20] “AMD Bulldozer,” http://goo.gl/otbg9J.
[21] “Intel Haswell Processor,” http://goo.gl/xIiqKY.
[22] “Intel Westmere processor,” http://goo.gl/UGPBsI.
[23] “Westmere config,” https://goo.gl/CjGO0X.
[24] “NAS,” https://goo.gl/dA36i5.
[25] “SPEC CPU 2006,” http://www.spec.org/cpu2006.
[26] “SPEC OMP 2001,” https://www.spec.org/omp2001/,.
[27] “HPCCG,” https://mantevo.org/default.php.
[28] “SPECJBB,” https://www.spec.org/jbb2005/.
[29] G. Slota et al., “BFS and coloring-based parallel algorithms for strongly

connected components and related problems,” in IPDPS, 2014.
[30] “VMware ESX Server 2,” white paper.
[31] “JEDEC,” DDR4 SDRAM Standard, 2012.
[32] “JEDEC,” Low Power Double Data Rate 3 (LPDDR3), 2012.
[33] “AMD HBM,” http://goo.gl/iVHexT.
[34] “Intel MCDRAM,” https://goo.gl/iGQG32.
[35] “Intel 3D XPoint Memory,” http://goo.gl/04n7Ksl.
[36] “Phase-change Memory,” https://goo.gl/xOKMDF.
[37] “Intel performance analysis guide,” https://goo.gl/y21oEB,.
[38] N. Agarwal et al., “Thermostat: Application-transparent page manage-

ment for two-tiered main memory,” in ASPLOS, 2017.
[39] J. Gandhi et al., “Badgertrap: A tool to instrument x86-64 tlb misses,”

in CAN, 2014.
[40] C. Villavieja et al., “Didi: Mitigating the performance impact of TLB

shootdowns using a shared tlb directory,” in PACT, 2011.
[41] “Linux AutoNUMA,” https://lwn.net/Articles/488709/.
[42] “Linux numactl,” https://goo.gl/FS9mHs.
[43] Q. Ali et al., “Power aware NUMA scheduler in vmware’s esxi hyper-

visor,” in IISWC, 2015.
[44] “PerfMon,” https://goo.gl/RvLxqE.

https://goo.gl/WTRoKn
http://goo.gl/otbg9J
http://goo.gl/xIiqKY
http://goo.gl/UGPBsI
https://goo.gl/CjGO0X
https://goo.gl/dA36i5
http://www.spec.org/cpu2006
https://www.spec.org/omp2001/
https://mantevo.org/default.php
https://www.spec.org/jbb2005/
http://goo.gl/iVHexT
https://goo.gl/iGQG32
http://goo.gl/04n7Ksl
https://goo.gl/xOKMDF
https://goo.gl/y21oEB
https://lwn.net/Articles/488709/
https://goo.gl/FS9mHs
https://goo.gl/RvLxqE

	Introduction
	Background and Experimental Setup
	NUMA architecture
	Experimental setup

	Motivation
	Effect of increasing consolidation
	Static allocation results

	Dynamic Latency Probing -5pt
	Congestion-Aware Memory Allocation (CAMA) -10pt
	Congestion-Aware Page Migration (CAPM)
	Congestion-Aware Memory Management (CAMM) -5pt
	Related Work
	Conclusion -5pt
	References

