CHAMELEON: A Dynamically Reconfigurable
Heterogeneous Memory System

Jagadish B. Kotra!2, Haibo Zhang2, Alaa R. Alameldeen?®, Chris Wilkerson*, Mahmut T. Kandemir?
TAMD Research (Work done while at The Pennsylvania State University), Email: Jagadish.Kotra@amd.com
2The Pennsylvania State University, Email: {haibo, kandemir} @cse.psu.edu
3Intel Labs, Email: alaa.r.alameldeen @intel.com
ANVIDIA, Email: cwilkerson@nvidia.com

Abstract—Modern computing systems and applications have
growing demand for memories with higher bandwidth. This
demand can be alleviated using fast, large on-die or die-stacked
memories. They are typically used with traditional DRAM as part
of a heterogeneous memory system and used either as a DRAM
cache or as a hardware- or OS-managed part of memory (PoM).
Caches adapt rapidly to application needs and typically provide
higher performance but reduce the total OS-visible memory
capacity. PoM architectures increase the total OS-visible memory
capacity but exhibit additional overheads due to swapping large
blocks of data between fast and slow memory.

In this paper, we propose Chameleon, a hybrid architecture
that bridges the gap between cache and PoM architectures. When
applications need a large memory, Chameleon uses both fast
and slow memories as PoM, maximizing the available space for
the application. When the application’s footprint is smaller than
the total physical memory capacity, Chameleon opportunistically
uses free space in the system as a hardware-managed cache.
Chameleon is a hardware-software co-designed system where the
OS notifies the hardware of pages that are allocated or freed,
and hardware decides on switching memory regions between
PoM- and cache-modes dynamically. Based on our evaluation
of multi-programmed workloads on a system with 4GB fast
memory and 20GB slow memory, Chameleon improves the
average performance by 11.6% over PoM and 24.2% over a
latency-optimized cache.

I. INTRODUCTION

Many client, mobile, and data-center applications have
a growing demand for memories with higher bandwidth
and larger capacity. With the increasing popularity of many
data-intensive applications including high-resolution graphics
and machine learning, memory is increasingly becoming a
performance bottleneck. Due to the significant speed dispar-
ity between CPUs and memory, improvements in memory
latency and bandwidth can lead to substantial performance
improvements in memory-bound applications. The advent of
die-stacked or on-die memories (e.g., HBM [1], HMC [2])
proved to be instrumental in bridging this performance gap.

Unfortunately, the high bandwidth memories cannot be used
as a sole memory component in a system due to limited number
of stacks impacting the capacity and the interposer challenges.
This observation led to heterogeneous memory systems' that
combine a fast memory component (e.g., die-stacked DRAM)

Note that in this paper, a heterogeneous memory system refers to a system
that includes memories having varying bandwidths. Memories referred to as
“fast” have higher bandwidth (and not latency) compared to the “slow” ones.

with a (typically larger) relatively slow memory components
(e.g., DDR3/DDR4) [3—6]. Many prior proposals use fast
memory in a heterogeneous memory system as a cache [7—
16]. Caches provide performance advantages [17-21] due
to spatial and temporal locality where a large fraction of
memory references access fast memory. However, since caches
duplicate data, they reduce the overall Operating Systems (OS)-
visible memory capacity which degrades performance for high
memory-footprint applications. This is especially a problem
when fast memory constitutes a large fraction of the overall
memory capacity.

To enable the performance improvements of fast memory
without losing capacity to caches, Part of Memory (PoM)
architectures which expose the stacked DRAM to the OS to
enhance the overall OS-visible capacity have been proposed
[22-25]. In a datacenter environment, exposing the additional
capacity of stacked DRAM to OS is beneficial since:

e It enables the datacenter schedulers to schedule more jobs,
reducing the overall waiting time of the jobs, thereby
improving datacenter throughput.

e It reduces the number of page faults for some pathological
scenarios not foreseen by the system administrator or the
user who specified constraints while submitting a job.

e It can reduce system cost and power by reducing the overall
amount of off-chip DRAM required (e.g., a system with
4GB/16GB stacked/off-chip DRAM could be replaced by a
system with 4GB/12GB stacked/off-chip DRAM for a total
of 16GB OS-visible memory).

PoM architectures could be hardware-managed [22, 25] or

could be used as an OS-managed NUMA system [23, 24]. OS-

managed memory systems provide a low-overhead mechanism
to achieve performance, but do not react quickly to changing
memory demands of running applications. Hardware-managed

PoM systems adapt quickly to changing memory demands and

therefore outperform OS-managed heterogeneous memory, but

this comes at the expense of higher area and power to manage
hardware address indirection and large region swaps between
fast and slow memories [25]. Due to the necessity of swapping
large segments or pages between the fast and slow memories,
PoM could degrade performance when swaps? interfere with

2In this paper, a swap refers to a segment swapped between stacked and
oft-chip DRAMs, while the page swap between an off-chip DRAM and a
secondary storage device like SSD or disk is implied by a page-fault.

on-demand memory accesses.

In this paper, we propose and evaluate a novel architecture,
Chameleon, which attempts to achieve the best of cache
and PoM architectures using hardware-software co-design.
Chameleon uses a hardware-managed PoM as the baseline to
achieve its capacity advantages. However, we rely on the OS to
inform hardware of any pages that have been allocated or freed
using two new instructions: ISA-Alloc and ISA-Free. Based
on this information from the OS, Chameleon opportunistically
uses the freed pages as a hardware-managed cache, therefore
avoiding the expensive page swap operations. Chameleon
switches between cache and PoM modes dynamically based
on the available free space. More specifically, this paper makes
the following contributions:

e We show using real system experiments that different
workloads exhibit different memory-footprints over time.

e We propose novel Chameleon and Chameleon-Opt co-
designs. Our basic Chameleon design leverage the free
space in stacked DRAM as cache, while an optimized
Chameleon-Opt remaps the stacked DRAM segments to
off-chip proactively to free space in stacked DRAM to be
used as cache. Our proposed Chameleon co-designs provide
PoM-like memory capacity with cache-like performance.

e We propose simple changes in the instruction set architecture
to support Chameleon. With two new instructions, the OS
can inform the hardware when a page is freed or allocated,
allowing Chameleon to use free pages as a cache.

e Our simulation results show that Chameleon performs better
than static PoM and cache architectures, outperforming a
PoM baseline by 11.6% and a latency-optimized cache by
24.2%.

II. BACKGROUND AND RELATED WORK
A. NUMA Dichotomy

1) Multi-Socket Homogeneous Memory: In a traditional
multi-socket system, each socket consists of on-chip cores, a
last-level cache (LLC), and a local off-chip DRAM as depicted
in Figure la. Sockets are connected to each other through
an interconnect, e.g., AMD Hyperconnect. For tasks running
on Socket-0, accessing data from local DRAM connected to
socket-0 incurs lower latency compared to accessing data
from the remote memory connected to socket-1. The extra
latency incurred in the remote access is due to an additional
interconnect traversal latency, even though the local and remote
memories have the same bandwidth. This variation in access
latencies between the local and remote memories results in a
Non-Uniform Memory Access, widely referred to as NUMA.
This NUMA dichotomy leads to computation/data placement
having a significant impact on performance.

2) Single-Socket Heterogeneous Memory: With the advent of
high-bandwidth stacked DRAMs integrated on the die through a
silicon transposer, each socket is turning into a NUMA system.
This is because accesses to the on-chip stacked DRAM are
faster compared to off-chip memory. Figure 1b shows a block
diagram of a single-socket heterogeneous system containing
stacked and off-chip DRAMs.

Socket-0 Socket-1 Socket-0

On-Chip
cores
Juc

High Bandwidth|:

' 1
1 Stacked DRAM ||
: On-Chi el i
n-Chi
: p Low Bandwidth :
1 1
1 1
I 1
' 1

On-Chip
cores/LLC

Off-chip | Intel QPI/
Memory |, AMD Memory
(Node-0) |1 Hyper- (Node-1) [20G8]

1
,,,,,,,,, transport L — - —— -~ e]

= cores
Off-chip Off-chip

JLLC
DRAM

a b
Fig. 1: (a)Two—sock(g)t homogeneous mem(()r)y system, and (b)
Single-socket heterogeneous memory system

B. NUMA-Aware OS Optimizations

1) NUMA-Aware Memory Allocator: Traditional NUMA-
Aware Linux and VMware ESXi, by default, allocate each
task’s data in the same socket on which the task is running
to maximize local memory accesses [26-28]. This is widely
referred to as “first-touch” or local memory allocation policy
in Linux. These allocation policies improve performance by
minimizing remote memory accesses.

2) Linux Automatic NUMA Balancing (AutoNUMA): Linux
supports an advanced Automatic NUMA balancing mechanism
to enhance the locality between the executing task and
its corresponding memory [29]. On a multi-socket system,
AutoNUMA keeps track of local-to-remote memory accesses by
poisoning some set of pages (i.e., invalidating the corresponding
page table entries). As a result, a processor load/store to the
corresponding page results in a page-fault. In a given epoch,
referred to as “numa_balancing_scan_period” in AutoNUMA,
Linux calculates the “remote-to-local page-fault ratio”. At
the end of numa_balancing_scan_period epoch, if the remote-
to-local page-fault ratio exceeds a threshold (referred to as
“numa_period_threshold”), the misplaced pages which caused
remote page-faults are migrated from the remote socket’s
memory to the local socket’s memory. Depending on the remote-
to-local page-fault ratio, the numa_balancing_scan_period is
updated dynamically so that the misplaced pages can be
migrated quickly to the local socket.

One important issue in AutoNUMA is that memory pages
are migrated from the remote to local socket only as long
as there is enough free space available in the local socket’s
memory. If there is no free space left, page migration fails with
“-ENOMEM?” error. If the remote-to-local fault ratio continues
to increase, since AutoNUMA can no longer migrate memory
pages to local socket, it migrates the task from a current socket
(say socket-0) to socket-1 to minimize remote memory accesses.

C. Hardware-Managed Heterogeneous Memory

In the context of single-socket heterogeneous memory
systems, the hardware-managed techniques for stacked DRAM
primarily falls into three categories: (1) cache-based systems
and (2) PoM-based systems, and (3) statically reconfigurable
hybrid memory systems.

1) Stacked DRAM as Cache: A large body of recent work
has looked at utilizing stacked DRAM as another cache between
the last level cache (LLC) and system memory [9-14, 16, 30].
A DRAM cache provides good performance and software
transparency, but needs to appropriately organize the cache
structure (data and tags). To study the architectural implications

N
@
X

HautoNUMA_10M_70per

D autoNUMA_10M_80per ce t _thresh 100
autoNUMA_10M_90percent_thresh

ent_thresh
—— Number of Pages Migrated|
Stacked DRAM Hitrate

S

Migrated
5 @
]

Number of Pages

‘ mill Hl Hl”l

g 120%
= 20% £ 100%
§15% £ 80%
I
= 10% s 60%
8 g 40%
g 5% S 20% I
: 3 i
& o% 2 0%
o PP P EDEETL S ” 3
FTELLESETESEF 8 FE & e E S
S L EFET & FEE £E SELE
N & N & & A4 \ &
A < & &

il HH\ I

Stacked DRAM Hitrate

> & &
o" @ & ¢ & &
& & £ 48 9% 240 480
@ & Time (10 million cycles epoch)

Fig. 2: (a) NUMA—A\%re Allocator (b) AutoNUMA Hit rates, (c) Cloverleaf AutoNUMA timeline(cefor 90% threshold).

of DRAM cache, prior proposals looked at direct-mapped [14],
set-associative [13, 16] and fully-associative [12] cache designs.

2) Stacked DRAM as Part of Memory (PoM): Recent works
also studied the usage of stacked DRAM as an OS-visible
extension to off-chip memory [22, 25, 31-33]. In particular,
[31, 32] proposed software-hardware approaches that warrant
OS to detect and collect page access information by identifying
the first requested pages and the hot pages (FTHP). While
[33] uses a Majority Element Algorithm (MEA) algorithm
originally proposed for databases to track and predict hot-pages
to migrate to the stacked DRAM, [34] uses a locking-based
sub-blocked architecture to swap blocks between stacked and
off-chip DRAMSs to maximize the overall bandwidth. However,
proposals [22, 25] explored hardware-based redirection via a
hardware remapping table to ensure high stacked DRAM hit
rates. While the design in [25], optimized for lower meta-data
overhead and spatial locality by storing frequently accessed
2KB segments in stacked DRAM, CAMEO [22] employed a
64-Byte segments trading off bandwidth for high meta-data
overhead and spatial locality. Further details on the design
of [22, 25] are covered in Section V. All these proposals
[22, 25, 31-34] are agnostic to the OS-visible free space in
managing the heterogeneous memory system.

3) Statically Reconfigurable Heterogeneous Memories: KNL
supports various modes [35] of stacked DRAM (referred to
as MC-DRAM) operation. These modes include: (1) 100%
cache, (2) 100% OS-visible flat (memory), and (3) static hybrid-
mode. Apart from these two modes, KNL also supports two
static hybrid-mode configurations. In one configuration, 25%
of stacked DRAM operates in cache-mode while the remaining
75% operates in memory-mode. In the second configuration,
50% of stacked DRAM operates in cache-mode while the
remaining 50% operates in memory-mode. These modes are
static and require a system reboot to switch from one hybrid
configuration to another.

III. CHALLENGES IN ARCHITECTING A
PERFORMANCE-OPTIMIZED HETEROGENEOUS MEMORY

A. OS-based NUMA-Aware Solutions

To understand how existing OS-based NUMA-aware solu-
tions fare in a single-socket heterogeneous memory system, we
used a full-system GEMS [36] simulator setup (more details of
experimental setup in Section VI-A) running Linux OS kernel-
4.2.2. The kernel is compiled with “CONFIG_NUMA=y” and
“CONFIG_NUMA_EMU=y” options to emulate NUMA setup.
However, since the existing kernel does not support emulating
asymmetric capacities for the NUMA nodes, the Linux kernel

was modified to support different capacities with a patch similar
to [37] and is configured using “numa=fake=1%4096,1%20480".
As a result, the Linux kernel now emulates two NUMA nodes,
one with 4GB capacity and another with 20GB capacity on
a system with only one physical node. Further, to model the
NUMA effects due to bandwidth variation between stacked- and
off-chip DRAMs, we modified the memory controller module
in GEMS to simulate heterogeneous memory bandwidths.

1) NUMA-Aware Memory Allocator: The Linux NUMA-
aware “First-touch” allocator (Section II-B1, [38]) tries to
allocate as many pages as possible in the faster, stacked DRAM
to increase the stacked DRAM hit rate. Figure 2a shows the
stacked DRAM hit rate for high memory footprint workloads
in a system containing 4GB stacked DRAM and 20GB off-
chip DRAM. The average stacked DRAM hit rate for these
high footprint workloads is as low as 18.5%. This low stacked
DRAM hit rate is due to two main factors. First, the non-
proportional capacity of the stacked DRAM compared to the
off-chip DRAM limits the amount of data that a stacked DRAM
can accommodate (4GB in our experiments) before it runs out
of memory. Second, the OS lacks adequate hot-page prediction
mechanisms. Employed page allocation strategies can result in
some of the hot-pages getting allocated in the off-chip DRAM,
reducing stacked DRAM hit rate. Our results demonstrate that
the NUMA-Aware first-touch memory allocator policy is not
optimal for heterogeneous memory systems as it results in
severe under-utilization (low hit rate) of the stacked DRAM.

2) Linux AutoNUMA: Some of the shortcomings mentioned
in Section III-A1, are successfully handled by Linux AutoN-
UMA [29]. Figure 2b shows the stacked DRAM hit rate for a
4GB stacked + 20GB off-chip DRAM system for different
numa_period_threshold values (70%, 80% and 90%). The
higher numa_period_threshold yields better stacked DRAM hit
rates, an average of 64.4%, as the misplaced (off-chip DRAM)
pages are migrated more rapidly to the stacked DRAM. Though
the average hit rate of AutoNUMA is better compared to the
NUMA-Aware allocator, the hit rates are still undesirably low.
Specifically, Cloverleaf has a cumulative hit rate as low as
30.7% (for 90% threshold). The timeline graph in Figure 2c
helps us reason about the lower hit rate in the Cloverleaf
workload. The primary Y-axis represents the number of pages
migrated per epoch, while the secondary Y-axis shows the
stacked DRAM hit rate’. The X-axis represents the timeline
where each epoch is 10 million processor cycles. With time,
as the number of misplaced pages migrated from off-chip

3Note that there are already pre-allocated memory pages in the stacked
DRAM as it is exposed to OS in AutoNUMA.

=]
000
Ll

[

o

o
i

B
[=1<]
[=1<]

)

MEMORY FREE (IN MBS)
®
o
o

16:2228 -+

Fig. 3: Inter-Workload Memory Footprint Variation Over Time

DRAM to the stacked DRAM increases, the stacked DRAM

hit rate increases, reaching a maximum of around 77.1% at the

81st epoch. However, after epoch 81, the stacked DRAM hit
rate reduces gradually from 77.1% to 30.7%. This is because
as pages are migrated from the off-chip memory to stacked

DRAM, the stacked DRAM capacity becomes full. With no

free space available to accommodate the misplaced pages in

stacked DRAM, no more pages are migrated and hence the
hit rate drops over time finally ending at 30.7%. The lower
stacked DRAM hit rates in AutoNUMA is due to:

e The single-socket heterogeneous systems contain a non-
proportional stacked DRAM capacity unlike the multi-socket
systems which contain local memory capacity similar to
that of remote memory. Hence, there is a high chance that
AutoNUMA can find free memory available in the case
of multi-socket system compared to a single-socket stacked
DRAM system. As a result, AutoNUMA optimized for multi-
socket systems does not consider evicting pages from local
memory to accommodate misplaced pages to be migrated
from the remote memory.

e Even if there is no free space available in the multi-socket
system to migrate pages, AutoNUMA increases the local
memory accesses by migrating the task to remote socket.
However, this is not feasible in single-socket systems.

e Even in a system with higher free memory space available,
since the numa_balancing_scan_period is on the order of
milliseconds, the page migration happens at a very coarse —
millions of CPU cycles — granularity, as identified in [25].

B. Memory Free Space over Time

Figure 3 shows the free memory space over time in a
system with 24GB overall DRAM capacity. These experiments
are conducted on an Intel Xeon CPU E5-2620 (more details
about the machine configuration can be found in [39]) running
workloads sequentially one after the other spanning over
more than 2 days. Our system employs a “Samsung 850 pro”
256GB SSD as the secondary storage and hence the page-
faults are serviced by a low-latency SSD. Each workload in
this experiment contains 12 copies of the same application
executed in the rate mode [40]. The applications chosen are
from SPEC2006 [41], NAS [42], stream [43], and Mantevo
[44] suites. The applications used in the workloads for Figure
3 can be observed on the X-axis in Figure 4. The memory free
information is collected using the numastat [45] tool in Linux,
periodically once every 2 mins. Figure 3 shows that workloads
exhibit varying demands on memory over time. The free space
varies from a few MegaBytes(MBs) to several GigaBytes(GBs).
As can be observed, memory allocation/de-allocation varies
rapidly in the order of few minutes during some phases of the

m N el
& & s ~

TIME STAMP [HH:MM:SS]

[16:22:28 (day-1) - 22:10:10 (day-3), Elapsed Time: 53.8 hours].

experiment while not so infrequently during the other phases of
the experiment thereby capturing different execution behaviour
of the workloads.

C. Impact of Memory Capacity on Performance

As Figure 3 shows, different workloads are affected differ-
ently based on the OS-visible memory capacity. Figure 4 shows
the ramifications of limiting the overall capacity of a workload
as the overall OS-visible capacity is varied from 16GBs to
28GBs, in steps of 2GB, on an Intel Xeon CPU machine
[39]. Some applications are agnostic to this variation as their
entire memory footprint fits into smaller memory capacity.
However, some workloads are sensitive to the overall capacity.
The performance improvements (denoted by %Imp) for each
workload reported in Figure 4 are normalized to a system with
16GB capacity and is calculated as follows:

((G.Mean Exec.Time),3c5 — (G.Mean Exec.Time) p) * 100

#lmpacp = (G.Mean Exec.Time),4cp o

As the capacity increases from 18GB to 24GB, the average
execution time improvement across all the workloads improves
from 29.5% to 75.4%, saturating at 75.4%* for 26GB and
28GB capacities. The results in Figure 5 help us understand
the variation of performance with the memory capacity. The
results on the primary and secondary Y-axes represent the
average number of page-faults (in millions) encountered by
the workload and the average CPU utilization of the tasks,
respectively, at the corresponding memory capacity. With
the increase in capacity, the average number of page-faults
decreases and the average CPU utilization increases. At lower
capacities, most of the time is spent swapping the pages
between the DRAM and secondary storage, resulting in poor
CPU utilization as the tasks wait in Uninterruptible (“D”) state
in Linux during the swap. As the capacity increases, page-faults
reduce, thereby enabling the tasks to continue in Running (“R”)
state resulting in 100% CPU utilization. From Figures 4 and 5,
we can conclude that insufficient memory capacity can result
in severe performance degradation. It is also clear from Figure
3 that memory demand in a system is workload-dependent.

D. Stacked DRAM as A Cache

While a cache adapts quickly to changing workload behavior,
dedicating a memory region as a cache can significantly degrade
performance. For example, in Figure 3, using 6GB out of the
total 24GB capacity as a cache can cause severe performance
degradation for workloads operating in regions @, @, ©, ©
and @. This is because the overall OS-visible capacity of the
system will only be 18GB causing the workloads with higher

4As depicted in Equation 1, we used the Geometric Mean of execution times
of all applications in a workload to calculate the performance improvement.

120

2 X100
g D18GB O20GB D22GB
ES
EE 80 m24GB 026GB H28GB
5 E 60
§ 2 40
2 5 20
SE ", il il il
& § s & & s
wo& &Qm% g§° qu'%&eéu é;\\(;‘,&Q&?@ vgel‘é,,b fp&bﬂoés.b@'}\cﬁ\i‘:\‘é c’\é &e}é\e&:‘e&f‘\&&b »“q’&&:@&qy‘? @"@‘»"\‘ @‘}&&: .&z Q“&&$b‘\¢q,. &f“"&é“%ﬁ? ‘qu
& ,s”? G A A b?“:g:*? S «>§°u~°°\6-‘§»€°$f S e S "3’,\,?9‘0\9" WY S S
oF » Pt A L A R N G KN g ©
> > N4 >

Fig. 4: Impact of capacity on overall system performance, normalized to a system with 16GB overall capacity.

—+—Avg. Number of Page Faults (in Millions)

—o—CPU Utilization [%] 100%
0

=
N

e

80%
60%
40%
20%

el

Page Faults
(in Millions)
S 1 =

410.bwaves 437 leslie3d 459.GemsFDTD 470.1bm 429.mcf hpeeg

0%

CPU Utilization [%]

16GB
18GB
20GB

@
SC
S
N

26GB
___28GBN
16GB

mmmm
cpcicl
SSSF
ANN

26GB
___28GBY

NAS_SP stream cloverleaf miniFE 436.cactusADM

Fig. 5: Impact of capacity on page- faults and CPU Utilization for hlgh memory footprmt workloads.

memory footprints to experience page-faults. A 4GB stacked
DRAM cache limits the overall capacity to 20GB, degrading
workloads operating in regions marked by @, @, @ and @.
Even a 2GB stacked DRAM cache would degrade workloads in
regions @ and @. Hence, depending on the capacity of stacked
DRAM, the decision of using stacked DRAM as a cache can
have adverse-effects on performance of some workloads.

E. Stacked DRAM as PoM

To avoid the memory capacity loss incurred by caches,
stacked DRAM can be used as Part of OS-visible Memory
(PoM). As covered in Section I, PoM architectures: (1) enable
higher throughput in datacenters as the datacenter schedulers
can schedule more jobs due to increased overall memory
capacity, (2) reduce the number of page-faults enabling CPUs
to remain in “Running” state as covered in Section III-C, and
(3) reduce the overall memory cost and power.

Though PoM architectures are beneficial, the current PoM
proposals are not optimal as they substantially increase the
demand for both on-chip and off-chip memory bandwidth. For
example, for a stacked DRAM with capacity 6GB out of 24GB,
workloads operating in all the regions except @ - @ will have to
swap segments between stacked and off-chip DRAM on every
stacked DRAM miss. Since PoM proposals are not cognizant
of the unallocated OS addresses that are part of the OS free list
containing invalid data, they still move the invalid data in these
unallocated addresses during a swap operation thereby wasting
the memory bandwidth. For smaller (e.g., 2GB, 4GB) stacked
DRAMs, swaps and wasted bandwidth would increase further.
Hence, the static decision of designing a stacked DRAM as
PoM can result in free-space agnostic swapping, resulting in
severe performance degradation, as will be demonstrated in
Section VI.

F. Ideal Heterogeneous Memory System

An ideal heterogeneous memory design would dynamically
provide maximum performance by:
e Reducing page-faults for capacity-limited workloads by
dynamically operating in the part-of-memory (PoM) mode.
e Optimizing the overhead of swaps for the OS-visible free
space by operating in the cache mode.
e Optimizing the meta-data (remapping table) overheads.

We propose a novel hardware-software co-design based
system which dynamically reconfigures the heterogeneous
memory system based on the overall system state. Our proposed
system opportunistically converts the OS-visible free space in
the system to be used as a hardware-managed cache, while
switching to the part-of-memory mode for capacity-limited
workloads. Based on the free space available, our co-design can
operate certain memory regions in PoM mode while operating
the rest in cache mode. We propose two incarnations of our
co-design: (1) CHAMELEON and (2) CHAMELEON-Opt.

Algorithm 1: OS MEMORY ALLOCATOR ROUTINE

1 struct page * __alloc_pages(gfp g fp_mask, unsigned int order, struct
zonelist zonelist, nodemask_t nodemask) {

i)"age = get_page_from_freelist(gfp_mask, order);

2
3

4 ..

5 if (page == NULL) {

6 page = alloc_pages_slowpath(g fp_mask, order);
7
8

9 if (page != NULL) {

pageNum = page_to_p fn(page);

pageSize = 0;

if (g fp_mask contains (GFP_TRANSHUGE or

GFP_TRANSHUGE_LIGHT) set) {

pageSize = HPAGE_PMD_SIZE;

} else {
pageSize = PAGE_SIZE;

numlterations = pageSize/SegmentSize;

for (i: 0, numlterations-1) {
segmentNum = pageNum + (i * segmentSize);
IS A_Alloc(segmentNum);

}

return page;

static inline void IS A_Alloc(volatile void *p) {
asm volatile ("isaalloc %0” : "+m”(*(volatile unsigned int *)p));

IV. CHAMELEON: SOFTWARE SUPPORT

To communicate the allocated/unallocated® physical ad-
dresses to hardware, we propose two new processor ISA
instructions: ISA-Alloc and ISA-Free. These instructions are
used by the OS.

Apart from traditional 4KB pages [46], the OS employs
transparent huge-pages (THPs) [47] and giant pages [48], to
reduce the virtual memory overheads for workloads with huge

SWe use the terms unallocation and reclamation synonymously in this paper.

memory footprint. Hence, in Chameleon, depending on the gran-
ularity of a segment in a segment-group and depending on the
granularity of the page being allocated/unallocated, each call to
the OS memory allocator/reclamation (free) routines can result
in multiple corresponding ISA-Alloc/ISA-Free invocations. In a
Chameleon system, Algorithms 1 and 2 present the OS memory
allocator and free routines instrumented with ISA-Alloc and
ISA-Free invocations. In line 12 of Algorithm 1, the “gfp_mask”
flag in Linux contains the necessary bits to identify the
corresponding granularity of allocation. GFP_TRANSHUGE
and GFP_TRANSHUGE_LIGHT flags represent the THP
allocation requests in Linux and help us detect the granularity
of allocation. The ISA-Free invocation can be observed in line
17 of Algorithm 2.

Algorithm 2: OS RECLAMATION ROUTINE

1 static inline void __free_one_page(struct page * page, unsigned long
pfn, struct zone * zone, unsigned int order, int migratetype) {
2 pageNum = page_to_p fn(page);

4 -l'z:st_add(&page->lru,
&zone-> free_arealorder]. free_list[migratetype]);

5 zone-> free_arealorder].nr_free++;

6 if(page != NULL) {

7 pageNum = page_to_p fn(page);

8 pageSize = 0;

9 if (order == HPAGE_PMD_ORDER) {
10 pageSize = HPAGE_PMD_SIZE;
11 } else {

12 pageSize = PAGE_SIZE;

13 }

14 numlterations = pageSize/segmentSize;

15 for(i: 0, numlterations-1) {

16 segmentNum = pageNum + (i * segmentSize);
17 IS A_Free(segmentNum);

18 }

19

20 return 0;

22 static inline void 7.5 A_F'ree(volatile void *p) {
23 asm volatile ("isafree %0” : ”+m”(*(volatile unsigned int *)p));

The “segmentSize” in Algorithms 1 and 2 refers to the
segment size employed by Chameleon. The various segment
granularities supported by the hardware in Chameleon can
be easily detected by the OS during boot time. Based on the
segmentSize and the allocation granularities, the number of
ISA-Alloc and ISA-Free invocations vary. For a 2MB THP
allocation/reclamation and for a 2KB segment employed in
PoM [25], ISA-Alloc/ISA-Free is invoked 1024 times. However,
for a 64-byte cache-line segment employed by CAMEO [22],
ISA-Alloc/ISA-Free needs to be invoked 32,768 times.

V. CHAMELEON: HARDWARE SUPPORT

Chameleon relies on ISA-Alloc and ISA-Free calls from
the OS to dynamically reconfigure regions in heterogeneous
memory between Part-of-Memory (PoM) and cache modes.

Before presenting Chameleon’s hardware changes, it is useful

to explain the hardware design of the existing PoM proposals.

The baseline PoM proposals [22, 25] employed a meta-data
hardware structure referred to as Segment Remapping Table
(SRT) in [25] and Line Location Table (LLT) in [22] to remap
the segments between stacked and off-chip DRAMs. A set
of segments in stacked and off-chip DRAMs are grouped
to form a “Segment Group”
in [22]). The tag-bits in the SRT (or LLT) are unique to

in [25] (“Congruence Group”

‘ Off-chip Memory (20GB) ‘

e |
Stacked DRAM (4GB)

— \
SEG A1 SEG B, SEG [SEG D, SEGE, SEG F;
segGrpo E “ m (011)’ (100) (101) | [Shared cntr

Flg 6: Segment Restricted Remapplng in PoM archltectures

Alloc Bit-Vector
(ABV)

...

Fig. 7: Segment Restricted Remappmg Table (SRRT) Entry
used in our Chameleon co-design.

a segment in a segment group and aid in detecting if a
segment is mapped to stacked or off-chip DRAMs at any
given instant. To reduce the meta-data overheads involved in
tracking the remapped segments, a segment in the stacked
DRAM is only allowed to swap with another segment in the
off-chip memory from the same segment group depicted by
the red lines in Figure 6. Hence, the PoM proposals employ
Segment Restricted Remapping Tables (SRRT) to track the
hardware remapped segments. While the PoM proposal in [22]
employed 64-byte cacheline segments, [25] employed 2KB
segments to be swapped between the stacked and off-chip
DRAMSs. The SRRT in [25] uses a “Shared counter” which
aids in swapping the most frequently used off-chip segment
with the corresponding stacked DRAM segment. A larger 2KB
segments in [25] reduces the amount of meta-data required by
the SRRT and improves the spatial locality, thereby allowing
higher stacked DRAM hit rates compared to [22]. Hence, our
Chameleon uses the PoM architecture in [25] as a “baseline”.

In Chameleon, we augment the SRRT in [25] as shown in
Figure 7 with additional hardware information for each segment
group. The augmented data structures are shown in red color
(pattern) in Figure 7. Apart from the remapping tag bits and
the shared counter in [25], each SRRT entry contains an Alloc
Bit Vector (ABV), a mode bit, and a dirty bit.

Alloc Bit Vector (ABV). For each segment group, the
Alloc Bit Vector (ABV) indicates whether the corresponding
segments are currently allocated by the OS or not. If a segment
is allocated, the corresponding bit in the ABV is set to 1;
otherwise it is set to O indicating the segment is free. The
number of entries in the ABV is equal to the number of
segments per segment group, and hence is a function of the
capacity ratio between the stacked and off-chip memories.
When the system is initially booted, all the bits in the ABV
are set to 0, and the bits will be set to 1 when the OS calls
ISA-Alloc and reset to 0 when the OS calls ISA-Free.

Mode Bit. The mode bit indicates the operating mode of the
segment group. It is set to O if the segment group is operating
in the part-of-memory (PoM) mode, and is set to 1 if it is
operating in the cache mode. We discuss the transitions between
PoM and cache modes later in this section.

Dirty Bit. If a segment group is in the cache mode, the dirty
bit in the SRRT indicates if the segment currently residing in
the stacked DRAM is dirty (1) or not (0). As a result, the dirty

1 ISA-Alloc ‘P’

Read P SegGrp’s SRRT
Entry o

SegGrp in cache mode and not
caching anything.

P belong:
to stacked

. . . e Switch the SegGrp to
SegGrp in cache mode. It is caching PoM-mode.

off-chip segment (say ‘Q’). Writeback Update P’s ABV bit to
if dirty. Allocate ‘P’. o,

It is an alloc for off-chip segment.
Continue in the previous mode.

Set the corresponding
ABV bit to ‘1",

Fig. 8: Chameleon ISA- Alloc Transition Flowchart.

Before: ISA-Alloc ‘A’ After: ISA-Alloc ‘A’

ABV Mode Dirty

-l'Ilm@ ol |

................................

ABV Mode Dirty

l'll-n Ak

................................

Fig. 9: Chameleon ISA—Alloc Transition (Example).

bit indicates if the segment needs to be written back to the
off-chip memory during eviction from the stacked DRAM. If
the segment group is operating in the PoM mode, the dirty
bit is ignored, indicating that the segments will be swapped
irrespective of the status of the dirty bit.

A. Chameleon Cache and PoM Modes

At a high level, an ISA-Alloc instruction can transition
segment group(s) from the cache mode to PoM mode, while
an ISA-Free instruction can transition the segment group from
the PoM mode to the cache mode. However, not all the ISA-
Alloc and ISA-Free instructions for the physical addresses in
a segment group will trigger these transitions. The number of
currently allocated/unallocated segments in a segment group
governs whether an ISA-Alloc or ISA-Free instruction will
trigger a transition or not.

Before describing the scenarios which trigger transitions
between PoM and cache modes, we explain the notation in
the SRRT shown in Figure 7. Segments A, B, C, D, E and
F shown in the SRRT represent the actual physical segments
that are part of a segment group represented by SegGrp-X
in the figure. In a system with 4GB of stacked DRAM and
20GB of off-chip DRAM, a ratio of 1:5 implies we need six
segments in a segment group. A segment in stacked DRAM
will have a physical address in the range [0, OXFFFFFFFF],
while off-chip segments will belong to the range [0x100000000,
OxSFFFFFFFF]. The tag bits in Figure 7 signify where a
corresponding physical address is remapped to (or cached at)
in a segment group. We next describe two variations of our
proposed architecture with help of flowcharts and relevant
examples with 1:2 capacity ratio (with a total of 3 segments
in segment group) for simplicity.

B. Chameleon Design

In our basic Chameleon architecture, we leverage the OS-

visible free space in the stacked DRAM as a cache, but not

the free space in the off-chip DRAM. As a result, transitions
from the PoM to cache mode and vice versa are only triggered

ISA-Free ‘P’
Read P Seg Grp’s SRRT
o

P’ belong
to stacked

i SegGrp in PoM mode. |

!

Switch the SegGrp to
cache-mode.
Update P’s ABV bit to

(8 =
Set the corresponding 9 It is a Free for off-chip segment.

ABV bit to ‘0". Continue in the previous mode.
Fig. 10: Chameleon ISA-Free Transition Flowchart.

SegGrp in PoM-mode. It is remapped with|
off-chip segment (say ‘Q’). Swap the
segments back and set tag-bits to ‘00".

Before: ISA-Free ‘A’

ABV Mode Dirty

Ill-@ @@

After: ISA-Free ‘A’

(1] [o] fene]

Fig. 11: Chameleon ISA—Free Transition (Example).

by ISA-Alloc/ISA-Free for physical addresses belonging to the
stacked DRAM address range.

1) ISA-Alloc Transitions: Figure 8 shows the flowchart for
ISA-Alloc transitions in Chameleon. If the ISA-Alloc is for
an off-chip DRAM physical address like the flow @ — @ —
O — @ in Figure §, the segment group continues to operate in
the previous mode. However, if the ISA-Alloc is for a stacked
DRAM physical address, the segment group will be operating
in the cache mode, and the segment in stacked DRAM could
be caching an off-chip segment or not. Figure 9(a) represents a
scenario where ISA-Alloc is encountered when none of the off-
chip segments are cached in the stacked DRAM (represented
by tag bits: 00). In such a scenario, ISA-Alloc will follow
the flow: @ - @ — ©@ — @ — ©. From Figure 9(a), since
segment A is not allocated, the ABV for A is still 0 while
the segment group (Grp-X) is operating in cache mode (mode
bit: 1). After ISA-Alloc, the ABV for A is set to ’1’ and the
segment group transitions to PoM mode (Figure 9(b)).

For the scenario where an off-chip segment is cached in the
stacked DRAM indicated by the tag bits: If the dirty bit is
set, the corresponding segment is written back to the original
segment, otherwise the tag bits can be simply over-written.
This is represented by the low: @ - @ — @ — @ — @ in
Figure 8. Finally, the ABV for the stacked DRAM segment is
set to ’1” indicating that it is allocated.

2) ISA-Free Transitions: Figure 10 shows the flowchart for
ISA-Free transitions in our Chameleon design. For an ISA-Free
to off-chip physical address, there is no transition in segment
group modes, but the corresponding ABV bit is set to *0’.

If an ISA-Free is for a stacked DRAM physical address, the
segment group will be operating in the PoM mode prior to
the call. There are two scenarios for ISA-Free depending on
whether the segment to be freed is remapped or not. If the
tag bits indicate the segment to be freed is not remapped, the
corresponding ABV bit is set to 0’ and the segment group
transitions to cache mode following the flow: @ — @ —
O — @ — ©. The tag bits are set to *00’; indicating that no
segments are cached in the stacked DRAM.

If the segment to be freed is currently not in stacked

ISA-Alloc ‘P’
Anv other

ABV bits
Yes ‘02
Yes Say Q is un-alloced. Q's
stacked tag-bits is set to ‘P’. While
DRAM
ran|

Update P’s ABV
bit to ‘1.

(6)

Switch the SegGrp to
PoM-mode.

P’s tag-bits with Q.

Update P’s
ABV bit to ‘1",

ge)”” No

Segment has been
remapped with something
else. Allocate ‘P’ at the
destination tag.

Atleast one Free
segment. Continue in
Cache-mode.

Fig. 12: Chameleon-Opt ISA-Alloc Transition Flowchart.

DRAM (Figure 11(a)), the original stacked DRAM segment
A’ is remapped to off-chip DRAM segment *C’, while "C’
is remapped to 'B’. This can happen with the following re-
mappings. Initially the state is: A, B and C, with A in stacked
DRAM, and B and C in off-chip DRAM. If segment C is
accessed more frequently, based on the fast swaps implemented
in [25], C will be swapped with A transitioning to state:
C, B and A. This ensures that the most frequently accessed
segment C resides in stacked DRAM. If segment B is accessed
more frequently, in the next program phase, segments C and
B would be swapped leading to the state in Figure 11(a)
. Now, if ISA-Free happens for segment A which is the
original stacked DRAM segment, segment A needs to be
proactively swapped with the current segment B in stacked
DRAM before it is freed to ensure the stacked DRAM segment
is available for caching. Finally, after swapping, as shown in
Figure 11(b), segment A’s ABV is set to "0’ and the segment
group transitions to cache mode from PoM mode following
the flow. @ 4O — © — 0 — ©.

C. Optimized Chameleon (Chameleon-Opt) Design

The basic Chameleon design can only leverage OS-visible
free space in stacked DRAM to be used as a cache even
though there are available free segments in off-chip memory.
Consequently, Chameleon does not optimally leverage all
available free space in the system. To increase cache capacity,
we present an optimized co-design, Chameleon-Opt, which
can proactively remap segments in the stacked DRAM to the
off-chip memory. Such a design can convert the free space
available in both the stacked and off-chip DRAMs for caching.
This Chameleon-Opt design outperforms the Chameleon design,
as will be demonstrated in Section VL.

1) ISA-Alloc Transitions: Figure 12 shows the flowchart for
an ISA-Alloc instruction in Chameleon-Opt. The ABV bits
play a crucial role in Chameleon-Opt as they signify when
to switch the segment group from one mode to another. At a
high level, a segment group remains in cache mode as long
as one of its ABV bits is 0, and it switches to the PoM mode
when all the ABV bits are 1. The test condition in) in
Figure 12 represents this check. Hence, unlike Chameleon, a
segment group in Chameleon-Opt continues in the cache mode
even if its corresponding stacked DRAM address has been
allocated by the OS. Similarly, it switches to the cache mode
even if an off-chip physical address has been unallocated while
the stacked DRAM segment still remains allocated. This is

Before: ISA-Alloc ‘A’

ABV Mod Dirf

After: ISA-Alloc ‘A’

ABV Md Dirt

...

(b)

J
‘A’ is pro- actlvely re-mapped to C.

Fig. 13: Chameleon-Opt ISA-Alloc Transition Example.

Seg Grp in
cache mode?,

Pro-actively re-map the stacked DRAM
o segment to ‘P’. Switch to cache-mode.
Dirty-bit set to ‘0”.

Segment in
stacked
DRAM?,

Set ABV bit to
‘0.

Fig. 14: Chameleon-Opt ISA-Free Transition Flowchart.

possible because Chameleon-Opt proactively remaps the current
segment in stacked DRAM to free up space for caching.

In Chameleon-Opt, unlike Chameleon, the segment group
which encounters an ISA-Alloc would always be operating in
cache mode since encountering ISA-Alloc itself indicates the
presence of a free segment in that group. The actions triggered
for ISA-Alloc depend on the segment currently residing in
the stacked DRAM as well as whether the ISA-Alloc is for
a stacked DRAM physical address or not. Following flow:
0000 — 0 — 0 in Figure 12, as the segment
group operates in cache mode and there is no segment cached
in stacked DRAM (as the tag bits match the segment being
allocated). Therefore, the ISA-Alloc will directly set the ISA-
Alloc’ed segments’ ABV bits to "1’ and transitions the segment
group to PoM mode. This is because condition check at @
confirmed that there are no other OS-visible free segments in
the segment group. Figure 13(a) shows one possible scenario
for a state prior to executing ISA-Alloc instruction following
low@® -0 —-0—-0—-0— 0 — @ — 0 of the
flowchart in Figure 12. In this scenario, segments A and C are
not allocated while B is allocated, represented by ABV bits: 0
1 0. The segment group is initially operating in cache mode
(mode bit: 1). As the stacked DRAM tag bits match segment A,
no other segment is currently cached in stacked DRAM. With
Chameleon, for ISA-Alloc to segment A, segment A is allocated
in stacked DRAM (setting its ABV bit to 1) and the segment
group transitions to PoM mode. However, in Chameleon-Opt
(Figure 13(b)), segment A is proactively remapped to Segment
C in the off-chip DRAM. Hence, C’s tag bits are set to “00”
while the tag of the stacked DRAM segment is set to “10” (i.e.,
segment C). Since segment C is never allocated, it will never
result in a stacked DRAM hit allowing for either B or A to be
cached in future. As a result, in Chameleon-Opt, the segment
group still operates in the cache mode unlike Chameleon.

The other flows in Figure 12 are straight-forward. For
example, flow: @ - @ — @ — @ — @ — 0@ from Figure
12 would follow proactive remapping explained in Figure 13(b)
a segment is remapped to off-chip memory, while stacked
DRAM caches an off-chip segment. Since the segment group

is in cache mode, an ISA-Alloc’ed segment will be allocated
in stacked DRAM and the segment group transitions to PoM
Mode. While inflow @ - @ - @ - @ — @ — @®.
since there are more unallocated segments, the segment group
continues to operate in cache mode.

Flow: @ - @ — © — @ — @ — @ occurs when ISA-
Alloc is for an off-chip address that is not remapped . In this
case, the segment is allocated at the original off-chip address
and the segment group transitions to the PoM mode. While in
low@®@ -0 -0 — 0 — @ — @. since there are more
unallocated segments, the segment group continues to operate
in the cache mode.

2) ISA-Free Transitions: Figure 14 shows ISA-Free transi-
tions for Chameleon-Opt. Apart from the free space available in
stacked DRAM, Chameleon-Opt proactively converts the free
space available in off-chip DRAM to be visible as free space
in stacked DRAM to be leveraged as a cache. The proactive
free space creation in Chameleon-Opt can be observed in the
low @—0—-0—0— 0 — @.

The other flow, @ - @ — ©@ — @ — @ — @. represents
a similar scenario, except that the segment group is already
in the cache mode as there are more free segments in the
segment group. As a result, the segment group continues to
operate in cache mode, and the corresponding ABV bit is set
t0’0. The flows @ - @ - O - @ — ® — @ and
0-0-0—- @ — ® — @ represent scenarios where
the ISA-Free is encountered for stacked DRAM addresses that
are neither cached nor remapped with any off-chip segments,
respectively. ISA-Free transitions the segment group to cache
mode if it was previously operating in PoM mode. The other
flows in Figure 14 correspond to cases where a segment being
freed is remapped with other segments or not.

D. Additional Discussion

1) In-transit Segment Accesses: In Chameleon and
Chameleon-Opt, we use local buffers proposed by PoM’s fast-
swap design [25] to hold segments being moved between
stacked and off-chip DRAMs without OS involvement. If
segments being swapped or moved are accessed, loads and
stores to these in-transit segments are performed at these local
buffers in the respective memories and hence do not incur
longer latencies.

2) Security Concerns: In Chameleon and Chameleon-Opt,
a potential security concern is information leakage when data
in segments that were used as a cache are accessed by a
different process when they move to PoM mode. Alternatively,
segments in the PoM mode could be read by a cache-accessing
spy process when they transition to cache mode. To avoid
these issues, both ISA-Free and ISA-Alloc instructions trigger
hardware to clear the segments that transition between cache
and PoM use.

3) Impact on Buffer Cache Space: Linux manages a part of
memory as buffer for secondary storage devices (e.g., hard disk
or SSD). As depicted in the examples in [49], since the amount
of space allocated to buffer cache impacts the total free space
visible to the OS, the ISA-Alloc and ISA-Free coming from

Cores 12 @ 3.6GHz (each), ALPHA ISA, out-of-order

L1(I/D) 32KB, 4-way associative, 64B cacheline
L2 Cache 256KB (private), 8-way associative, 64B cacheline
L3 Cache 12MB (shared), 16-way associative, MESI, 64B cacheline
Stacked DRAM Bus Frequency: 1.6GHz (DDR 3.2GHz),
(4GB) Bus Width: 128 bits/channel, Capacity: 4GB,

2 channels, 2 ranks/channel, 8 banks/rank
tCAS-tRCD-tRP-tRAS: 11-11-11-28, tRFC: 138 nsecs
Bus Frequency: 800MHz (DDR 1.6GHz),

Off-chip DRAM

(20GB) Bus Width: 64 bits/channel, Capacity: 20GB,
2 channels, 2 ranks/channel, 8 banks/rank
tCAS-tRCD-tRP-tRAS: 11-11-11-28, tRFC: 530 nsecs
0S Linux Kernel 4.2.2

Page-Fault Latency 100K CPU cycles (36 micro-seconds) [22] (SSD)
TABLE I: Simulated Baseline Configuration.

pages allocated or unallocated by the OS for this buffer cache
is honored by our Chameleon hardware similar to any other
allocation/de-allocation requests. As a result, our Chameleon
and Chameleon-opt co-designs do not take away buffer cache
space to use it as a hardware-managed cache. As a result,
our Chameleon and Chameleon-Opt co-designs do not impact
buffer cache space and hence do not degrade disk performance.

4) Pipeline execution details for ISA-Alloc/ISA-Free: The
ISA-Alloc/ISA-Free instructions retire based on the transitions
triggered by these instructions. If the ISA-Alloc/ISA-Free
instructions do not necessitate any segment movements, these
instructions are retired as soon as the ABV-bits in the SRRT
are updated. Clearing out segments could occur after ISA-
Alloc/ISA-Free retire but before they are accessed in a different
mode. However, if the ISA-Alloc/ISA-Free involve moving
segments, then these instructions are committed as soon as
the segments being moved are fetched into the local buffers
of the corresponding memory controllers to ensure they can
be accessed in-flight. The segments in the local buffers are
copied to the destination memory controllers write buffer which
are drained opportunistically. In our evaluation, such a design
caused an overhead of 1.06% on average (Section VI-F).

VI. EVALUATION

A. Experimental Setup

As discussed briefly in Section III, we used GEMS5 full-
system simulator [36] executing Linux kernel-4.2.2 with
stacked and off-chip DRAMs modeled using the memory
controller support in GEMS. ISA-Alloc/ISA-Free are invoked
from the OS memory allocator/reclamation code using the
pseudo-instruction support in GEMS5 [50]. Table I summarizes
our simulated configuration. We simulated applications from
various suites discussed in Section III-B whose characteristics
are presented in Table II. Our workloads are fast-forwarded to
the region of interest and caches are warmed-up. We simulate
500 million instructions per application and with 12 applications
in a workload, we simulated a minimum of 6 billion (500M*12)
total instructions . We assume a page fault latency of 10° CPU
cycles (serviced by SSDs). All the reported results are for 4GB
stacked and 20GB off-chip DRAM, unless otherwise stated.
In all the results reported in Section VI-B, the performance
reported is the geometric mean of Instructions committed Per
Cycle (IPC) of all the benchmarks in a workload normalized
to the corresponding baselines.

Suite WL LLC- [MF |Suite WL LLC- [MF
MPKI | (GBs) MPKI | (GBs)

bwaves | 1291 |21.86 cloverleaf [30.33 [23.01

Ibm 29.55 [19.17 comd 071 [23.18
cactusADM [2.03 [20.12 miniAMR [1.44 [22.40
SPEC2006 1 Te3d [12.18 [21.65 | V"V Mhpecg (781 [22.15
mcf 59.804[19.65 miniFE ~ [0.48 [22.55

GemsFDTD [20.783(22.56 miniGhost|[0.19 [20.68
NAS SP 0.87 [21.72 |Stream |Stream 35.77 [21.66

TABLE II: Workload Characteristics.(MF: Memory Footprint,
WL: Workload, MPKI: Misses Per Kilo Instructions)

M%W(Ml A0 ik

|
IS e o eoncnd]
2 5§ ¢
Fig. 15: Stacked DRAM hit rate results.

B. Results

Figure 16 shows the breakdown of the percentage of segment
groups operating in cache mode and PoM mode in Chameleon
and Chameleon-Opt designs. This distribution should ideally
vary over time with allocation/unallocation requests in the
workload. However, in our workloads, the applications allocate
at the beginning and unallocate at the end of their execution,
as a result, we did not encounter ISA-Alloc and ISA-Free
in our simulated snippets. On average, 9.2% of the segment
groups operate in the cache mode in Chameleon compared
to 40.6% in Chameleon-Opt. This is because Chameleon-Opt
leverages the free space available in the off-chip DRAM to
be used as a cache. Figure 15 presents the stacked DRAM
hit rate for the latency-optimized Alloy Cache [14], PoM and
both Chameleon designs. Since Alloy Cache employs a latency-
optimized direct-mapped cache design with 64B lines, it has
the lowest stacked DRAM average hit rate of 62.4%, while
PoM with 2KB segments has an average hit rate of 81%. In
comparison, Chameleon and Chameleon-Opt have average hit
rates of 84.6% of 89.4%, respectively. This higher hit rates
in Chameleon and Chameleon-Opt over PoM is due to more
segment groups operating in cache mode. As discussed in
Section III-E, PoM employs a “threshold” which signifies the
minimum number of accesses to an off-chip DRAM segment
before it can be swapped with a stacked DRAM segment. Since
Chameleon does not employ any such threshold for segment
groups operating in the cache mode, it has a higher stacked
DRAM hit rate compared to PoM. Since more such segment
groups operate in cache mode in Chameleon-Opt, its hit rate
is higher than Chameleon. Figure 17 quantifies the number
of swaps? incurred in PoM, Chameleon and Chameleon-Opt
designs. The results reported are normalized to the number of
swaps incurred in PoM. Due to many segment groups operating
in the cache mode, the overall number of swaps is reduced on
an average by 14.4% and 43.1% in Chameleon and Chameleon-
Opt, respectively vs. PoM. Note that for a segment group in
cache mode, evicting a modified (represented by dirty bit)

100%
80%
60%

—
]
E———
=

Stacked DRAM

| —

I

kel
13

£
=2

bwaves
comd
hpeeg
leslie3d
miniFE
stream

cloverleaf
GemsFDTD
miniGhost

bwaves
cactusADM

Chameleon

Fig. 16: PoM to Cache mode segment group distribution.

[OPom OC Opt}

W mim

5 &
Fig. 17: Segment swaps between stacked and off-chip DRAMs.

O baseline_20GB_DDRS3 (no stacked_DRAM) O baseline_24GB_DDR3(no stacked_DRAM)

O Alloy-Cache = PoM
w
b
£
£

0000 B
oNbOORN
L

ee—0
]
 —
| E—]
—
| E—
[E—
——
—
————
E—]
—
E—
—
—

Normalized Swaps
il :I

bwaves
cactusADM
cloverleaf
comd
GemsFDTD
hpeeg
leslie3d
miniAMR
miniFE
miniGhost
stream
Average

Normalized IPC
O B N W b

hﬂ Lall e 1 ﬂ

Fig. 18: Normalized IPC results.
stacked DRAM segment results in a writeback to off-chip

DRAM before the stacked DRAM segment is filled with an off-
chip segment. This is effectively still a swap, as the writeback
of the modified segment still consumes both the stacked and
off-chip memories’ bandwidth. Hence in our Chameleon results
reported, these scenarios are still considered as swaps.

=N
=

Ibm %
leslie3d %

I ———"
="}
SP

comd
GemsFDTD =

miniAMR E
miniGhost %

=

stream =
=

Geo Mean %

bwaves
cactusADM =
cloverleaf

Figure 18 shows the normalized IPC of various designs
including Alloy Cache, PoM, Chameleon, and Chameleon-Opt.
There are two variant baseline systems, both without stacked
DRAM and the total capacity coming from off-chip DRAM.
While one baseline offers 20GB overall capacity, the other
offers 24GB overall capacity. The 24GB baseline does not
incur any page faults unlike the 20GB capacity. The 24GB
baseline system improves the Geometric Mean of IPC by
35.6% over the 20GB capacity baseline. As mentioned in
Section VI-A, Alloy Cache, PoM, Chameleon and Chameleon-
Opt configurations all use a 4GB stacked and 20GB off-
chip DRAM, thereby having a total capacity of 24GB. Alloy
Cache experiences page-faults for workloads with high memory
footprints similar to both baselines since it sacrifices total
capacity to use as a cache. As a result, though it improves the
performance over the baselines, its performance is lower than
other alternatives for many workloads, as shown in Figure 18.
PoM improves the performance (Geometric Mean of IPC) over
the 20GB and 24GB capacity baselines by 85.2% and 36.5%,
respectively. Chameleon improves the Geometric Mean of IPC
for all the workloads by 96.8% and 45.1% over the 20GB
and 24GB baseline systems respectively, and by 6.3% and
18.5% over PoM and Alloy Cache, respectively. Chameleon-
Opt improves the performance by 106.3% and 52.0% over the
20GB and 24GB baseline systems respectively, and by 11.6%
and 24.2% over PoM and Alloy Cache, respectively. Such
an improvement over the baseline systems is mainly because
Chameleon manages to cater for the high memory footprint
by averting page-faults and could utilize the high bandwidth
stacked DRAM more efficiently, averting slow off-chip DRAM
accesses. The success of Chameleon and Chameleon-Opt over

800

| D PoM O Chameleon B Chameleon-Opt|
600

.

3

S

<

e>§A°°H

I

2 2o |00 0 o I o L)

§55™ I I (om0 o i (L [T
3 o - 5 ,

s 8 £z 3 EE P EREEEES EOG

£ $ ¢ % 8 g 2 % I E S R

> 2 2 3 £ o £ E 5 o

E g3 g € £ 8

Fig. 19: Average Memory Access Latency results.

O baseline_20GB_DDR3 (no stacked_DRAM) O baseline_24GB_DDR3(no stacked_DRAM)
O numaAware_4GB_20GB B autoNUMA_10M_70percent

B autoNUMA_10M_80percent
B Chameleon

O autoNUMA_10M_90percen t
B Chameleon-Opt

Normalized IPC
o R N W A

s
s
k)
=
S
o
©

stream

g =
g 2
a2 B
g
g
8

Fig. 20: Normalized IPC results comparison.

M Cache-Mode [PoM-Mode

mcf

miniAMR
SP

mcf

miniAMR

b
gL
s g
° 5
£
@
o

hpccg

lbm
leslie3d
miniFE
comd
GemsFDTD

miniGhost
hpccg

lbm
leslie3d

miniFE
miniGhost

.
82w
§o s
L
&“2
® ©
§

bwaves
cactusADM
cloverleaf

1:3 ratio (6GB + 18GB) 1:7 ratio (3GB + 21GB)

Fig. 21: Sensitivity distribution results for Chameleon-Opt.

PoM is due to the increased stacked DRAM hit rate as well as
the reduced swaps between the stacked and off-chip DRAMs,
which reduces the average memory access latency as shown in
Figure 19. Further, Chameleon-Opt incurs minimal swaps and
hence lower average memory latency as it can create more free
space in the stacked DRAM compared to Chameleon, thereby
outperforming it by 4.8%.

C. Comparison with OS-based solutions

As discussed in Sections III-A1 and III-A2, the NUMA-
Aware Memory Allocator and AutoNUMA under-utilize
stacked DRAM resulting in a stacked DRAM hit rates of
18.5% and 64.4%. Therefore, these OS-based solutions do not
leverage the full potential of high-bandwidth stacked DRAM.
Figure 20 shows that Chameleon has an average improvement
of 28.7% and 19.1% over NUMA-Aware Memory Allocator
and AutoNUMA respectively, while Chameleon-Opt improves
the performance by 34.8% and 24.9%. Figures 18 and 20 show
that some benchmarks (e.g., miniFE, miniGhost, comd, and
SP) do not benefit from Chameleon or Chameleon-Opt. This
is because their memory intensity denoted by LLC-MPKI in
Table II is very low. As a result, these applications do not
benefit from opportunistically converting the free space in to
cache. On the other hand, applications like hpccg, bwaves,
stream and cloverleaf which are highly memory intensive
benefit significantly from Chameleon and Chameleon-Opt.

D. Comparison with Polymorphic Memory

A patent by Chung, et al. [51] proposed a hybrid architecture
which can leverage the free memory available in stacked DRAM
as cache. Their proposed architecture could only leverage
the OS-visible free-space in stacked DRAM and not the off-
chip DRAM for caching (unlike Chameleon-Opt). Though this
proposal achieves the same amount of free space as our original
Chameleon design, our basic Chameleon still outperforms their
proposal by 10.5% as can be observed in Figure 22. This is
because the Polymorphic Memory proposal does not swap the
most frequently used pages from the off-chip DRAM with the
ones in stacked DRAM for OS allocated pages (unlike PoM),
thereby under-utilizing the stacked DRAM. Chameleon and
Chameleon-Opt improve the performance by 10.5% and 15.8%
over Polymorphic Memory, respectively.

O baseline_20GB_DDR3 (no stacked_DRAM) [baseline_24GB_DDR3(no stacked_DRAM)
O Polymorphic_memory ® Chameleon
mch 1 Opt

Normalized IPC
O B N W &

) o = w
¥ = w
g = 2 E 2 E
=] € €

bwaves
cactusADM &=
GemsFDTD =
miniGhost =3
Geo Mean

mini

Fig. 22: Polymorphic Memory [51] Comparison.
E. Sensitivity Results

Figure 21 shows the cache and PoM mode distribution for
different ratios of stacked and off-chip DRAM capacities. For
a 1:3 ratio, the stacked DRAM contributes a total capacity
of 6GB, while the off-chip DRAM contributes 18GB and for
1:7 ratio, stacked DRAM contributes 3GB, while the off-chip
contributes 21GB. As the ratio of stacked-to-off-chip DRAM
increases from 1:3 to 1:7, the average number of cache-mode
segment groups increases from 33% to 48.7% vs 40.6% in 1:5
configuration. This is because as the number of segments per
segment group increases from 3 to 7, the probability of finding
at least one free segment increases in Chameleon-Opt, thereby
increasing the cache mode segment groups. Figure 23 represents
the normalized performance corresponding to these ratios,
and shows that Chameleon-Opt consistently performs better
across all ratios. For 1:3 ratio, Chameleon and Chameleon-
Opt improve the performance by 5.9% and 7.6%, respectively,
over PoM, while for 1:7 ratio, the improvements are 8.1% and
12.4%, respectively, over PoM.

F. ISA-Alloc and ISA-Free Overhead Analysis

As discussed in Sections V-B and V-C, depending on the
segment-group state, ISA-Alloc and ISA-Free may initiate
an additional segment swap per ISA-Alloc/ISA-Free between
stacked and off-chip DRAMs due to the hardware remapping
employed. As a result, the ISA-Alloc and ISA-Free can cause
performance overheads due to these un-warranted swaps. To
get an estimate on the overheads introduced by the ISA-
Alloc and ISA-Free, we performed an overhead analysis
based on conservative assumptions for end-to-end workload
execution results presented in Figure 3. Assuming a 2KB
segment, since Chameleon builds on the fast-swap approach
proposed in [25], it encounters one swap for every ISA-
Alloc and ISA-Free, thereby encountering 242.8 Million swaps
over 193680 seconds (53.8 hours) of execution. Assuming
the swap operation memory latency of 700 CPU cycles per
64-byte cacheline (observed for PoM in Figure 19), the
total time spent by a 2.25GHz (average of 2GHz(base) and
2.5GHz(max turbo)) Intel Xeon system [39] swapping the
2KB segments between the stacked and off-chip DRAMs is:
(242.8%10%%700%2048/64*2.25%10%)=2071.89 seconds. Thus,
the overheads encountered by Chameleon due to ISA-Alloc
and ISA-Free accounts to (2071.89*%100/193680)=1.06% of
the end-to-end execution time. This shows that the additional
hardware transitions warranted by Chameleon do not pose
significant performance overheads.

G. Limitations and Future Work

Our Chameleon and Chameleon-Opt architectures opportunis-
tically convert the free space in the heterogeneous memory

Normalized IPC

leslie3d
mcf
miniFE
miniGhost
SP

stream
GeoMean

GemsFDTD Vs

‘" o
5

g
s88
o @
g
° E
c° 8

1:3 ratio (6GB + 18GB)

Fig. 23: Sensitivity IPC results for Chameleon-Opt.

1:7 ratio (3GB + 21GB)

system to be used as cache. The baseline PoM architecture [25]
employs Segment Restricted Remapping as briefly covered in
section V to reduce the meta-data overheads. Both Chameleon
and Chameleon-Opt employ the same Segment Restricted
Remapping, which limits their ability to maximize cache
capacity if free space is uneven between different segment
groups. For example, a segment group might have two free
segments while another segment group has none and cannot
operate in the cache mode. To alleviate this limitation, we
could expose the segment group management information to
OS so that OS can maintain additional data structures to keep
track of the ABV bits per segment group in a separate data-
structure updated during ISA-Alloc and ISA-Free execution.
This could be explored as part of the future work. Another
Chameleon/Chameloen-Opt limitation is due to the use of
segment-sized blocks. Larger segments benefit workloads that
take advantage of spatial locality. A different proposal, CAMEO
[22] uses 64B block granularities thereby reducing the data
movement and swapping overhead, which benefits workloads
with limited spatial locality. However, CAMEO incurs higher
remapping table overheads due to 64B block organization.

VII. CONCLUSION

In this paper, we propose Chameleon, a novel co-designed
architecture which dynamically re-configures a heterogeneous
memory system based on the available free-space. Using
two new instructions (ISA-Alloc, ISA-Free), the OS informs
hardware of pages that have been allocated or freed. Based
on this OS communication, Chameleon adapts dynamically by
operating in Part-of-Memory mode for high memory footprint
workloads, while opportunistically converting the free-space to
be used as a hardware-managed cache. As a result, Chameleon
ensures better performance compared to the state-of-the-art
part-of-memory and cache proposals.

ACKNOWLEDGMENT

The authors would like to thank Jaewoong Sim for the
initial discussions and anonymous reviewers for their valuable
feedback. This work is supported in part by NSF grants
1822923, 1439021, 1629915, 1626251, 1629129, 1763681,
1526750 and 1439057. AMD, the AMD Arrow logo, and
combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication are
for identification purposes only and may be trademarks of their
respective companies.

REFERENCES

[1] “AMD HBM,” https://goo.gl/g2gWL7.
[2] “Micron HMC,” https://goo.gl/F3kXvm.
[3] “Intel Xeon-Phi,” https://goo.gl/MO9piiE.

[4] J. Macri, “AMD’s next generation GPU and high band-
width memory architecture: FURY,” in 2015 IEEE Hot
Chips 27 Symposium (HCS), 2015.

[5] J. B. Kotra, N. Shahidi, Z. A. Chishti, and M. T. Kandemir,
“Hardware-software co-design to mitigate dram refresh
overheads: A case for refresh-aware process scheduling,”
in Proceedings of 22nd International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[6] “AMD Vega,” https://goo.gl/moSqgH.

[7]1 C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: Tech-
niques for Mitigating Bandwidth Bloat in Gigascale
DRAM Caches,” in Proceedings of the 42nd Annual In-
ternational Symposium on Computer Architecture (ISCA),
2015.

[8] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and
J. W. Lee, “Efficient footprint caching for Tagless DRAM
Caches,” in Proceedings of the 2016 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), 2016.

[9] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison

Cache: A Scalable and Effective Die-Stacked DRAM

Cache,” in Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

2014.

D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM

Caches for Servers: Hit Ratio, Latency, or Bandwidth?

Have It All with Footprint Cache,” in Proceedings of

the 40th Annual International Symposium on Computer

Architecture (ISCA), 2013.

X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer,

S. Makineni, D. Newell, Y. Solihin, and R. Balasub-

ramonian, “CHOP: Adaptive filter-based DRAM caching

for CMP server platforms,” in In Proceedings of the 16th

International Symposium on High-Performance Computer

Architecture (HPCA), 2010.

Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong,

and J. W. Lee, “A Fully Associative, Tagless DRAM

Cache,” in Proceedings of the 42nd Annual International

Symposium on Computer Architecture (ISCA), 2015.

G. H. Loh and M. D. Hill, “Efficiently Enabling Conven-

tional Block Sizes for Very Large Die-stacked DRAM

Caches,” in Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

2011.

M. K. Qureshi and G. H. Loh, “Fundamental Latency

Trade-off in Architecting DRAM Caches: Outperforming

Impractical SRAM-Tags with a Simple and Practical

Design,” in Proceedings of the 45th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

2012.

S. Shin, S. Kim, and Y. Solihin, “Dense Footprint Cache:

Capacity-Efficient Die-Stacked DRAM Last Level Cache,”

in Proceedings of the Second International Symposium

on Memory Systems (MEMSYS), 2016.

[16] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thot-

[12]

tethodi, “A Mostly-Clean DRAM Cache for Effective Hit
Speculation and Self-Balancing Dispatch,” in Proceedings
of the 45th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2012.

J. B. Kotra, M. Arjomand, D. Guttman, M. T. Kandemir,
and C. R. Das, “Re-NUCA: A practical nuca architecture
for reram based last-level caches,” in Proceedings of
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2016.

O. Kislal, M. T. Kandemir, and J. Kotra, “Cache-aware
approximate computing for decision tree learning,” in Pro-
ceedings of IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2016.

J. Liu, J. Kotra, W. Ding, and M. Kandemir, “Network
footprint reduction through data access and computation
placement in noc-based manycores,” in Proceedings of
the 52Nd Annual Design Automation Conference (DAC),
2015.

J. B. Kotra, D. Guttman, N. C. N., M. T. Kandemir,
and C. R. Das, “Quantifying the potential benefits of
on-chip near-data computing in manycore processors,’
in Proceedings of 25th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2017.

P. Yedlapalli, J. Kotra, E. Kultursay, M. Kandemir, C. R.
Das, and A. Sivasubramaniam, “Meeting midway: Im-
proving cmp performance with memory-side prefetching,”
in Proceedings of the 22nd International Conference
on Parallel Architectures and Compilation Techniques
(PACT), 2013.

C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A
Two-Level Memory Organization with Capacity of Main
Memory and Flexibility of Hardware-Managed Cache,” in
Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2014.

M. Oskin and G. H. Loh, “A Software-Managed Approach
to Die-Stacked DRAM,” in Proceedings of the 2015
International Conference on Parallel Architecture and
Compilation (PACT), 2015.

J. H. Ryoo, K. Ganesan, Y. M. Chen, and L. K. John,
“i-MIRROR: A Software Managed Die-Stacked DRAM-
Based Memory Subsystem,” in Proceedings of the 27th
International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), 2015.

J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson,
and H. Kim, “Transparent Hardware Management of
Stacked DRAM As Part of Memory,” in Proceedings
of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2014.

“ESXi White paper,” https://goo.gl/5tQQBKk.
“NUMA-aware Allocation,” https://goo.gl/PrRgLQ.

J. B. Kotra, S. Kim, K. Madduri, and M. T. Kandemir,
“Congestion-aware memory management on numa plat-
forms: A vmware esxi case study,” in Proceedings of IEEE
International Symposium on Workload Characterization
(IISWC), 2017.

[29] “AutoNUMA,” https://Iwn.net/Articles/488709/.
[30] N. Gulur, M. Mehendale, R. Manikantan, and R. Govin-

darajan, “Bi-Modal DRAM Cache: Improving Hit Rate,
Hit Latency and Bandwidth,” in Proceedings of the
47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2014.

M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice,
M. Ignatowski, and G. H. Loh, “Heterogeneous mem-
ory architectures: A HW/SW approach for mixing die-
stacked and off-package memories,” in 2015 IEEE 21st
International Symposium on High Performance Computer
Architecture (HPCA), 2015.

X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas,
“Banshee: Bandwidth-efficient DRAM caching via soft-
ware/hardware cooperation,” CoRR, vol. abs/1704.02677,
2017.

A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and
D. M. Tullsen, “MemPod: A Clustered Architecture for
Efficient and Scalable Migration in Flat Address Space
Multi-level Memories,” in Proceedings of the 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2017.

J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K.
John, “Silc-fm: Subblocked interleaved cache-like flat
memory organization,” in Proceedings of the 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2017.

“Intel MC-DRAM,” https://goo.gl/Z4UiKo.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood, “The Gem5 Simulator,”
SIGARCH Comput. Archit. News, 2011.

“Linux NUMA Emulation,” https://goo.gl/Zsv9CG.
“numactl,” https://linux.die.net/man/8/numactl.

“Intel Xeon Machine,” https://goo.gl/USH8dD.

“Rate Mode,” https://goo.gl/i4148Z.

“SPECCPU 2006,” https://www.spec.org/cpu2006/.
“NAS Benchmark,” https://goo.gl/jQvMKbl.

“Stream Benchmark,” https://www.cs.virginia.edu/stream/.
M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan, E. R.
Keiter, H. K. Thornquist, and R. W. Numrich, “Improving
Performance via Mini-applications,” in Sandia National
Laboratory Technical Report, 2009.

“numastat,” https://goo.gl/M8UShN.

“Traditional Pages,” https://goo.gl/zgCHKQ.
“Transparent Huge Pages,” https://goo.gl/nrqpRT.

“Giant Pages,” https://goo.gl/BE6FtN.

“Linux Buffer Cache,” https://goo.gl/qRGa3s.

“GEMS Pseudo-instructions,” https://goo.gl/XDzQcw.

J. Chung and N. Soundararajan, “Polymorphic stacked
dram memory architecture,” Patent US 13/036,839,
2012. [Online]. Available: https://www.google.ch/patents/
US20120221785

https://www.google.ch/patents/US20120221785
https://www.google.ch/patents/US20120221785

