
MDACache: Caching for Multi-Dimensional-Access
Memories

Sumitha George*1 Minli Julie Liao*1 Huaipan Jiang1 Jagadish B. Kotra1,2

Mahmut T. Kandemir1 Jack Sampson1 Vijaykrishnan Narayanan1

1Pennsylvania State University
State College, PA, USA

{sug241, mjl5868, hzj5142, kandemir, sampson, vijay}@cse.psu.edu

2AMD Research (Work done while at Penn State)
Austin, TX, USA

Jagadish.Kotra@amd.com

Abstract—For several emerging memory technologies, a natu-
ral formulation of memory arrays (cross-point) provides nearly
symmetric access costs along multiple (e.g., both row and column)
dimensions in contrast to the row-oriented nature of most DRAM
and SRAM implementations, producing a Multi-Dimensional-
Access (MDA) memory. While MDA memories can directly
support applications with both row and column preferences,
most modern processors do not directly access either the rows
or columns of memories: memory accesses proceed through a
cache hierarchy that abstracts many of the physical features that
supply the aforementioned symmetry. To reap the full benefits of
MDA memories, a co-design approach must occur across software
memory layout, the mapping between the physical and logical
organization of the memory arrays, and the cache hierarchy
itself in order to efficiently express, convey, and exploit multi-
dimensional access patterns.

In this paper, we describe a taxonomy for different ways of
connecting row and column preferences at the application level
to an MDA memory through an MDA cache hierarchy and
explore specific implementations for the most plausible design
points. We extend vectorization support at the compiler level
to provide the necessary information to extract preferences and
provide compatible memory layouts, and evaluate the tradeoffs
among multiple cache designs for the MDA memory systems. Our
results indicate that both logically 2-D caching using physically
1-D SRAM structures and on-chip physically 2-D caches can
both provide significant improvements in performance over a
traditional cache system interfacing with an MDA memory,
reducing execution time by 72% and 65%, respectively. We
then explore the sensitivity of these benefits as a function of the
working-set to cache capacity ratio as well as to MDA technology
assumptions.

Index Terms—Cache design, Symmetric memories, Crosspoint
memory, Row-Column vectorization, 2D memory access

I. INTRODUCTION

Across myriad algorithms spanning from matrix multipli-

cation to vision processing to database queries, many fun-

damental problems in memory access optimization, in both

software and hardware, stem from the disparities between

a one-dimensional, linearized model of memory and data

structures and algorithms that naturally organize data and

data traversals along multiple dimensions. In fact, many ex-

isting data layout optimizations try to reorganize the data

This work is supported in part by NSF grants 1317560,1822923, 1439021,
1629915, 1626251, 1629129, 1763681, 1526750, 1439057,1500848 and Semi-
conductor Research Corporation JUMP CRISP.
*Equal contribution by first & second author.

within program structures to maximize the occurrence of unit-

stride accesses on a linear memory space [1]–[6]. However,

these disparities arise not only because of the logically one-

dimensional nature of the abstract memory model employed,

but also because the internal physical organization of data

arrays for the currently dominant memory technologies (e.g.,

SRAM and DRAM) provide strongly asymmetric accesses

to row and non-row patterns. Transfers between levels of

the cache and memory hierarchy are likewise designed in a

row-oriented fashion, aligned along the same common access

dimension. Thus, in current systems, several key metrics, from

the utilization efficiency of data fetch bandwidth to the ability

to leverage SIMD vectorization, are all dependent on mapping

both data and accesses into the same, linearized dimension.

Intriguingly, the rise of crosspoint memories as a natural

array structure for several emerging nonvolatile memory tech-

nologies fundamentally alters the physical asymmetry con-

siderations that currently limit multidimensional memory ac-

cesses. Collectively, memory technologies, such as PCM, STT-

MRAM, and ReRAM, that utilize resistance to store values can

be used to construct cells where values can be read or written

along both the horizontal and vertical axes of a crosspoint

array [7] or similar structures [8]. Crosspoint organizations

for memory rely on sensing the presence of a conducting path

between the horizontal and vertical interconnects through the

cell at the crossing point between the two axes rather than

relying on the cell itself as a source of charge or current

to drive the memory output, which can lead to substantially

higher memory density and naturally synergizes with passive

(non-volatile) memory storage cells. We term memories that

support data transfer along both the horizontal and vertical

axes of such topologies Multi-Dimensional-Access (MDA)

Memories, and several recent works have already explored

the benefits of exploiting crosspoint array features within

main memory modules, including in the analog domain, to

improve application performance [9]–[11]. However, while

MDA memories can provide enhanced support for both row

and column accesses, the current software view of memory is

still fully linearized, current caching systems remain optimized

for that linear view of memory. The existing cache hierarchies

decouple processor address sequences from multi-dimensional

array accesses, and implementing MDA memories on-chip

faces a distinct set of technology challenges from MDA main

memory designs.

In this paper, we propose a set of design changes to the

cache hierarchy to construct caches for MDA memories (MDA-
Caches) that can better express and exploit multi-dimensional

application preferences throughout the entire cache and mem-

ory hierarchy. We describe a taxonomy for different ways of

connecting row and column preference at the application level

to an MDA memory through the MDA cache hierarchy and

explore specific implementations for the most plausible design

points. One key observation is that providing dense memory

accesses along both row and column orientations greatly eases

vectorization along both row and columns. Moreover, in cases

where it is unclear how to choose which loop ordering will

provide a better optimization or the compiler cannot reconcile

multiple conflicting access patterns to the same data structure,

supporting both row and column accesses can simplify (or

even obviate the need for) some ambiguous compiler tradeoffs.

This work focuses on the design space of MDA caching

approaches that can simultaneously hold both row and column

aligned data. In a physically 1-D cache, this introduces new

challenges in tag management, potentially duplicated data

words due to intersecting rows and columns residing in the

same cache level, and opens up policy spaces for dealing

with new phenomenon such as cache hits with mis-oriented

access preference and 2-D MSHR miss coalescing. Physically

2-D caches, where the memory arrays used to implement the

cache are themselves MDA memories, remove challenges with

data duplication, but require a 2-D block as the fundamental

allocation unit in a cache. We explore practical implemen-

tations of both logically 2-D caches built atop physically

1-D SRAM and caches with both logical and physical 2-

D properties (implemented in STTRAM) and demonstrate

substantive bandwidth, vectorization, and performance benefits

over a baseline 1-D logical/physical design. Given the large

transfer unit of a 2-D block in a physically 2D cache, we elide

consideration of “dense” 2-D blocks, and directly explore a

variant that supports “sparse” occupancy for physically 2-D

caches.

While the proposed changes relative to traditional designs

are primarily in the cache hierarchy, some buy-in from both

the compiler and the OS is necessary to fully exploit the

hardware support for multidimensional access. Specifically, the

memory layout must align logical and physical dimensions

within the MDA, and supporting physical column accesses

requires changes to the OS page allocation to ensure that all

of the elements in a column (which may span multiple pages)

are part of the same process. Fortunately, while these changes

are required in order for applications to benefit from MDA

memories, they are relatively straightforward to implement for

some codes, such as linear algebra operations over matrices,

that are positioned to be among the most direct beneficiaries of

MDA memories. We describe the software support necessary

for MDA memories in Section V.

The specific contributions of this work include:

• We propose “MDA caching” as a means to better exploit

the emerging class of MDA memories. We show that, to take

full advantage of the MDA memory benefits, co-design must

occur across software memory layout, the mapping between

the physical and logical organization of the memory arrays,

and the cache hierarchy itself, in order to efficiently express,

convey, and exploit multi-dimensional access patterns.

• We describe a taxonomy for MDA caching along logical

and physical dimensions, discuss the nature of interfaces

between different cache hierarchy levels belonging to different

taxonomy groups, and describe techniques for implementing

logically 2-D MDA caching using both physically 1-D and

physically 2-D approaches.

• We observe that supporting column access opens up new

opportunities for vectorization support to exploit MDA access,

and analyze the degree to which mixed row and column

vectorization opportunities are present in a variety of kernels.

•We quantify the benefits supplied by MDA caches over a tra-

ditional caching approach when both are attached to an MDA

main memory. We discuss the sources of these benefits, show-

ing that MDA caching provides superior bandwidth utilization

compared to prefetching, in addition to enhanced vectorization

opportunities. Our results indicate that logically 2-D caching

using physically 1-D SRAM structures provides 72% average

reduction in execution time over a traditional cache system

interfacing with an MDA memory. We also show that utilizing

an MDA memory technology on-chip to implement a cache

that is both logically and physically 2-D can provide 65%

reduction benefits once sparsity optimizations are applied.

• Further, we perform sensitivity experiments to examine the

degree to which these results still hold for entirely “cache-

resident” working sets as well as across differing assumptions

on the properties of MDA memory and cache implementation

technologies. We demonstrate that, while the approach is

sensitive to these dimensions, the benefits remain consistently

positive.

II. OVERVIEW OF ENABLING TECHNOLOGIES

The current landscape of competing emerging memory

technologies is quite diverse: STTRAM uses MTJs to store

information in the direction of the magnetic layer [12]; PCM

uses differential resistance between crystalline and amorphous

phases of a material [13]; FeRAM uses remnant polarization

in a ferroelectric layer [14]; and ReRAMs use the pres-

ence/number of filaments to represent bits. Despite this variety,

the chief desirable features offered by these memories are quite

similar. For example, STTRAM, PCRAM, and ReRAM all

aim to provide high density memories that can dramatically

increase storage per unit area [12], [13], [15]. In addition to the

small device count and feature scaling of the memory storage

elements themselves, a key means for all of these technologies

in achieving high density at memory array scale is that they

are compatible with crosspoint memory topologies. Crosspoint

memory arrays using STTRAM, ReRAM, PCM, and other

resistive memory elements have been thoroughly described

in the research literature and embraced by industry [16]–

[18]. The most important features of a crosspoint architecture,

from the perspective of designing an MDA memory, can be

generalized beyond resistive memory elements: for example,

emerging memory cells built from FerroElectric FET (FeFET)

devices are “symmetric” in structure across drain and source,

which has been demonstrated to provide the flexibility of

interchanging the read directions [8]. While transpose access

designs for existing technologies have been demonstrated

and can also provide performance benefits, they come with

significant area overheads [19], in stark contrast to cross-

point arrays for these emerging resistive memories, for which

crosspoints are a naturally dense organization. Furthermore,

the crosspoint organization for resistive memories has enabled

analog inner-product computations that have shown substantial

benefits in implementing synapse functionality in neural net-

works [9], [10], [20], [21] and recent commercial products

have utilized 3-D crosspoint organizations for nonvolatile

memory/storage [22]. Thus, it is expected that many future

memories will be organized around a topology that fundamen-

tally eases the implementation of multidimensional accesses.

Nonvolatile memories have been integrated at different layers

of the memory hierarchy including caches [23], [24], memory,

and solid state storage [22]. The device parameters and circuit

structure can be tuned to meet the desired tradeoffs between

density and speed, resulting in configurations with diverse

timing, power, persistence, and even read-write asymmetry

tradeoffs [25]. In the scope of this work, we presume an

STT-based NVM (with timing parameters modeled on Ever-

spin [26] devices) as the main memory rather than some com-

mercial offerings that have the NVM as a secondary memory

fronted by DRAM. To account for technological uncertainty

in the relative performances of future NVM memories versus

future traditional memories, in Section VIII we examine both

the sensitivity to and relative performance of our approach

against a faster main memory. In the same section, we also

explore the impact of increasing the read-write asymmetry for

on-chip MDA memory technologies.

Memory
Element

Word Line

Selector

Fig. 1. A general schematic of a crosspoint memory.

While each of

these emerging

technologies has

its own unique

tradeoffs, the

work in this

paper relies only

on common

properties

shared by all

of the above

technologies. A

general schematic structure of a crosspoint array, similar

to those considered in prior proposals [7], [9], is given

in Fig. 1. One significant development in realizing MDA

memories from crosspoint memory arrays are bidirectional

array selectors [27]. Bidirectional selectors add the capability

in the crosspoint memory to read and write along both of

the crossing interconnect directions. In addition to being able

to swap the role of word line and bit line, duplication or

alteration to sensing and driving circuitry is also required.

In the remainder of this work, we consider using STTRAM

to implement physically 2-D memories, although we believe

that our approach directly extends to other emerging technolo-

gies deployed in crosspoint topologies. STTRAM was chosen

as the technology for our MDA memory exploration because

we aim to explore physically 2-D implementations of on-chip

cache memories as well as off-chip MDA memories, and wish

to utilize a single base technology for both on and off-chip 2-D

memories in order to preserve clarity on the microarchitectural

versus technology contributions to MDA caching approach

benefits. STTRAM simplifies some idiosyncrasies of other

candidate resistive crosspoint technologies, specifically, en-

durance management, when considering last-level cache (LLC)

implementations [28]. In the next section, we describe how

to map from physically multi-dimensional access to logical

memory semantics aligned with both horizontal and vertical

read/write accesses. We propose a new organization structure

to the main memory and cache, and incorporate software

support to enable the multi-direction-mode data transfers.

III. FROM MATS TO MEMORIES

This section introduces the proposed memory system. Here,

we extend the bidirectional data transfer of the underlying

memory circuits to a logical memory organized around bidi-

rectional data transfer capabilities matched to the address

space semantics. Our architecture supports two modes of

transfer: row mode and column mode. In row mode, the

memory provides a set of data words with unit stride, and

in column mode the memory provides the same quantity of

data words with a fixed non-unit stride. The chief challenge

in leveraging underlying circuit symmetry is that the symmetry

is at bit-level, rather than word-level. Seen from the same

dimensionality perspective motivating MDA memories, our

challenge is that we are embedding 3-dimensional semantics

(row, column, word) for bits into a 2-D (row, column) physical

substrate. Thus, to get columns of words in an access, we will

need to interleave the bits of the word, which is discussed

below. The proposed 2D memory is shown in Fig. 2. Fig. 2(a)

shows a traditional memory, where the data is transferred to

the row-buffer by opening the rows of the memory array.

In this architecture, transferring a column of data column-

wise requires multiple row openings. Note that row opening

is a costly operation for a memory array in terms of both

latency and power. Fig. 2(b) shows an architecture where this

particular issue is addressed by introducing a column buffer for

column-wise transfers. The peripheral circuit for such a 2-D

memory includes an extra set of decoders and sensors for the

column, and we need to make the memory controller “aware”

of the column sensing (Fig.3) [29]. The area overhead of

having the extra set of decoders is typically less than 1% [30].

The logical, word-level organization of the 2D main mem-

ory is given in Fig. 4. From Fig. 4, for a request mapping to

row R1, we expect to see the data X11,X12–X18 transfered

to the row-buffer from the main memory array. Similarly,

in a column mode request for C1, we would see the data

X11,X21–X81 transferred to the column-buffer and then to the

Fig. 2. Main Memory

memory bus. Note that column-wise transfer can fundamen-

tally improve bandwidth utilization in transfers to the cache

hierarchy if the current pattern of access is column-aligned.

Likewise, the total number of row-buffer operations would

be reduced, further enhancing efficiencies. Thus, column-level

access is fundamentally distinct from prefetching if the other

columns in a fetched row of data will not be used before

eviction. However, the underlying memory circuitry described

in Section II only provides symmetric access to bits, not words.

To support symmetric word level transfers, mats in an MDA

memory are organized as “bit slices”.

The logical bit split organization is shown in Fig.5. The bits

of the same word are shown in the same color. The interval

between the reds (bits) is a design parameter. Assuming that

we are placing a red in every 8 bits, we get 64 bits of red group

while transferring 64 bytes. Note that, in the conventional

mode, we would also be transferring 64 bytes in the same

row buffer space from the same memory array row width.

Upon the request for the row, the data in the selected row is

transferred to the row-buffer. Similarly, in the column mode,

the bits in the column are transferred to the column-buffer.

That is, in a single access, all the bits in the same word

(multiple-reds in the figure) get transferred into the column

buffer, as shown in Fig. 5. A detailed diagram of the bits in

the words is shown in Fig. 6. To bring data from multiple bit

columns into the column-buffer, we need to segment the row

into multiple groups. The number of groups is the number of

the same color bits in the same row in Fig. 5.

We propose to implement the above arrangement by adding

a row selection transistor and a column selection transistor,

which we call block selectors, as shown in Fig.6. In the column

mode, the row selector transistor is turned off, and the column

selector transistor is turned on. This arrangement enables the

multiple column bits to be stored into the buffer in a single

operation. In our implementation, we have used two additional

transistors (block selectors) per 16 bits. Note that the degree

of bit slicing, and associated overheads in block selectors vs.

number of mats activated on a lookup are design parameters

that can be freely adjusted, and the optimum interleaving can

change depending on the row/column buffer capacity, the wire

capacitance, and the number of block division elements area

overhead. Other methods to reduce the block select elements

are by rearranging words across multiple chips and using

single sub array access as described in [31], [32], where a

single command access actives multiple chips and multiple

large arrays within chips. The power consumption can also be

reduced in this approach using power-down mode as discussed

in [31].

IV. CACHING FOR MDA MEMORIES

The main focus of this work concerns the design of CPU

cache hierarchies for MDA memories. We begin by provid-

ing a taxonomy of possible cache organizations that can be

employed in a cache hierarchy for MDA memories, and then

explain in detail the interfaces needed to support and connect

each class of cache to other levels of the hierarchy.

A. Taxonomy

For the purposes of this paper, we consider a memory

to be an MDA memory if it has a physical capability to

supply data in multiple dimensions and we consider a cache

to be a multi-dimensional MDACache if it has the capability

of supporting dense accesses in more than one dimension,

whether or not the physical memory arrays within the cache

support multidimensional access. Thus, for caches, we will

consider their “logical” and “physical” dimensionality as

separate design parameters. A baseline SRAM cache in a

modern processor would be considered as both logically and

physically 1-D (1P1L). If an SRAM cache were modified

to serve lines that contained column-aligned data as well as

row-aligned data, both physically stored in traditional row-

aligned SRAM cells, it would be considered logically 2-D,

despite remaining physically 1-D (1P2L), and a cache built

on an on-chip crosspoint could be designed to operate in a

2P2L fashion. While a 2P1L design point is also possible, we

elide discussion for brevity. For physically 2-D caches, we

further subclassify them into 2P2L Dense and 2P2L Sparse

organizations, depending on whether the unit of fill is matched

to the unit of allocation. Below, we discuss the cache to MDA

main memory interfaces for the baseline SRAM cache and

two MDACaches. Then, we also briefly discuss the additional

complexities regarding connecting the cache hierarchy levels

that are not from the same taxonomy class.

B. Interfaces

Below, we discuss the key interface decisions that will

determine how the processor, cache levels, and MDA memory

will interact.

a) Application to ISA:: We propose making the follow-

ing changes at the ISA level. At the application level there

are scalar, vector, and multi-dimensional variables/structures.

The latter two of these will have access alignment preferences

within a given code region, and Section V describes how a

compiler can extract alignment preference. At the ISA level,

each memory operation, either scalar or SIMD, will have

both a row and column preference variant, with the compiler

generating either one or the other instruction. Instructions

corresponding to accesses without discerned preference will

be marked as having row preference.

Fig. 3. A high level view of our 2D
memory.

X81

X71

X61

X51

X41

X31

X21

X11 X12 X13 X14 X15 X16 X17 X18

X11 X12 X13 X14 X15 X16 X17 X18

R8

R7

R6

R5

R4

R3

R2

R1

C1 C2 C3 C4 C5 C6 C7 C8

X81

X71

X61

X51

X41

X31

X21

X11

Row Buffer

C
ol

um
n

B
uf

fe
r

Rows

Cols

Fig. 4. 2D Memory Row / Column
access.

X810 – 63 X810 X820 … X880 X8163 X8263 … X8863

X210 – 63 X210 X220 … X280 X211 X221 … X281 X2163 X2263 … X2863

X110 – 63 X110 X120 … X180 X111 X121 … X181 X1163 X1263 … X1863

X110 - 63 X120 - 63 X180 - 63

… …

…

…

…

…

…
Row Buffer

C
ol

um
n

B
uf

fe
r

1 bit64 bits

64
Bytes

Fig. 5. 2D memory word organization.

Fig. 6. 2d Memory bit-level to word-level organization.

b) Processor <–> cache hierarchy:: In a 1P2L cache,

each cache line will require an additional bit of metadata to

indicate whether it is “row” or “column” aligned. For scalar

memory instructions, we define a hit in the cache to be based

on the presence of the word within the cache line, ignoring

alignment; alignment will only be used for scalar memory

operations in the case of a miss by triggering a cache fill

request along the preferred alignment. For vector memory

accesses, the correctly aligned block must be in the cache

in order for a hit to occur. In a 1P2L cache, distinct from a

1P1L cache, there exists the possibility of “data duplication”

where intersecting row and column lines are co-present in the

same cache level. Handling of duplicate data in 1P2L designs

is a policy decision.

In a 2P2L cache, the fundamental unit of allocation is

a cache line by cache line 2-D block (e.g., 512 bytes for

8 rows by 8 columns by 8 bytes per word, assuming an

8-word cache line). There is no data duplication, and no

orientation bits need to be kept as metadata (total metadata is

also reduced due to there being substantially fewer blocks than

in a 1P2L cache). Section VII introduces a sparse 2-D fetch

optimization, analogous to footprint cache [33] optimizations,

which requires a presence bit for each row or column within

a tile – the overall metadata overhead for these bits is equal

to the sum of the valid and orientation bits for a 1P2L cache.

In addition, throughout the cache hierarchy, and for all the

design variants tested in this work, transactions that have

overlapping words should be ordered, even if the access

directions are different. There are several ways to achieve this.

In this work, we consider 2-D MSHRs. The access requests

come out of the cache’s MSHR in order, and any overlapping

writes are blocked in the MSHR until the previous overlapping

accesses have finished. It is also possible to maintain order at

the memory without blocking the MSHR requests.

c) Intra-cache transfers:: As mentioned above, align-

ment preference is only considered on a cache miss for

scalar memory operations. Similar to the processor-to-cache

interface, a lower level cache may contain the requested data

word, but in a cache line with the non-requested alignment. In

contrast to the processor interface, we consider this a policy

decision as to whether this constitutes a hit or miss in the

lower level cache. If the higher level cache that is requesting

a fill is a 1P2L cache and the lower level cache is a dense

2P2L cache and contains the requested word, it will always

be able to serve a line in the orientation requested by the upper

level cache. Sparse 2P2L and 1P2L upper level caches may

experience partial hits due to intersecting lines in the non-

preferred fill direction despite not having preferred orientation

line present in the cache.

d) Cache <–> MDA memory:: We presume an MDA

memory interface that will perform bidirectional transfers

organized along cache-line sized row or column data chunks.

1P2L caches requesting an oriented fill from MDA main

memory will always receive the line in the requested orien-

tation. Similarly, writebacks can be performed in either row

or column alignment, due to MDA Memory symmetry. The

memory controller will track the timing constraints in both

the row and column buffers. The MDA memory will respond

using critical-word first transfer.

2P2L blocks will be transfered in either a row or column

sequence, critical word, critical row/column first. In dense

2P2L fill, all rows/columns within the 2-D block will follow

after the one generating the initial miss. In sparse 2P2L,

data will only be transferred by demand or prefetch into the

allocated 2-D block. Dirty/clean tracking for both dense and

sparse 2P2L is done at 2-D block level, but sparse 2P2L can

elide writeback of data has never been filled.

C. Selected Design Points

The caches described in Section IV can be used to form

several different cache hierarchies in combination with a 2-

D MDA main memory, even when restricting the number of

cache layers to two. Below, we select specific instantiations

that will help us to begin explore the broader design space.

The combinations of interest include:

• Design 0 – 1P1L L1 with 1P1L LLC (Baseline)
An MDA memory can also support single dimensional access

without significant overheads. Note that the preferred memory

layouts for a 1P1L software and cache optimized set of access

patterns and a *P2L software and cache optimized set of access

patterns will be distinct. Our experiments indicate that running

a 1P1L cache hierarchy with a *P2L optimized memory could

incur average slowdowns on the order of 2x, due to the

mismatch between data layout and access pattern as well as

extra data traffic caused by padding (see Section V). For the

scope of this paper, we will always use the memory layout
optimized for the appropriate logical dimensionality of the
cache hierarchy.
• Design 1 – 1P2L L1 with 1P2L LLC

A uniformly 1P2L cache hierarchy represents the simplest

translation of multidimensional access onto a modern SRAM

cache technology. Metadata for each line is extended with an

orientation bit to indicate either a row (unit) or column stride

among consecutive words in the cache line. Key challenges

include: duplicate items in cache, tag checking complexity,

and the additional metadata requirement.

For physically 1D, logically 2D caches, both row and

column lines are stored in the cache as dense sequences

of words. To differentiate between the different access/data

directions (and effective stride), an additional bit per cache

line is employed to mark each cache line’s direction status,

as shown in Fig. 7, which is checked along with the tag on

access.

Division of the physical address into tag and set mapping

also has to be reconsidered to account for a mix of potentially

overlapping row and column data. It is possible to utilize

a common set of index bits for a simultaneous row/column

lookup (Same-Set mapping), but doing so maps all rows and

columns in a 2-D block into the same set, making it impractical

for lower associativity caches. Moreover, doing so would

potentially increase the complexity of cache hit logic, as up

to two (read) hits in the same set would have to be correctly

handled. Alternatively, rows/columns of a 2-D block can be

mapped into different sets (Different-Set mapping), while the

tag is kept the same as shown in Fig. 8. In order to avoid

overheads on the hit path when using a Different-Set mapping,

we generate both the row and column index in parallel and use

the orientation preference bit associated with the instruction

to control a 2:1 tri-state selection between them to determine

which orientation is checked first (the minimal additional tri-

state latency is compensated for by driver sizing). If it is a

read hit in the preferred orientation, it can immediately return.

If it is a miss, then the other orientation will be checked,

incurring additional cycles of latency, before invoking miss

handling. Even if both row and column index happen to be the

same, the check is still sequential with the preferred orientation

checked first. On writes, even if there is a hit in the preferred

orientation, both orientations must be checked, requiring two

sequential tag lookups or an additional tag port. In our design,

we choose the former, as writes are not on the latency critical

path. In the case of a hit in both orientations, the not preferred

orientation cache line has to be either evicted or updated

as well, depending on the policy. While, in this work, we

D0-7 V Dir Tag

D0-15 V0-15 Tag

8 * 8 * 8B = 512B Data

8 * 8B = 64B Data

…

…

…

……

Fig. 7. Illustration of cache organization with status control bits Dirty(D),
Valid(V), Access Direction(Dir). Top: physically 1D, logically 2D; Bottom:
physically and logically 2D.

consider only static mappings of orientation to instructions, the

same lookup scheme would be compatible with a dynamically

predicted orientation preference with no additional overheads

on the cache hit path.

A new duplication challenge also exists in the 1P2L cache.

Any given word could map to two intersecting cache lines of

different access orientation, which means that multiple copies

of the same word could be co-present in this cache. There are

two significant problems that arise from this duplication: 1)

how to handle writes when multiple copies exist, and 2) how

to handle accesses that bring duplicate copies to the cache.

To make sure that the multiple copies stay coherent with

each other, changes to the cache policy are also required.

An obvious solution is modifying all copies at the same time

when a change occurs and updating the new copies as they

are brought to the cache, but that induces extra writes for each

duplication. By implementing a writeback based method, extra

writes on each modification to duplicate words are avoided.

Fig. 9 shows the implemented cache policy, where the access

to duplicate words are taken into account.

In our policy, duplication is allowed as long as all copies

are clean. To solve the first problem, all duplicate copies

except for the one accessed by the write are evicted so that

modification only happens to the sole copy in the cache (shown

by the transition from “Clean” to “Invalid” triggered by “Write

to duplicate”, indicating an incoming access is a write to a

duplicate copy of this word). To solve the second problem,

any modification to the sole existing copy is propagated back

(write back) to the lower level cache or memory before

bringing in the duplicate copy with the updated value from

the lower level (the transition from “Modified” to “Invalid”

triggered by “Write to duplicate”, and the transition from

“Modified” to “Clean” triggered by “Read to duplicate”). The

ordering is ensured by forcing an ordered access for requests

with overlapping word to the next level cache or memory. This

ordering is enforced by logically 2-D aware MSHRs and write

buffer. Correctness is obtained by ensuring that modifications

can only happen when there is only one copy of the word

in the cache (if any other existed, they are evicted before the

modification), and all modifications (if any) are propagated

back before bringing in other copies.

In addition, to mitigate the impact of extra writebacks

caused by false sharing of intersecting cache lines, 1 extra

dirty bit is added for each word in the cache line. For a 64-

Cache Decode Memory Decode

Row Tag Word
offset

Byte
offset

Rk-
Bk-
Ch

Col Tag Word
offset

Byte
offset

Rk-
Bk-
Ch

Row
select

Cache Decode Memory Decode

Address Col word
offset

Row word
offset

Byte
offset

Row index
high

Col index
high

Set index Word
line

Col
select Offsets

Set index Word
line Offsets

Fig. 8. Illustration of address decode mapping for row and column access
directions in cache and memory, with MSB on the left. The address bits are
naturally divided into row and column sections according to underlying 2D
dimension.

Modified

CleanInvalid

Status Valid bit Dirty bit

Invalid 0 0

Clean 1 0

Modified 1 1

Eviction / Write to duplicate

Read /
Read to
duplicate

Read

Read / Write

Fig. 9. Write back based cache policy with accesses to duplicate words taken
into account. The table shows the meaning of different cache status, arrows
represents status transitions, with texts representing the actions that trigger
the transitions.

byte cache line with 64-bit words, the overhead is 8 bits per

64 bytes.

• Design 2 – 1P2L L1 with 2P2L LLC
Utilizing a physically 2D cache as the LLC simplifies some

considerations regarding data duplication and tag checking

complexity for the utilization-centric lower level caches. Key

challenges include large unit transfer cost and increased con-

flict sensitivity due to reduced number of cache frames.

Allocation for a 2P2L cache works very much like a normal

cache with a larger cache line size. Assuming that the 1P2L

upper level cache line size is 64 bytes, then to ensure the 2D

alignment of physically 2D cache on a cache line size level,

the physically 2D cache’s cache line size becomes 512 bytes

(8 rows x 8 columns x 8 bytes/word). These 512 bytes can

store a tile of aligned data with 64 bytes accessible in either a

row or column direction. Compared to physically 1D, logically

2D cache, the problems of duplication and write/miss induced

eviction can be eliminated.

However, the 512 byte allocation and transfer size can pose

some challenges. Consider the scenario where the upper level

1P2L cache writes back a cache line, and the lower level

2P2L does not hold the corresponding 2-D block in which

this line resides. Bringing in the rest of the large cache line

from memory is costly, while writing through directly to the

memory loses writeback and caching opportunities. Allowing

sparse fill in the 2-D block mitigates these problems. On-

demand or predictive prefetch methods for filling in 2-D blocks

can reduce total data transfer costs, while those regions of

memory that exhibit both column and row preferences in

temporal proximity can still reap benefits from the subset of

2-D blocks that have been densely filled to support mixed-

direction accesses.

To keep track of the status of the partial small cache lines

inside a large cache line, additional status bits are added for

each small cache line of each access direction, as shown

in Fig. 7. With row and column bidirectional access, 16

valid bits are used to keep track of the content of a large

cache line, which converts to an overhead of 16 bits per 512

bytes. Additional dirty bits can also be added to save write

back bandwidth. Note that, similar to the physically 2D main

memory design, We will need to add extra block selector

transistors as described in Fig. 6 to enable the column transfer

to the 1P2L upper level cache.

• Design 3 – 2P2L L1 with 2P2L LLC
While this design point would eliminate all complications

concerning duplicated data within a cache level and shift to

a fundamentally 2-D block-oriented allocation/transfer model,

it would require utilizing a crosspoint memory for the L1

caches. As it is unclear, at this time, that doing so represents

a practical design for mature NVM technologies, we leave the

consideration of this design point to future work.

V. SOFTWARE SUPPORT

In this section, we explain the compiler support necessary

to take full advantage of an MDA-aware cache hierarchy. We

can summarize our compiler support under three main items:

• Access Direction Prediction: To convey the row and

column access information to the architecture, the compiler

needs to analyze the data access patterns and extract the

direction of memory accesses for each data structure. When

focusing on frequently-used computational kernels, detecting

the access pattern direction boils down to determining the set

of subscript positions (for an array) in which the index of the

innermost loop appears. For instance, let us assume that an

array X is stored in memory in a row-major layout (as in C-

language) and an array access X[i][j] is enclosed by a loop

nest where j is the innermost index. Since j appears only in the

second subscript (which corresponds to the fastest-changing
dimension in a row-major memory layout), the compiler can

deduce that this access is a row-wise access, that is, for a given

row (i) of this array structure, the innermost loop (j) traverses

the elements in that row. In comparison, for the same loop and

array structure, access patterns such as Y [j][i] or Z[i+j][i+2]
can be identified by the compiler as column-wise accesses.

Once the access directions are extracted by the compiler, they

are passed to the hardware by setting a bit (“0” indicating

column and “1” indicating row access) in the corresponding

load/store operations.

• MDA-memory Compliant Memory Layout: Another

type of compiler support is needed to match the dimension

sizes of the array data structures to the dimensions of the MDA

memory. This is to align the data in memory space such that

two data elements, for example, X[i][j] and X[i + 1][j] that

map to the same column (i.e., the jth column) but consecutive

rows in the array structure need also map to the same column
in the MDA memory structure. The compiler transformation

we employ for this purpose is array padding [34], originally

developed to reduce conflict misses in low-associative caches.

In particular, in this work, we use intra-array padding, which

basically involves (say, for a 2-D array) adding extra elements

to each row until array references that denote the same column

in the array space (such as those given above) map to the same

column in our MDA memory structure. While, traditionally,

such data layout optimization techniques have been used in

the past to improve cache performance by reducing conflict

misses [1]–[3], [5], [6], in this work, we use it for an entirely

different purpose, as explained above.

•Vectorization: The last compiler optimization we employ

is vectorization [35]. Current architectures implement vector-

ization in their SIMD units. In this work, we use vectorization

as is, except that since our architecture allows column-wise

reads in one shot, we apply vectorization in the column

direction as well in the row direction. In contrast, in state-of-

the-art compilers, vectorization is not usually used in column-

wise accesses, as doing so typically involves first copying

multiple elements (from different rows, in the same column) to

consecutive locations, which may be too costly and can easily

offset the potential benefits of vectorization. In other words,

our approach expands vectorization opportunities that can be

targeted by the compiler.

A. Applying the proposed approach

To understand how and when our proposed approach will

be applied, consider the following example involving matrix

multiplication. Note that, for expository simplicity, a naive

MxM algorithm is used.

1: function MATRIX MULTIPLICATION(MatR,MatC,N)
� Input matrices MatR,MatC of size N by N
� MatR is accessed in rows, MatC in columns

2: Let MatOut be a new matrix of size N by N
3: for i ← 0, N − 1 do
4: for j ← 0, N − 1 do
5: sum ← 0
6: for k ← 0, N − 1 do
7: sum ← sum+MatRi,k ∗MatCk,j

8: MatOuti,j ← sum

9: return MatOut
10: end function
11: function MDA EXAMPLE(N)
12: Let A,B,C,D,E be matrices of size N by N
13: ...
14: C ← MATRIX MULTIPLICATION(A,B, N)

� Row accesses direction for A, column for B
15: ...
16: E ← MATRIX MULTIPLICATION(B, D,N)

� Row for B, column for D
17: ...
18: end function

While memory operations in the MatrixMultiplication func-

tion have strong row/column preference, the data structures

this function will be called on may not, as in the case of

matrix B. As matrix B lacks a globally dominant access

preference, memory layout in column-major form could re-

quire the insertion of a transpose operation between the two

calls to the matrix multiplication routine or the generation

of multiple versions of the MatrixMultiplication function

with asymmetric performance expectations. In our approach,

however, all matrices A–E can be laid out in row-major

form, provided that logical column and memory layout of

column alignments are preserved. Through static analysis, the

instructions accessing MatCk,j are identified and annotated

with column access preference, and all other instructions retain

row access preference.

The differences between column and row access preference

for MatCk,j can be substantial, and are not limited to cache

hit rate improvements. Specifically, being able to perform

transfers of column data between layers of the memory hi-

erarchy can better utilize bandwidth both among cache levels

and between the cache hierarchy and memory by only bringing

in the data words in the current direction of access locality.

Further, by consolidating column data, vector operations can

be performed on column-aligned data as readily as on row-

aligned data. Assume, for instance, that each cache line can

hold 8 elements of matrix MatR or MatC, and that the

cache is empty in the beginning. For k ← 0, 7, the accesses

to MatRi,k can be satisfied with 1 access to the memory

that brings back 1 cache line into the cache. However, 8 row

accesses are needed to get MatCk,j , each bringing back 1

cache line of MatCk,m to MatCk,m+7, where m = �j/8�.
With column access enabled, a single access can get all 8

element of MatCk,j , reducing number of data transfer to 1/8.

Furthermore, the size that the data occupies in the cache is also

reduced to 1/8, increasing the chance of useful data remaining

in the cache and having higher cache hit rates.

In addition to the benefits seen in this example, there are

other scenarios where decoupling layout and access direction

preferences could be particularly useful. One such example is

in column-IO database [36] layouts, wherein the (logically)

column data is of a single data type, whereas a row may

contain columns of several data types. As such, there are

substantial compression opportunities within a column that

are not present for rows. Providing similar cost accesses to

both row and column access patterns would allow for greater

flexibility in preserving simplicity of row-column addressing

within such tables while still being able to benefit from data-

type-specific column-compression.

In cases where a data reference in the target code does

not exhibit a strong row or column preference that can be

detected by the compiler, we can employ profiling. More

specifically, profiling can be used to extract directional bias

and then the corresponding static load/store instructions can

be annotated (with access preference information) as suggested

by the profiler.

VI. MODELING AND METHODOLOGY

A. Memory/Cache Modeling

To preserve column alignment within the same bank, and

preserve to a certain degree the bank, rank, and channel level

TABLE I
EXPERIMENTAL SETUP

Gem5 configurations
CPU X86 architecture, OoO, 3 GHz
L1 D-/I- cache 32KB, 4 way associative

2-cycle tag lookup , 2-cycle data access
Parallel tag/data access

L2 cache (256KB) 8 way associative
6-cycle tag lookup, 9-cycle data access

Sequential tag/data access
L2 (2MB) 8 way associative
L3 (1/1.5/2/4MB) 8-cycle tag lookup, 12-cycle data access

Sequential tag/data access
Main memory 4GB, NVMain simulator
Simulation mode Syscall Emulation

NVMain configurations
Memory controller FRFCFS-WQF
Device Config STT-RAM
Memory Size 1GB/channel x 4 channels
Row buffer policy Open page

parallelism, we modify the main memory decode as shown

in Fig. 8. In the address, the “Byte offsets” signifies the

byte in a 64-bit word, and the 3-bit “Row word offset” and

“Col word offset” indicates the word in a 64-byte row and

column cache line respectively. Together, they define a tile of

8 cache lines where we have physically continuous column

cache lines as well as row cache lines. By not using “Row

word offset” or “Col word offset” in the mapping to bank,

rank or channel, it is ensured that any interleaving method

employed will interleave on a tile basis, and will not disturb

the column alignment within a column cache line. We push

the selection of bank, rank, and channel bits as much as

possible toward the LSB to enhance channel, rank and bank-

level parallelism. The remaining bits are partitioned between

“Offsets” for bytes in a cache line, “word line” for row/column

selection, and finally we have the “Row select” and “Col

select” that selects which cache line in a physical column and

row respectively. The interleaving, as shown in Fig. 8, can

be denoted as R:C:BK:RK:CH where a column aligned tile is

the unit of interleaving, instead of a row-wise cache line. To

use the bidirectional feature of the main memory, we pass an

identifier to the main memory indicating that a fetch is for a

column or a row. The memory controller will ensure that the

column is physically aligned as a column.

We made the following modifications in cache modeling.

In addition to the extra bits and policies described in Sec-

tion IV-C, an extra delay has been added to the 1P2L different

set mapping cache implementation to account for the extra tag

accesses. In the case of a scalar cache access, if it misses in

the desired direction, an additional tag access and latency is

added to see if there is a ”hit” in the other direction. In the

case of a SIMD access, if it misses (in the desired direction),

then additional tag accesses and latency are added to check for

the existence of any dirty intersecting cache lines of the other

orientation that may need to be written back. As an example,

for a 1P2L cache, the number of additional tag accesses is

the number of words in a cache line (8 in the evaluation).

For a write, additional tag accesses and latency are added for

potential eviction; the tag check overheads are the same as a

read miss. Note that all the extra latencies are incurred either

on miss or write, which are off the critical path. Moreover, as

will be seen in the next section, duplication is very rare for

the examined workloads, which limits the observed overheads

of even the above heavyweight eviction approach.

B. Experimental Setup

We evaluated our proposed MDACache policies using a set

of benchmarks featuring both row and column access affinities.

Our processor and cache simulation infrastructure is based

on GEM5 [37], while the MDA main memory is modeled

using NVMain [38]. Table I summarizes the various simulation

parameters used in our evaluations. The evaluated benchmarks

include: sgemm, ssyr2k, ssyrk, strmm, sobel, htap1, htap2.

While sgemm, syyr2k, syyrk and strmm belong to LAPACK

BLAS [39], the sobel benchmark evaluated is a basic Sobel

filter for vertical traversal. The htap1 and htap2 are analytical

and transactional processing benchmarks from [40]. All input

matrices (except htap) are 256 x 256 x 64-bit/ 512 x 512 x

64-bit; Htap uses 2048 x 256 x 64-bit/ 2048 x 512 x 64-bit.

We use NVMain [38] to model an STT crosspoint array for

our MDA main memory. Prior work [16] has shown crosspoint

memory implementations using STTRAM arrays and bidirec-

tional selectors [7], [41] suitable for MDA memories. Note that

we expect similar improvements with other crosspoint based

technologies (e.g., ReRAM, PCM) as well. We accounted for

the column decoder delay by adding an additional cycle to

address translation.

VII. RESULTS

In this section, we present a detailed experimental evaluation

of the proposed cache management schemes using a set of

widely used computation kernels as our benchmarks. Results

presented in this section are performed on a system with 3-

levels of caches, with 32KB L1, 256KB L2 and 1MB L3, using

512x512 input set, unless stated otherwise. To illustrate that

the benefit from the proposed scheme outweighs the benefit

of prefetching, we evaluate our proposed 1P2L and 2P2L

designs without prefetching, whereas the baseline 1P1L cache

hierarchy is evaluated with prefetching enabled. We expect

that prefetching optimizations for MDA memories/caches are

likely to constitute an area of research unto themselves and

their exploration is beyond the scope of this paper. In all the
evaluation results presented below, the L1 data cache is
always physically 1-D (SRAM), with logical dimension 1 in

the baseline and 2 in all MDACache hierarchies, the same is

true for L2 caches that are not LLC. 1P1L and 1P2L LLCs

are SRAM, and 2P2L LLCs modeled with STT parameters.

All logically 1-D experiments use a 1-D optimized memory

layout and all logically 2-D experiments use a 2-D optimized

memory layout.

•1P2L: The graph in Fig. 12 plots the execution cycles

of our benchmarks, normalized with respect to the con-

ventional (1P1L) cache hierarchy with data prefetching. We

use 1P2L to denote different set mapping cache modeling,

and 1P2L SameSet for same set. It can be observed from

this graph that 1P2L outperforms 1P1L in all benchmark

0%
20%
40%
60%
80%

100%

sg
em

m
ss

yr
2k

ss
yr

k
st

rm
m

so
be

l
ht

ap
1

ht
ap

2
A

ve
ra

geAc
ce

ss
 T

yp
e

D
is

tr
ib

ut
io

n
(%

)

256 x 256

Row Scalar Row Vector Column Scalar Column Vector

sg
em

m
ss

yr
2k

ss
yr

k
st

rm
m

so
be

l
ht

ap
1

ht
ap

2
A

ve
ra

ge

512 x 512

Fig. 10. Access orientation and size preferences
in the target workloads, by data volume. Accesses
are categorized by row and column preferences for
both scalar and potential vector accesses.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1M
B

LL
C

N
or

m
al

iz
ed

 L
1

H
it

R
at

e

1P2L 1P2L_SameSet 2P2L

Fig. 11. L1 hit rates normalized to 1P1L (with
prefetching) with 1MB LLC, (512x512) input set.

0
0.2
0.4
0.6
0.8

1
1.2

1M
B

LL
C

N
or

m
al

iz
ed

To
ta

l C
yc

le
s

0
0.2
0.4
0.6
0.8

1
1.2

1.
5M

B
LL

C
N

or
m

al
iz

ed
To

ta
l

C
yc

le
s

0
0.2
0.4
0.6
0.8

1
1.2

2M
B

LL
C

N
or

m
al

iz
ed

To
ta

l C
yc

le
s 1.6

0
0.2
0.4
0.6
0.8

1
1.2

4M
B

LL
C

N
or

m
al

iz
ed

To
ta

l C
yc

le
s

1P2L 1P2L_SameSet 2P2L

Fig. 12. Latency normalized to 1P1L (with
prefetching) with 1MB, 1.5MB, 2MB, 4MB L3s,
all with 256K L2 and 32K L1 for non-cache-
resident (512x512) input set.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

N
or

m
al

iz
ed

 T
ot

al

C
yc

le
s

1P1L 1P2L 2P2L

Fig. 13. Normalized latency for 2MB L2(LLC)
and cache resident (256x256) input sets

0

0.2

0.4
1MB LLC

Normalized
L3 Accesses

0

0.2

0.4

1MB LLC
Normalized
L3-Memory

Transfer

1P2L 1P2L_SameSet 2P2L

Fig. 14. L3 accesses and L3-memory transfer
normalized to 1P1L (with prefetching) with 1MB
LLC, (512x512) input set.

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18

sg
em

m
C

ol
um

n
O

cc
up

an
cy

(%
) L1 L2 L3

0

50

100

0 2 4 6 8 10

ss
yr

k
C

ol
um

n
O

cc
up

an
cy

(%
)

Execution Cycle(Billion Cycles)

L1 L2 L3

Fig. 15. Col. vs. row cache occupancy over time

0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 T
ot

al
 C

yc
le

s

1P2L 1P2L_SameSet 2P2L 2P2L-Slow_Write

Fig. 16. Impact of highly-asymmetric write latency
for 2P2L

0
0.2
0.4
0.6
0.8

N
or

m
al

iz
ed

 T
ot

al
 C

yc
le

s

1P1L-fast 1P2L
1P2L-fast 1P2L_SameSet
1P2L_SameSet-fast 2P2L
2P2L-fast

Fig. 17. Benefits compared with, and in the
presence of, improved main memory performance.

programs tested, and at worst reduces the execution time

by 3% of baseline with 2MB LLC. With 1/1.5/2/4MB LLC,

the execution time is reduced by 64/65/46/45% on average

for 1P2L (72/68/64/57% for 1P2L SameSet). Moreover, the

1P1L baseline has prefetching enabled, hence the benefits

of logically 2-D access extend beyond mere prefetching for

column stride data. Note also that, a prefetcher with high

coverage, even though it can eliminate a large number of

misses – just as our 1P2L – it still needs to issue multiple

requests to bring a column data, thereby increasing the traffic

between cache and memory.

To lend insight to the source of these improvements, we

show, in Fig. 10, the breakdown of access preferences, for each

benchmark, into four categories covering each combination of

preference row, column and size scalar, vector (see Sections V

and IV for the discussion of how these preferences are con-

veyed from software to hardware and how they are considered

by hardware). The most critical observation from these results

is that the 1P2L cache exercises column preference (which is

not an option in the 1P1L cache) in all benchmarks. In fact, on

average, we see that column preferences constitute about 40%

of total data accesses between both scalar and vector forms.

While the results presented in Fig. 10 indicate that, when

running on a 1P2L cache, our benchmarks exercise column

preference, it is also important to understand what this really

means in terms of the cache behavior. Fig. 11 and Fig. 14

present the L1 hit rate and total number of L3 accesses with

a 1MB LLC, respectively. While 1P2L does not guarantee

a better L1 hit rate than 1P1L for all benchmarks, it is 12%

(18% for 1P2L SameSet) better, on average, and many misses

to the same column are combined into one column access in

the MSHR, resulting in substantially fewer L3 accesses (only

22% of 1P1L, only 20% with 1P2L SameSet, on average).

As shown in Fig. 14, this traffic reduction is also inherited to

the L3 to memory transfer, with the total bytes of memory

transfer for 1P2L reduced to only 21% of 1P1L (15% for

1P2L SameSet).

Different benchmarks exercise column preference differ-

ently and in a time-varying fashion. To illustrate this point,

Fig. 15 plots the utilization of column-cached lines over time

(x-axis) in two of our benchmarks, namely, sgemm and ssyrk

(with 32KB L1, 256KB L2 and 1MB L3 LLC system). We see

that these two benchmarks exhibit distinct patterns; in sgemm,

the column preference is stable over the execution period,

whereas in ssyrk, it first increases and then decreases (due to

neighboring loop nests exhibiting different preferences in the

later part of the execution). Moreover, despite sgemm having

a substantial column preference (Fig. 10), the loop ordering it

has means that only a few of those columns are present in the

cache at a time, while row-oriented data cycles through.

We can conclude from this analysis that improvements in

both hit rates (Fig. 11) and data traffic (Fig. 14) eventually

translate to significant savings in execution cycles (Fig. 12).

•2P2L: Recall from Section IV that our 2P2L implementa-

tion allocates and evicts at 2-D block level, but each block is

only filled one row or column at a time based on demand. The

results from Fig. 12 indicate that, the worst performance is 1.6

times than the base line. Note that 2MB is the local working

set size, and we suspect the variances in 2MB L3 results are

due to this edge case.Also we observe equivalent performance

as baseline when we increase the L3 to 4MB for the same

benchmark. On average, with 1/1.5/2/4MB LLC, the execution

time is reduced by 65/66/41/39%. The 2P2L generates slightly

better results than the 1P2L different set cache on multiple

benchmarks across most of the LLC variations. Compared to

the 1P2L implementation, 2P2L has the advantage of having

less miss overhead, but higher set conflicts.

VIII. SENSITIVITY EXPERIMENTS

We explore the sensitivity of the proposed scheme along

three dimensions. First, we present the sensitivity of results

to working-set size / LLC size relationships, thereby gaining

insight into the degree to which there are bandwidth benefits

from not only memory to cache transfers, but also cache to

cache transfers. We then show the sensitivity of 2P2L results

to on-chip NVM read/write asymmetry, taking into account

the larger write latency of many on-chip NVM technologies.

Finally, we evaluate sensitivity to main memory read/write

speed to explore both future scalability and gain insight

into the viability of the proposed approach if MDA-capable

memory technologies remain slower than other alternatives.

Note sensitivity study results uses 32KB L1, 256KB L2,1MB

L3 LLC system, 512x512 input set unless stated otherwise.

Working set size: In addition to the varying degrees

of cache non-residency (512x512 input matrix size with

1/1.5/2/4MB LLCs) configurations explored in Figure 12, we

also consider the sensitivity of our approach to an entirely

cache-resident working set. Fig. 13 shows our approach eval-

uated for a smaller 256x256 input, with a 2MB L2 as the

LLC. Latency is still reduced, on average. The 1P2L performs

better than the 1P1L base line with execution time reduced

by 14% on average, and 2P2L performs slightly better with

execution time reduced by 16% on average. Compared to

the non-resident case, cache resident workloads take limited

advantage of the L2 to memory bandwidth reduction, which

explains the smaller improvement. However, the bandwidth

reduction between L1 and L2 is preserved, providing better

improvements to some benchmarks.

On-chip NVM read/write asymmetry: The proposed 2P2L

scheme is not dependent on a specific NVM technology, and

possible on-chip NVM technologies are known to exhibit a

wide range of write/read latency ratios [25]. Results presented

in section VII assume symmetrical write and read latency for

the 2P2L on-chip cache. Fig. 16 compares the symmetric 2P2L

with one where writes takes 20 additional cycles equivalent

time [42] compared to reads, using a 256KB L2/ 1MB

L3 cache (cache non-resident). 2P2L with asymmetric write

latency performs slightly worse than symmetric 2P2L, with a

difference of 0.4% on average. While a longer write latency

does not appear to change the trend between the baseline

and 2P2L implementations, 2P2L may not be favorable for

technologies with very high asymmetry ratio.

Main memory speed: Among the benefits of the proposed

schemes is a reduction of transfers between cache and memory.

The extent of this benefit is affected by the main memory

speed, and Fig. 17 shows how a 1.6× faster main memory

would influence the results. This experiment allows us to

evaluate whether our approach could still be beneficial if

there was a substantial memory performance gap between

MDA and non-MDA memories, and help predict how it may

scale with memory future technologies. This evaluation uses

a 256KB L2/1MB L3 cache (cache non-resident). Similar

benefit trends are present with a faster memory, with 1P2L-fast

reducing 61% of the execution time over 1P1L-fast. Moreover,

1P2L, even with the baseline memory, outperforms 1P1L-fast

by reducing 41% of the execution time, indicating that the

approach is promising even if MDA memories remain slower

than comparable memory alternatives.

IX. RELATED WORK

Since memory technologies and organizations that enable

MDA memories/caches have already been discussed in Sec-

tions II and III, we do not repeat them here. Instead, below,

we discuss the other prior efforts related to this work in two

categories: bandwidth reduction techniques, and row-buffer

optimizations.

A. Bandwidth Reduction Techniques

Data Layout Optimizations: There have been many

prior works which optimized for the memory bandwidth by

changing the data layouts. At a high-level, all these works

proposed augmenting data layouts using either row or col-

umn stores [43]. Seshadri et al [40] identified that, though

the row/column store ensures the data accessed together are

physically co-located, the traditional DRAM interfaces for

these non-unit stride workloads still cause ”non-useful” data

to be fetched from DRAM, thereby wasting the memory

bandwidth. GS-DRAM optimized such bandwidth wastage

by proposing an advanced scatter/gather operation support

in the DRAM substrate. Though their mechanism saves the

memory bandwidth, it also requires significant changes to the

DRAM substrate to enable the scatter/gather operations unlike

our MDA memory where the column accesses are inherently

enabled by the underlying 2D memory technology.

Sparse Fetch Optimizations: Another relevant area of

work which our proposed solutions can benefit from are sparse

cache line fetch optimizations like footprint [33] and dense

footprint [44] caches. These proposals identify the useful cache

lines within a page to reduce the amount of non-useful cache

lines fetched from memory to be stored into stacked DRAM.

We can envision that our 2D memory-based tile fetch can

easily be enhanced with ideas from the footprint and dense

footprint [33], [44] caches to further alleviate the memory

bandwidth consumption.

Prefetching: The column fetch mode enabled by our

MDA memories will reduce to a stride-prefetcher [45]–[47]

in a conventional 1 dimensional memory with data laid out

appropriately. However, the stride in a column access would be

same as the size of a page, for example 4KB, and the prefetch

degree would match the cacheline size across different pages.

Depending on the column strides exhibited by the workload,

the stride can be multiples of the page size (e.g., 4KB, 8KB,

etc).

Other techniques: Memory/Cache Compression tech-

niques are another promising direction to enhance overall

memory and cache bandwidth. Various compression tech-

niques have been proposed by researchers [48]–[50], which

evaluate the trade-offs in terms of compression-ratio vs de-

compression latency. Though our proposed MDA cache and

memory naturally fetch contiguous row, column or tiled data,

these compression techniques can improve the overall band-

width and can increase the effectiveness of our MDA proposal

and hence are complementary. Texture caches [51], [52],

like 2P2L, exploit multi-dimensional tiled locality, but are

generally read-only, reduce bandwidth but have high latency

(L1 TC hit times of more than 200 cycles reported in [52])

and are not physically multi-dimensional.

B. Row buffer Optimizations

Multiple sub-row buffers: Gulur et al [53] proposed

a technique to split a row buffer into four multiple sub-

row buffers to increase the row buffer hitrate. Though their

mechanism can reduce the overall memory access latency

by increasing the row buffer hit rate for some workloads,

for applications which perform strided column accesses, their

mechanism cannot provide the desirable row-buffer coverage.

This is because the DRAM substrate employed in [53] still

warrant multiple rows to be activated unlike in our MDA

Memory where the entire column can be loaded in to the

column buffer with one operation. We implemented a multiple

row-buffer scheme and found it to have a less than 1% impact;

while such schemes are very useful for multiprogrammed

workloads, single-application, single thread scenarios are less

sensitive. An investigation of our techniques on parallel work-

loads would examine these approaches in greater detail.

Micro-Pages: Sudan et al in [54] proposed a hardware-

based remapping technique where the most frequently ac-

cessed cachelines are coalesced in to one page. Such a

coalesced page with multiple frequently accessed cache lines

aims to maximize row-buffer hit rates. Their mechanism

employs a hardware remapping structure which contains the

meta-data that remaps the original page address to the newly

coalesced page address. Though their approach is orthogonal

to MDA memories, such mechanisms can be complement our

2D memories to enhance their overall effectiveness.

X. CONCLUSIONS AND FUTURE WORK

Emerging crosspoint technologies offer new opportunities,

not only for constructing dense memories, but also in sup-

porting multidimensional access. However, capitalizing on this

opportunity requires changes in both compiler support for new

memory layouts and caches capable of connecting application

access alignment preferences to MDA memories. In this

paper, we presented a pair of logically 2-D cache designs,

one physically 1-D and easily realized with SRAM, and the

other leveraging an on-chip MDA memory. We examined the

benefits of 1P2L caching, and showed that there are substantial

improvements possible through supporting multidimensional

access, and that these benefits are amplified by enabling

existing vectorization approaches to vectorize along multiple

dimensions. Our results indicate that logically 2-D caching

using physically 1-D SRAM structures combined with vec-

torization in both row and column directions provides 72%

average reduction in execution time over a traditional cache

system interfacing with an MDA memory. We then show that

utilizing an MDA memory technology on-chip to implement

a cache that is both logically and physically 2-D, using sparse

block fetch, can provide a 65% reduction.
One interesting direction for future work would be en-

hancing the performance of 2P2L caching via iteration space

tiling [55], a compiler optimization that improves cache perfor-

mance by dividing the iteration space of a given loop nest into

smaller blocks (tiles) and reusing the data elements accessed

by each tile. In our case, the compiler can tile a loop nest such

that the tile size (in each dimension) matches the 2-D block

size used by the 2P2L cache or a desirable multiple thereof. We

expect such hardware-software collaborative tiling to generate

better results than software tiling or hardware tiling (2P2L)

alone.

REFERENCES

[1] E. Z. Zhang, H. Li, and X. Shen, “A study towards optimal data
layout for gpu computing,” in Proceedings of the 2012 ACM SIGPLAN
Workshop on Memory Systems Performance and Correctness, ser.
MSPC ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2247684.2247699

[2] M. T. Kandemir, A. N. Choudhary, J. Ramanujam, N. Shenoy, and
P. Banerjee, “Enhancing spatial locality via data layout optimizations,”
in Proceedings of the 4th International Euro-Par Conference on Parallel
Processing, ser. Euro-Par ’98. London, UK, UK: Springer-Verlag, 1998.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646663.700129

[3] S. Rubin, R. Bodı́k, and T. Chilimbi, “An efficient profile-analysis
framework for data-layout optimizations,” SIGPLAN Not., vol. 37, Jan.
2002. [Online]. Available: http://doi.acm.org/10.1145/565816.503287

[4] J. Liu, J. Kotra, W. Ding, and M. Kandemir, “Network footprint
reduction through data access and computation placement in noc-based
manycores,” in Proceedings of the 52Nd Annual Design Automation
Conference (DAC), 2015.

[5] D. Cho, S. Pasricha, I. Issenin, N. Dutt, Y. Paek, and S. Ko,
“Compiler driven data layout optimization for regular/irregular array
access patterns,” in Proceedings of the 2008 ACM SIGPLAN-SIGBED
Conference on Languages, Compilers, and Tools for Embedded
Systems, ser. LCTES ’08. New York, NY, USA: ACM, 2008. [Online].
Available: http://doi.acm.org/10.1145/1375657.1375664

[6] Y. Zhang, W. Ding, M. Kandemir, J. Liu, and O. Jang, “A
data layout optimization framework for nuca-based multicores,” in
Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-44. New York, NY, USA: ACM,
2011. [Online]. Available: http://doi.acm.org/10.1145/2155620.2155677

[7] A. Aziz, N. Jao, S. Datta, and S. K. Gupta, “Analysis of functional
oxide based selectors for cross-point memories,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 63, 2016.

[8] S. George, K. Ma, A. Aziz, X. Li, A. Khan, S. Salahuddin, M.-F. Chang,
S. Datta, J. Sampson, S. Gupta, and V. Narayanan, “Nonvolatile memory
design based on ferroelectric fets,” in Proceedings of the 53rd Annual
Design Automation Conference. ACM, 2016.

[9] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in Proceedings of the 43rd
International Symposium on Computer Architecture. IEEE Press, 2016.

[10] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
in Proceedings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 2016.

[11] M. Imani, S. Gupta, A. Arredondo, and T. Rosing, “Efficient query
processing in crossbar memory,” in 2017 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), July 2017.

[12] C. J. Lin, S. H. Kang, Y. J. Wang, K. Lee, X. Zhu, W. C. Chen, X. Li,
W. N. Hsu, Y. C. Kao, M. T. Liu, W. C. Chen, Y. Lin, M. Nowak, N. Yu,
and L. Tran, “45nm low power cmos logic compatible embedded stt
mram utilizing a reverse-connection 1t/1mtj cell,” in Electron Devices
Meeting (IEDM), 2009 IEEE International. IEEE, 2009.

[13] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
ACM SIGARCH Computer Architecture News, vol. 37, 2009.

[14] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog,
R. Ledwa, C. Sichert, V. Rzehak, P. Thanigai, and B. O. Eversmann, “An
82μa/mhz microcontroller with embedded feram for energy-harvesting
applications,” in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2011 IEEE International. IEEE, 2011.

[15] T. Y. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. K. Lee, G. Balakrishnan,
G. Yee, H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-
Shamma, C. Y. Chen, M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai,
D. Masiwal, M. Matsumoto, A. Nigam, A. Pai, J. Pakhale, C. H. Siau,
X. Wu, R. Yin, L. Peng, J. Y. Kang, S. Huynh, H. Wang, N. Nagel,
Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto,
T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, T. Hara, H. Inoue,
L. Fasoli, M. Mofidi, R. Shrivastava, and K. Quader, “A 130.7-mm 2-
layer 32-gb reram memory device in 24-nm technology,” IEEE Journal
of Solid-State Circuits, vol. 49, 2014.

[16] W. Zhao, S. Chaudhuri, C. Accoto, J.-O. Klein, C. Chappert, and
P. Mazoyer, “Cross-point architecture for spin-transfer torque magnetic
random access memory,” IEEE Transactions on Nanotechnology, vol. 11,
2012.

[17] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, Y. Hayakawa,
K. Tsuji, S. Yoneda, A. Himeno, K. Shimakawa, T. Takagi, T. Mikawa,
and K. Aono, “An 8 mb multi-layered cross-point reram macro with 443
mb/s write throughput,” IEEE Journal of Solid-State Circuits, vol. 48,
2013.

[18] D. Kau, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb,
J. Strand, A. Diaz, N. Leung, J. Wu, S. Lee, T. Langtry, K. wei Chang,
C. Papagianni, J. Lee, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro,
and G. Spadini, “A stackable cross point phase change memory,” in
Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE,
2009.

[19] K. Bong, S. Choi, C. Kim, S. Kang, Y. Kim, and H.-J. Yoo, “14.6 a
0.62 mw ultra-low-power convolutional-neural-network face-recognition
processor and a cis integrated with always-on haar-like face detector,”
in Solid-State Circuits Conference (ISSCC), 2017 IEEE International.
IEEE, 2017.

[20] R. Naous, M. Al-Shedivat, E. Neftci, G. Cauwenberghs, and K. N.
Salama, “Stochastic synaptic plasticity with memristor crossbar arrays,”
May 2016.

[21] D. Kuzum, R. G. Jeyasingh, B. Lee, and H.-S. P. Wong, “Nanoelectronic
programmable synapses based on phase change materials for brain-
inspired computing,” Nano letters, vol. 12, 2011.

[22] “Intel launches optane memory m2 cache ssds for client market,”
https://www.anandtech.com/show/11227/intel-launches-optane-memory-
m2-cache-ssds-for-client-market, accessed: 2017-11-11.

[23] H. Noguchi, K. Ikegami, N. Shimomura, T. Tetsufumi, J. Ito, and
S. Fujita, “Highly reliable and low-power nonvolatile cache memory
with advanced perpendicular stt-mram for high-performance cpu,” in
2014 Symposium on VLSI Circuits Digest of Technical Papers, June
2014.

[24] J. B. Kotra, M. Arjomand, D. Guttman, M. T. Kandemir, and C. R.
Das, “Re-NUCA: A practical nuca architecture for reram based last-level
caches,” in Proceedings of IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2016.

[25] H. Y. Cheng, J. Zhao, J. Sampson, M. J. Irwin, A. Jaleel, Y. Lu,
and Y. Xie, “Lap: Loop-block aware inclusion properties for energy-
efficient asymmetric last level caches,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), June 2016.

[26] “Spin-transfer torque mram technology,” https://www.everspin.com/spin-
transfer-torque-mram-technology, accessed: 2017-11-11.

[27] J. Song, J. Woo, A. Prakash, D. Lee, and H. Hwang, “Threshold selector
with high selectivity and steep slope for cross-point memory array,”
IEEE Electron Device Letters, vol. 36, 2015.

[28] Z. Wang, D. A. Jimnez, C. Xu, G. Sun, and Y. Xie, “Adaptive placement
and migration policy for an stt-ram-based hybrid cache,” in 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA), Feb 2014.

[29] S. George, X. Li, M. J. Liao, K. Ma, S. Srinivasa, K. Mohan, A. Aziz,
J. Sampson, S. K. Gupta, and V. Narayanan, “Symmetric 2-d-memory
access to multidimensional data,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 26, June 2018.

[30] C. P. Lo, W. Z. Lin, W. Y. Lin, H. T. Lin, T. H. Yang, Y. N. Chiang,
Y. C. King, C. J. Lin, Y. D. Chih, T. Y. J. Chang, M. S. Ho, and M. F.
Chang, “Embedded 2mb reram macro with 2.6 ns read access time using
dynamic-trip-point-mismatch sampling current-mode sense amplifier for
ioe applications,” in VLSI Circuits, 2017 Symposium on. IEEE, 2017.

[31] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking dram design and organization
for energy-constrained multi-cores,” in ACM SIGARCH Computer Ar-
chitecture News, vol. 38, no. 3. ACM, 2010.

[32] J. B. Kotra, N. Shahidi, Z. A. Chishti, and M. T. Kandemir, “Hardware-
software co-design to mitigate dram refresh overheads: A case for
refresh-aware process scheduling,” in Proceedings of 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[33] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers: Hit ratio, latency, or bandwidth? have it all with footprint
cache,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture, ser. ISCA ’13. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2485922.2485957

[34] G. Rivera and C.-W. Tseng, “Data transformations for eliminating
conflict misses,” SIGPLAN Not., vol. 33, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/277652.277661

[35] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved
data for simd,” in Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI
’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1133981.1133997

[36] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
database systems,” Proceedings of the VLDB Endowment, vol. 2, 2009.

[37] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[38] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-)volatile memory systems,” IEEE
Computer Architecture Letters, vol. 14, July 2015.

[39] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 1999.

[40] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Gather-scatter dram: In-dram address
translation to improve the spatial locality of non-unit strided accesses,” in
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO, 2015.

[41] S. H. Jo, T. Kumar, S. Narayanan, and H. Nazarian, “Cross-point
resistive ram based on field-assisted superlinear threshold selector,”
IEEE Transactions on Electron Devices, vol. 62, 2015.

[42] S. Motaman, S. Ghosh, and N. Rathi, “Impact of process-variations in
sttram and adaptive boosting for robustness,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition,
ser. DATE ’15. San Jose, CA, USA: EDA Consortium, 2015. [Online].
Available: http://dl.acm.org/citation.cfm?id=2755753.2757144

[43] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik, “C-store: A column-oriented dbms,” in Proceedings of
the 31st International Conference on Very Large Data Bases (VLDB),
2005.

[44] S. Shin, S. Kim, and Y. Solihin, “Dense footprint cache: Capacity-
efficient die-stacked dram last level cache,” in Proceedings of the 4th
Annual International Symposium on Memory Systems (MEMSYS), 2016.

[45] P. Yedlapalli, J. Kotra, E. Kultursay, M. Kandemir, C. R. Das, and
A. Sivasubramaniam, “Meeting midway: Improving cmp performance
with memory-side prefetching,” in Proceedings of the 22nd Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2013.

[46] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in Proceedings of the 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2007.

[47] “Optimizing application performance on intel core microarchitecture
using hardware-implemented prefetchers,” https://software.intel.com/en-
us/articles/optimizing-application-performance-on-intel-coret-
microarchitecture-using-hardware-implemented-prefetchers, accessed:
2017-11-11.

[48] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly compressed pages: A
low-complexity, low-latency main memory compression framework,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2013.

[49] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2012.

[50] J. Gaur, A. R. Alameldeen, and S. Subramoney, “Base-victim compres-
sion: An opportunistic cache compression architecture,” in Proceedings
of the 43rd International Symposium on Computer Architecture (ISCA),
2016.

[51] Z. S. Hakura and A. Gupta, “The design and analysis of a
cache architecture for texture mapping,” in Proceedings of the
24th Annual International Symposium on Computer Architecture, ser.
ISCA ’97. New York, NY, USA: ACM, 1997. [Online]. Available:
http://doi.acm.org/10.1145/264107.264152

[52] H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in 2010 IEEE International Symposium on
Performance Analysis of Systems Software (ISPASS), March 2010.

[53] N. D. Gulur, R. Manikantan, M. Mehendale, and R. Govindarajan,
“Multiple sub-row buffers in dram: Unlocking performance and energy
improvement opportunities,” in Proceedings of the 26th ACM Interna-
tional Conference on Supercomputing (ICS), 2012.

[54] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian,
and A. Davis, “Micro-pages: Increasing dram efficiency with locality-
aware data placement,” in Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2010.

[55] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” SIGPLAN Not., vol. 26, Apr.
1991. [Online]. Available: http://doi.acm.org/10.1145/106973.106981

