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Abstract—Most modern processors employ variable length,
Complex Instruction Set Computing (CISC) instructions to
reduce instruction fetch energy cost and bandwidth require-
ments. High throughput decoding of CISC instructions requires
energy hungry logic for instruction identification. Efficient CISC
instruction execution motivated mapping them to fixed length
micro-operations (also known as uops). To reduce costly decoder
activity, commercial CISC processors employ a micro-operations
cache (uop cache) that caches uop sequences, bypassing the
decoder. Uop cache’s benefits are: (1) shorter pipeline length
for uops dispatched by the uop cache, (2) lower decoder energy
consumption, and, (3) earlier detection of mispredicted branches.

In this paper, we observe that a uop cache can be heavily
fragmented under certain uop cache entry construction rules.
Based on this observation, we propose two complementary
optimizations to address fragmentation: Cache Line boundary
AgnoStic uoP cache design (CLASP) and uop cache compaction.
CLASP addresses the internal fragmentation caused by short, se-
quential uop sequences, terminated at the I-cache line boundary,
by fusing them into a single uop cache entry. Compaction further
lowers fragmentation by placing to the same uop cache entry
temporally correlated, non-sequential uop sequences mapped to
the same uop cache set. Our experiments on a x86 simulator
using a wide variety of benchmarks show that CLASP improves
performance up to 5.6% and lowers decoder power up to 19.63%.
When CLASP is coupled with the most aggressive compaction
variant, performance improves by up to 12.8% and decoder
power savings are up to 31.53%.

Index Terms—Micro-operations Cache, CPU front-end, CISC,
X86, Micro-ops.

I. INTRODUCTION

Most commercial processors achieve high performance by
decoupling execution from instruction fetch [50]. Maintaining
high execution bandwidth requires ample supply of instruc-
tions from the processor’s front-end. High bandwidth, low
latency decoders play a critical role in enabling high dispatch
bandwidth of instructions to the back-end. However, achieving
high dispatch bandwidth requires high throughput instruction
decoding which is challenging due to variable length of
x86 instructions and their corresponding operands [32]. As a
result, x86 instruction decoding is a multi-cycle operation that
serializes the identification and decoding of the subsequent
instruction and thus falls on the critical path. To reduce the
serialization latency, x86 processors employ multiple decoders
operating in parallel which increases the decoder power.

Traditional x86 instructions are translated into fixed length
uops during the decode stage. These fixed length uops make
issue and execution logic simpler [5, 51]1. These uops are

1These uops resemble decoded RISC instructions, i.e. consist of pipeline
control signals of a RISC-like operation.

hidden from the Instruction Set Architecture (ISA) to ensure
backward compatibility. Such an ISA level abstraction enables
processor vendors to implement an x86 instruction differently
based on their custom micro-architectures. However, this ad-
ditional step of translating each variable length instruction in
to fixed length uops incurs high decode latency and consumes
more power thereby affecting the instruction dispatch band-
width to the back-end [5, 34, 22].

To reduce decode latency and energy consumption of x86
decoders, researchers have proposed caching the decoded uops
in a separate hardware structure called uop cache2 [51, 36]. An
uop cache stores recently decoded uops anticipating temporal
reuse [17, 51]. The higher the percentage of uops fetched from
the uop cache, the higher the efficiency, because:
• The uop cache fetched uops can bypass the decoder thereby

saving the decoder latency from the critical pipeline path.
• The uop cache fetched uops containing branches can ben-

efit from early detection of mispredicted branches thereby
lowering the branch misprediction latency.

• The complex x86 decoders can be shut down when uops
are fetched from the uop cache resulting in power savings.
In this paper, we propose various simple and practical

optimizations for the uop cache that improves its effectiveness
without increasing its overall area. More specifically, this paper
makes the following contributions:
• We note that in a decoupled front end processor, the fetch

unit (called prediction window) and the uop cache entry
may differ in the way they are constructed to satisfy the
design constraints of each block (OpCache vs Fetcher). That
may lead to uop cache fragmentation, resulting in severely
under-utilized capacity and thus lower uop cache hit rate.
Based on this observation, we propose two optimizations
that improve overall uop cache utilization.

• The first optimization, CLASP, merges uop cache entries
mapped to sequential PWs, into the same uop cache line,
improving performance by up to 5.6% via higher uop cache
utilization.

• The second optimization is motivated by the observation
that uop cache entries are often smaller than each uop
cache line, due to predicted taken branches and other
constraints imposed by the uop cache entry build logic. To
alleviate such fragmentation, we propose different methods
for merging uop cache entries from different, non-sequential

2Note that Opcache, uop cache and OC all refer to a micro-operations cache
and are used interchangeably in this paper.
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PWs in the same uop cache line. We evaluate three novel
Compaction variants, viz., (a) Replacement policy Aware
Compaction (RAC), (b) Prediction Window (PW) Aware
(PW-Aware) Compaction (PWAC), and (c) Forced Predic-
tion Window (PW) Aware Compaction (F-PWAC). F-PWAC
encompassing CLASP and the other compaction techniques
improves the performance by up to 12.8% over the baseline
uop cache design.
The rest of this paper is organized as follows. In Section

II, we describe the background of an x86 processor front-end
covering the intricacies of uop cache management. In Section
III, we demonstrate the performance and power benefits of
an uop cache in a modern x86 processor design. We present
our methodology in Section IV before presenting our opti-
mizations, viz., CLASP and Compaction in Section V. The
experimental evaluation is covered in Section VI, while related
work is covered in Section VII before concluding in Section
VIII.

II. BACKGROUND

A. Modern x86 processor front-end

Figure 1 shows a typical x86 processor front-end. As
depicted in the figure, there are three hardware structures: (a)
Instruction cache (I-cache), (b) Uop cache [51, 34], and, (c)
loop cache (buffer) [5, 21, 19, 41, 52] that can feed the back-
end engine with uops. The I-cache stores x86 instructions,
whereas the uop cache and loop cache hold already decoded
uops. Hence, instructions fetched from the I-cache need to be
decoded while uops fetched from either the uop cache or the
loop cache bypass the instruction decoders thereby saving the
decoder pipeline latency and energy. The loop cache stores
uops found in loops small enough to fit while the remaining
uops are stored in the uop cache. Consequently, any techniques
that increase the percentage of uops fed to the back-end from
the uop cache or loop cache improves performance and energy-
efficiency.

The front-end branch predictors generate Prediction Win-
dows in a decoupled front end architecture. Each Prediction
Window (PW) dictates a range of consecutive x86 instructions
(marked by start and end address) that are predicted to be
executed by the branch predictor. PW addresses are sent to
the Icache, uop cache and loop cache and in the case of a hit
uops are dispatched to the back end from the most energy-
efficient source. A PW generated by the branch predictor can
start anywhere in an I-cache line and can terminate at the end
of an I-cache line or anywhere in the middle of an Icache line
if a predicted taken branch or a predefined number of predicted
not-taken branches have been encountered. Figures 2(a), 2(b),
2(c) present various examples demonstrating where a PW can
start and end with respect to an I-cache line boundary. The
PW in Figure 2(a) starts at the beginning and terminates at
the end of an I-cache line. The PW in Figure 2(b) starts in
the middle and terminates at the end of the I-cache line. This
happens when the previous PW included a predicted taken
branch whose target address falls in the middle of an I-cache
line. The PW is terminated at the end of the I-cache line. The
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Fig. 1: x86 Front-end (example)
PW in Figure 2(c) starts in the middle and ends before the end
of the I-cache line due to a predicted taken branch instruction
(ins-3).

B. Micro-operations Cache (Uop Cache)

As depicted in Figure 1, the primary source of uops that
bypass the complex x86 decoders is the uop cache. In this
subsection, we discuss the uop format, the uop cache entry
construction rules and the uop cache management including
the uop cache lookup and fill logic.

1) Uop Format: Uop cache holds uop sequences. Uops
demand a fixed format to avoid variable length decoding
logic, however the uop format remains highly implementation
dependent and may change across different processor gener-
ations. On one side of the spectrum, uops can be encoded
as a fixed length CISC instructions, saving uop cache area at
the expense of decoding logic required to identify the fields
needed to rename, issue and execute each uop. On the other
end, uops can be encoded as partially decoded, fixed length
RISC operations (similar to that in [35]), to ease decoding
logic complexity at the expense of additional metadata storage.
We assume each uop to occupy 56-bits in our studies (Table I).
Note that optimal uop encoding is implementation dependent
and is out of the scope of this paper.

2) Uop Cache Entries: In the baseline design, an uop cache
line comprises of a single uop cache entry. In this paper,
an uop cache line represents the physical storage while the
uop cache entry represents the set of uops stored in the uop
cache line. Given that a PW drives the creation of uop cache
entries, most of the PW terminating conditions apply to uop
cache entry creation (except for the one breaking a PW due to
maximum number of predicted not-taken branches). However,
due to the fixed size uop cache line, each uop cache entry
has additional terminating conditions: a maximum number
of uops and a maximum number of immediate/displacement
fields. Each uop cache entry also includes metadata that enable
identification of these fields when reading out uops on an uop
cache hit [17, 1]. Such metadata include the number of uops
and imm/disp fields per entry. In order to simplify decoding
logic that identifies uops and imm/disp fields, we place all
uops on the left side and all imm/disp fields on the right side
of each uop cache line. There may be empty space between
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Fig. 2: PWs depicted with respect to I-cache lines. (T/NT-br: Taken/Not Taken branch instructions)

them. Summarizing the uop cache entry terminating conditions
include: (a) I-cache line boundary, (b) predicted taken branch,
(c) maximum number of uops allowed per uop cache entry, (d)
maximum number of immediate/displacement fields allowed
per uop cache entry, and (e) maximum number of micro-coded
uops allowed per uop cache entry [17].

By terminating an uop cache entry at the I-cache line
boundary, only uops corresponding to instructions from the
same I-cache line are stored in a single uop cache entry.
Similarly, terminating an uop cache entry due to a predicted
taken branch prevents caching the same uops in multiple
uop cache entries (like a trace cache implementation would
allow). In order to invalidate those uops we must either
search or flush the entire uop cache. Prior trace-cache designs
required flushing of the entire trace cache for self-modifying
code invalidations [4]. Both of these constraints simplify uop
cache probing and invalidation logic. Such logic supports self-
modifying code and inclusion of the uop cache with either the
I-cache or the L2 cache.

Please note that under the above termination conditions, an
uop cache entry can store uops corresponding to multiple PWs
because it can include uops from any number of sequential
PWs. Alternatively, a PW can span uops across two uop cache
entries because of the limits on the number of uops per uop
cache entry due to fixed uop cache line size. In this work, we
assume a baseline uop cache that can contain a maximum of
2K uops [17]. The uops decoded by the x86 decoder are stored
in an accumulation buffer (Figure 1) until one of the above
termination conditions is met. Once a termination condition is
met, the group of uops forming the uop cache entry is written
in to the uop cache.

3) Uop Cache Operations (lookup/fills): Similar to tradi-
tional caches, the uop cache is organized as a set-associative
structure indexed by the starting physical address of the PW.
Unlike traditional caches, each uop cache line stores uops and
their associated metadata. Even though an uop cache physical
line has a fixed size, the uop cache entries may not occupy
all available bytes and the number of uops per uop cache line
varies. The uop cache is byte addressable. Therefore, an uop
cache entry tag and set index is generated by the entire PW
starting physical address. If an uop cache lookup incurs a hit,
then the entire uop cache entry is sent to the micro-op queue
(Figure 1) in a single clock cycle. However, in scenarios where
a PW spans across two uop cache entries, the uop cache entries
are dispatched in consecutive clocks. Upon an uop cache miss,
x86 instructions are fetched from the I-cache, decoded and fed
to the uop queue as depicted in Figure 1. The decoded uops
from the I-cache path are also written to the uop cache via the

accumulation buffer.
4) Why are trace-based uop caches impractical?: As men-

tioned in Section II-B2, trace cache builds uop cache entries
beyond a taken branch. For example, with a trace-cache based
implementation, a basic block “B” can be part of multiple uop
cache entries (traces) such as “CB”, “DB”, “EB” etc, if the
branches in blocks “C”, “D” and “E” jump to “B”. Aside from
the wasted uop cache space occupied by the multiple instances
of “B”, invalidating “B” by a Self-Modifying Code (SMC)
access complicate the uop cache design. This is because “B”
can be in any number of uop cache entries across different
uop cache sets. Thus, the SMC invalidating probe has to either
search the entire uop cache or simply flush it to ensure “B”
is invalidated. Several runtime languages like Java employ
dynamic compilers which can modify instructions at run-time
using SMC support.

Additional overheads include power and complexity because
trace caches demand multi-branch prediction mechanisms to
predict beyond a taken branch and achieve high fetch band-
width. Such overheads have motivated researchers to adopt uop
cache designs limited to basic block-based uop cache entry
organizations [51] as also evidenced in modern commercial
x86 processors [3, 6]. In our work, we model a baseline uop
cache that is a limited and practical form of trace cache,
where entries are built beyond predicted non-taken branches
and terminate upon encountering a predicted taken branch.
Consequently our baseline design limits uop cache entry
redundancy and facilitates SMC invalidations by allowing the
basic block “B” of the previous example to be installed only
within the same uop cache set. This can occur in two scenarios:
(a) Uop cache entry starting from “B” if reached by a predicted
taken branch or (b) Uop cache entry starting with “AB” if
control flow falls through from “A” to “B”. Both instances
of “B” can exist in the same uop cache set if the number of
uop cache and I-cache sets match (assumption in baseline Uop
cache). Both instances of “B” can be invalidated in one tag
lookup by a single SMC invalidating probe to the I-cache line
normalized address where both “A” and “B” are mapped to.

III. MOTIVATION

In this section, we demonstrate the importance of uop cache
in the design of the modern x86 processor. Please refer to
Table I for our evaluation setup and Table II for our evaluated
workloads.

A. Performance and decoder power impact

As discussed in Sections I and II, uop cache fetched
uops directly bypass the x86 decoder thereby resulting in
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Fig. 3: Normalized UPC and decoder power results with increase in uop cache capacity.
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shorter pipeline latencies and lower energy consumption.
Figure 3 shows the normalized UPC (uops committed Per
Cycle) improvement (bar graph) on the primary Y-axis and
the corresponding normalized x86 decoder power (line graph)
on the secondary Y-axis as we increase the uops residing in
uop cache from 2K to 64K. As can be observed from Figure
3, an uop cache with 64K uops improves the performance by
11.2% with a maximum gain of 26.7% for 502.gcc r (bm-
cc). This performance improvement correlates directly to the
higher number of uops dispatched to the back-end from the
uop cache. Correspondingly, x86 decoder power consumption
reduces by 39.2%.

Figure 4 shows the improvement in uop cache fetch ratio
with a larger uop cache. The uop cache (OC) fetch ratio is
calculated as the ratio of uops dispatched from the uop cache
to the total uops dispatched. The total uops dispatched include
those from the uop cache as well as the I-cache. The average
improvement in uop cache fetch ratio is 69.7% for a 64K uop
cache over one with 2K uops baseline. For Sparkbench (sp)
uop cache containing 64K uops improves the uop cache hitrate
by 172.7% over an uop cache with 2K uops.

B. Front-end dispatch bandwidth impact

Figure 4 (orange line graph) on secondary Y-axis shows the
improvement in average dispatch bandwidth as we increase
the uops residing in uop cache from 2K to 64K. The dispatch
bandwidth is defined as the average number of uops fed to the
back-end per cycle. An uop cache hosting 64K uops dispatches
13.01% more uops per cycle to the back-end compared to

a baseline uop cache having 2K uops. This improvement is
highest for 502.gcc r (bm-cc) application which dispatches
26.6% more uops per cycle. The improvement in dispatch
bandwidth is due to increased number of uops bypassing
the decoder and avoiding pipeline bubbles (stalls) due to the
complexities in decoding of x86 instructions.
C. Branch misprediction penalty impact

Figure 4 (green line graph) on secondary Y-axis shows how
the average branch misprediction latency changes with the
uop cache size. The branch misprediction penalty is measured
as the number of elapsed cycles between branch fetch cycle
and branch misprediction detection and pipeline redirection.
The average branch misprediction penalty drops by 10.31%
on an average with larger uop cache sizes. This reduction
is as high as 16.54% for the 531.deepsjeng r (bm-ds). The
bigger uop cache enables more uops to bypass the x86 decoder.
Consequently, more mispredicted branches can be detected
earlier in the pipeline thereby reducing the average branch
misprediction penalty. Due to earlier detection of mispredicted
branches, less instructions are incorrectly fetched and executed
resulting in additional performance and energy savings. Please
note that the reduction in branch misprediction penalty with
increased uop cache utilization is a second-order effect due to
the reduced pipeline depth because of more uop cache hits.
D. Sources of fragmentation in uop caches

Unlike an I-cache line whose capacity is fully utilized
with instruction bytes, the uop cache can not fully utilize
its physical lines because of the terminating conditions that
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Fig. 5: Uop cache entries size distribution.
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predicted taken branch.
govern the construction of uop cache entries. Figure 5 shows
the distribution of uop cache entry size in bytes. On an average,
72% of the uop cache entries installed in the uop cache are
less than 40 bytes in size assuming a 56-bit uop size and a
64B uop cache line.

Figure 6 shows that 49.4% of the uop cache entries are
terminated by a predicted taken branch, with the maximum
being 67.17% for 541.leela r (bm-lla) from the SPEC CPU R©

2017 suite.
Another terminating condition is the I-cache line boundary

as explained in Section II-B2. We notice that this constraint
severely reduces the front-end dispatch bandwidth and in-
creases Ocache fragmentation. Figure 7 depicts uop cache
entries where entries-1, 3 are terminated because of crossing
I-cache line (64-Byte) boundaries, while uop cache entries-
2 and 4 are terminated by other conditions described in
Section II-B2. Uop cache entries-1 and 3 are terminated even
though the control flow between entries-1 and 2 (and similarly
between entries-3 and 4) is sequential; there are no predicted
taken branch instructions. Since uop cache entries-1 and 2
(and similarly entries-3 and 4) correspond to contiguous I-
cache lines, they occupy two different lines in uop cache sets,
set-3 and set-0, respectively.

As explained in Section II-A, a PW can start anywhere
within an I-cache line (Figures 2(a), 2(b) and 2(c)). Thus,
depending on where the PWs corresponding to entries-1, 3
in Figure 7 start, these uop cache entries can include only a
few uops because they are terminated when crossing the I-
cache line boundary. I-cache line boundary termination can
also result in smaller entries-2 and 4, especially if they are
terminated by a predicted taken branch. As we can observe, I-
cache line boundary termination can split sequential code into
smaller uop cache entries, which are mapped to more physical
lines in different uop cache sets.

Overall, smaller uop cache entries hurt performance and
energy efficiency for the following reasons:
• Increased fragmentation caused by smaller uop cache entries

leave uop cache space under-utilized which lowers hit rate.

Way-0 Way-1 Way-2 Way-3

Set-0

Set-1

Set-2

OC Entry-1

OC Entry-3 OC Entry-4

Uop Cache

(b)

Set-3

OC Entry-2

OC Entry-
1

Set-A Set-(A+1)

(a)

OC Entry-
2

Fig. 7: Fragmented uop cache containing entries that are
terminated by I-cache line boundaries (depiction).
• Reduced front-end dispatch bandwidth when hitting on

smaller uop cache entries.
Summarizing the results from Sections III-A, III-B, and,

III-C, we demonstrate that uop caches are instrumental in im-
proving performance via higher front-end dispatch bandwidth
and lower average branch misprediction latency and reducing
dynamic power via lower use of x86 decoders. In Section
III-D, we show that installed uop cache entries are smaller and
severely fragment the uop cache when we terminate uop cache
entries crossing the I-cache line boundary, negatively effecting
front-end bandwidth and therefore performance. To that end,
we present two optimizations CLASP and Compaction in
Section V that address various sources of fragmentation.

3 GHz, x86 CISC-based ISA
Core Dispatch Width: 6 instructions

Retire Width: 8 instructions
Issue Queue: 160 entries
Decoder Latency: 3 cycles
Decoder Bandwidth: 4 insts/cycle
32-sets, 8-way associative
True LRU replacement policy
Bandwidth: 8 uops/cycle
Uop Size: 56-bits; ROB: 256
Uop Queue Size: 120 uops

Uop Cache Max uops per uop cache entry: 8
Imm/disp operand size: 32 bits
Max imm/disp per OC entry: 4
Max U-coded insts per OC entry: 4

Branch Tage Branch Predictor [49]
Predictor 2 branches per BTB entry; 2-level BTBs

32KB, 8-way associative,
64Bytes cache line; True LRU Replacement

L1-I branch prediction directed pretcher
Bandwidth: 32 Bytes/cycle
32KB, 4-way associative,

L1-D 64Bytes; True LRU replacement policy
512KB (private), 8-way associative,

L2 Cache 64Bytes cache line, unified I/D cache
2MB (shared), 16-way associative,

L3 Cache 64Bytes cache line, RRIP repl. policy
Off-chip DRAM 2400 MHz

TABLE I: Simulated Processor Configuration.
IV. METHODOLOGY

A. Experimental Setup

We used a trace-based in-house cycle-accurate simulator to
evaluate the performance of our proposed uop cache optimiza-
tions. Our simulator correlated to synthesized RTL, models a
x86 out-of-order processor with a three-level cache hierarchy.
Our simulator is correlated with a commercial x86 industry
grade processor with over 3000 traces and has an R2 value
(correlation coefficient) of 0.98 with silicon and RTL. We
accurately model various aspects of out-of-order processor
including AVX-128/256 and 512-bits along with the x86
micro-code. Table I summarizes the architectural details of our
simulated processor. The L1 I-cache employs branch directed
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Suite Application Input Branch
MPKI

Cloud

Logistic Regression [13] 10.37
(log regr)

SparkBench[12] Triangle Count (tr cnt) 7.9
(sp) Page Rank (pg rnk) 9.27

Nutch [8] Search Indexing 5.12
Mahout [7] Bayes Classification 9.05

Redis [9] redis Benchmarked using 1.01
memtier [10]

SPECjbb 2015- jvm Inputs include point-of-sale 2.15
Composite [15] requests, online purchases,

and data-mining operations

SPEC CPU R©

500.perlbench r reference input 2.07
(bm-pb)

502.gcc r reference input 5.48
(bm-cc)

2017 [14] 525.x264 5 reference input 1.31
(bm-x64)

531.deepsjeng r reference input 4.5
(bm-ds)

541.leela r reference input 11.51
(bm-lla)
557.xz r reference input 11.61
(bm-z)

TABLE II: Workloads Evaluated.
prefetching of instructions, while each level in the data cache
hierarchy employ different prefetchers. The decoder power
results reported are collected using Synopsys PrimeTime PX
(PTPX) methodology [16] and is estimated by running tests on
synthesized RTL in prior commercial core designs and using
PTPX tool chain.

B. Workloads

We experimented with a wide variety of suites covering
Cloud, Server and SPEC CPU R© 2017 suites. From the Cloud
domain, we used Sparkbench [12], Mahout [7] and Nutch [8]
applications, while the Server suite included SPECjbb R©2015-
Composite [15] and redis [9]. Finally, we also included the
SPEC CPU R© 2017 [14] benchmarks. These workloads ex-
hibit significant under-utilization of micro-op cache due to
fragmentation. The Branch MPKI shown in Table II indicates
the branch misses per kilo instructions encountered in our
baseline. The traces are collected using SimNow [11] which
includes full-system/operating systems activity and the bina-
ries are compiled using gcc with -O2 flag. The workloads
along with inputs used in the evaluation are summarized in
Table II. The trace snippets simulated capture the original
program behavior using the methodology described in [40].

V. OPTIMIZED UOP CACHE DESIGN
A. Cache Line boundary AgnoStic uoP cache design (CLASP)

In Section III-D, we demonstrated with an example how
the uop cache entries terminated by I-cache line boundary
crossing are mapped into different uop cache sets ‘A’ and
‘A+1’ as depicted in Figure 7-(b). As explained before, uop
cache entries are terminated when crossing I-cache line bound-
aries, independent of the actual control flow. This is done
conservatively to avoid building traces of uops that might
warrant flushing of the entire uop cache upon invalidation.

I-cache line boundary termination is conservative and results
in smaller uop cache entries, causing lower performance and
higher energy consumption. In our Cache Line boundary
AgnoStic design (CLASP), we relax this constraint and allow

Way-0 Way-1 Way-2 Way-3

Set-0

Set-1

Set-2

Uop Cache

(a) (b)

Set-3

CLASP OC Entry-3

CLASP OC Entry-1

Set-A Set-(A+1)

OC Entry

Fig. 8: CLASP design.

building uop cache entries beyond an I-cache line boundary,
only when the control flow is sequential when crossing the
I-cache line boundary.

Figure 8 shows how CLASP enables forming larger OC
entries compared to the ones in Figure 7. OC entry-1 (entry-3)
in Figure 8-(b) comprises of uops from entries-1 and 2 (entries-
3 and 4) in Figure 7-(b) and occupies only one uop cache set
(Set-3, Set-1). Since the meta-data for each uop cache entry
requires keeping the start and end address covered by that
entry, we can reuse the baseline uop cache lookup mechanism
with the start address of the uop cache entry to index the
correct set. However in CLASP, unlike the baseline design, an
entire OC entry-1 (comprising of uops from entry-1 and entry-
2) is now dispatched to the back-end in a single cycle, thereby
improving dispatch bandwidth. In addition, the fetch uop cache
logic, that determines the next fetch address, will not change
with CLASP because the next fetch address calculation in the
baseline also uses the end address provided by the uop cache
entry.

The major challenge that arises with CLASP is to effi-
ciently probe and invalidate uop cache entries because they
are remapped to a different uop cache set without flushing
the entire uop cache. We achieve that by merging only uop
cache entries mapped to sequential control flow with CLASP.
This guarantees that the split uop cache entries are mapped
to consecutive uop cache sets. In other words, CLASP only
remaps uop cache entries mapped to consecutive uop cache
sets. The number of sets to be probed is a function of the
number of contiguous I-cache lines whose uops map to a
single uop cache entry. If we only allow uops corresponding
to instructions from two contiguous I-cache lines to be part
of a single uop cache entry, the number of possible uop
cache sets that must be searched for invalidation is two.
Accessing two consecutive uop cache sets in a single cycle
can be achieved by mapping consecutive sets to different uop
cache banks. For example, in Figure 8-(b), which depicts a
CLASP implementation supporting a maximum of two I-cache
lines, searching Sets-‘A’ and ‘A-1’ for an instruction address
that originally correspond to Set-‘A’ should suffice to support
probing.

CLASP enables forming larger uop cache entries that better
utilize the available uop cache space and reduces fragmen-
tation while boosting front-end dispatch bandwidth. Figure 9
shows the percentage of uop cache entries that span the I-cache
line boundaries. CLASP improves the uop cache fetch ratio
on an average by 11.6%, while the maximum improvement
is as high as 24.9% for 502.gcc r (bm-cc) from the SPEC
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Fig. 9: Uop cache entries spanning I-cache line boundaries
after relaxing the I-cache line boundary termination constraint.

CPU R© 2017 suite as will be shown in Section VI-A along
with the other results that include: improvements in perfor-
mance, decoder power savings, average dispatch bandwidth
and reduction in average branch misprediction penalty.

B. Compaction

CLASP addresses the fragmentation caused by the I-cache
line boundary termination by allowing uops mapped to sequen-
tial code to participate in the same uop cache entry (while
still allowing one uop cache entry per uop cache line). The
remaining termination conditions still lead to smaller uop
cache entries severely fragmenting the uop cache space. To
address the uop cache fragmentation due to those constraints,
we propose Compaction which opportunistically tries to place
more than one uop cache entry in a single uop cache line
depending on the available free space.

Figure 10 demonstrates the idea of Compaction of two uop
cache entries in a single uop cache line. In the baseline OC
entries - 1, 2 occupy two lines, line-1 and line-2, even though
there is enough space to accommodate both entries in a single
uop cache line. Compacting more than one uop cache entry
per line improves uop cache space utilization and results in
higher uop cache hit rate. Please note that Compaction is
opportunistic as it can only be performed if the compacted
uop cache entries together fit entirely in a single uop cache
line. In our design, Compaction is performed only when an
uop cache entry is being written to the uop cache.

Note that the proposed compaction technique only
groups multiple uop cache entries in a single uop cache
line and does not fuse multiple uop cache entries into
one. Fusing multiple uop cache entries in the same uop
cache line would violate the termination conditions of
an uop cache entry. Uop cache bandwidth does not
increase with Compaction unlike CLASP. That is, only
one uop cache entry will be sent to the uop queue per
cycle irrespective of how many other uop cache entries
are resident in the same uop cache line.

Compaction allows more entries to be resident in the uop
cache. To enable compaction, each uop cache line tag is
widened to accommodate the compacted uop cache entries
tag information. Figure 11 presents the details on how various
fields in a compacted uop cache line can be tracked and
accessed. For example, since the uops from one uop cache
entry needs to be separated from another, the uop cache tags

Before Compaction After Compaction

(a) (b)

OC Entry-1

OC Line-1

OC Entry-2

OC Line-2

OC Entry-1 OC Entry-2

OC Line-1

Fig. 10: Compaction Depiction.

Compacted Uop cache entries (line-1)

uop1 imm0uop0 ctrimm1

(Offset)entry-2 = start byte address + (# of uops in 1st entry)

(imm/disp Offset)entry-1 = end byte address – ctr size 

– (# of imm/disp fields in 2nd entry)

(imm/disp Offset)entry-2 = end byte address – ctr size

Uop cache entry-1 (line-1)

Uop cache entry-2 (line-2)

(imm/disp Offset)entry-1
(imm/disp Offset)entry-2

(Offset)entry-2

(Tag)entry-1

uop3 imm2uop2 uop4 ctruop5(Tag)entry-2

uop1 uop2 uop3 uop4 imm0 imm1 imm2uop0 ctruop5
(Tag)entry-1

(Tag)entry-2

Fig. 11: Compacted uop cache entries.
need to be augmented with various offset fields. These offset
fields include, offset(entry-2), imm/displacement offset(entry-2).
The offset(entry-2) points to starting byte of the uops of entry-2.
Similarly, imm/displacement offset(entry-2) points to the offset
of where the immediate and displacement fields of uop cache
entry-2 are stored. Figure 11 shows how these offsets are
computed upon compaction. These augmented offset fields
in the uop cache tag enable fetching the correct uops and
their corresponding immediate/displacement fields upon a tag
hit. Upon compaction, the “ctr” field, which contains error
protetion bits for all bytes in the line, is also updated.
Also, compacting more than one uop cache entry necessitates
comparing multiple uop cache tags (though in parallel) of
entries compacted in the same way during an uop cache lookup
operation.

While compaction minimizes the fragmentation caused by
smaller uop cache entries, maintaining fast uop cache fill
time is critical to performance. Since the accumulation buffer
(Figure 1) is of limited capacity, the x86 decoder will have
to stall if the entries from the accumulation buffer are not
freed in time to accommodate newly decoded uops. Freeing
accumulation buffer entries can be delayed by uop cache
fill time which in turn can be complicated by the eviction
time. Victim selection can be critical in defining fill latency
because evicting an uop cache entry may not leave enough
space to accommodate the new uop cache entry if the victim
uop cache entry’s size is smaller than that of the new uop
cache entry. One solution is to find a victim uop cache entry
that can accommodate the new one. This solution can also
be suboptimal in terms of performance because it can evict
a different uop cache entry from the one selected by the
replacement policy that tracks temporal reuse (e.g. LRU). In
the worst case, the chosen uop cache entry can be the most
recently accessed one. This complexity arises from the fact
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Fig. 12: Uop cache entries per PW distribution.

that the uop cache controller does not know the size of an
entry being filled until fill time.

To address this issue, we propose maintaining replacement
state per line, independent of the number of compacted uop
cache entries. The replacement logic is similar to that of a
non-compacted, baseline uop cache design. Upon a hit to
a compacted line, the shared replacement state is updated.
During an uop cache entry fill, all uop cache entries from
the victim line are evicted, thereby ensuring the uop cache
entry to be filled will have enough space. This scheme enables
Compaction to have the same uop cache fill latency as the
baseline. Because all compacted uop cache entries are treated
as a unit by the replacement policy, the decision on which uop
cache entries to compact together plays a crucial role in the
overall fetch ratio of the compacted uop cache. To that end,
we propose three different allocation (Compaction) techniques:
Replacement Aware Compaction (RAC), Prediction Window
Aware Compaction (PWAC), and, Forced Prediction Window-
Aware Compaction (F-PWAC).

1) Replacement Aware Compaction (RAC): As the com-
pacted uop cache entries are treated as a unit by the replace-
ment policy, it is important to compact entries that will be
accessed close to each other in time. During an uop cache fill,
RAC attempts to compact the uop cache entry with the uop
cache entries touched recently. That is, it tries to compact the
new OC entry with the Most Recently Used (MRU) one.

RAC improves uop cache fetch ratio and performance as
we compact uop cache entries that are temporally accessed
close to each other. Though RAC allows compacting uop cache
entries accessed closely in time, the replacement state can be
updated by another thread because the uop cache is shared
across all threads in a multithreaded core. Hence, RAC cannot
guarantee compacting OC entries of the same thread together.

2) Prediction Window-Aware Compaction (PWAC): In this
subsection, we propose another compaction policy called,
Prediction Window-Aware Compaction (PWAC). In PWAC,
we only compact uop cache entries belonging to the same
PW (of a thread). Figure 12 shows the number of uop cache
entries present per PW. As can be observed, on the average,
64.5% of the PWs contain only one uop cache entry, while
31.6% of the PWs contain two uop cache entries and 3.9%
of the PWs contain three uop cache entries. A PW may
contain multiple uop cache entries due to multiple OC entry
termination conditions that differ from the PW ones (Section
II-B2).

Figure 13 depicts our proposed PWAC scheme. Figure 13-
(a) shows the PW agnostic compaction scheme where uop

PW-Agnostic Compaction PW-Aware Compaction

(a) (b)

OC Entry-PWA

OC Line-1

OC Entry-PWB1

OC Line-2

OC Entry-PWAOC Entry-PWB2

OC Entry-PWB1 OC Entry-PWB2

Fig. 13: PWAC (Example).

OC Entry-PWB1

OC Entry-PWB1 OC Entry-PWB2

t0

t1
(> t0)

OC Entry-PWA

OC Entry-PWA

OC Entry-PWB2

OC Line Compacted OC Line

Compacted OC Line

LRU Line

(a) (b)

(c) (d)

time

OC Entry-PWB1OC Entry-PWA

Compacted OC Line

OC Entry-PWB1OC Entry-PWA

Fig. 14: F-PWAC (Example).
cache entry-PWB1 is compacted with uop cache-PWA in line-
1 while uop cache entry-PWB2 is filled in line-2. Uop cache
entry-PWB1 and uop cache entry-PWB2 belong to the same
PW-B, however they are compacted in two separate lines. It
is beneficial to compact uop cache entries belonging to the
same PW in the same uop cache line because they are going
to be fetched together as they belong to the same basic block
and were only separated due to uop cache entry termination
rules. Figure 13-(b) depicts the PW-Aware compaction scheme
where uop cache entry-PWB1 and uop cache entry-PWB2 are
compacted into line-2. To enable PWAC, each uop cache
entry must be associated with a PW identifier (PW-ID) in
the accumulation buffer and each uop cache entry tag now
contains an additional PW-ID field.

3) Forced Prediction Window-Aware Compaction (F-
PWAC): While PWAC, tries to compact uop cache entries
from the same PW in the same line, it is still best-effort.
There exists scenarios where PWAC is unsuccessful. Figure 14
presents such scenarios. Consider an uop cache entry-PWB1,
the first uop cache entry in PW-B is to be filled at time t0 as
shown in Figure 14-(a). Because the uop cache line containing
uop cache entry-PWA has enough free space to accommodate
uop cache entry-PWB1, it is compacted with uop cache entry-
PWA as in Figure 14-(b). However, at time t1 (> t0), uop
cache entry-PWB2, the second uop cache entry in PW-B needs
to be written to the uop cache. In this case, it is not possible
to compact uop cache entry-PWB2 in the same line as uop
cache entry-PWB1 as it is compacted with uop cache entry-
PWA and does not contain enough space to accommodate uop
cache entry-PWB2. PWAC misses out on such opportunities
due to timing. Please note that PWAC could have successfully
compacted uop cache entry-PWB2 with uop cache entry-PWB1
had uop cache entry-PWB1 been written to a victim LRU line
at time t0. However, since uop cache entry-PWB1 is compacted
with another uop cache entry (of PW-A in this case), PWAC
cannot compact uop cache entry-PWB2 with uop cache entry-
PWB1 though they belong to same PW-B.

F-PWAC addresses such lost opportunities by forcing the
uop cache entries of the same PW into the same line as
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Fig. 15: Normalized decoder power.
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Fig. 16: Compaction (maximum of two uop cache entries per
line) performance improvement.
depicted in Figure 14-(d) at time t1. In F-PWAC, uop cache
entry-PWB1 is read out and compacted with uop cache entry-
PWB2, while uop cache entry-PWA is written to the LRU line
after the victim entries (or a single entry if not compacted)
are evicted. Uop cache entry-PWA is written to the current
LRU line to preserve hits to uop cache entry-PWA because it
is the most recently written entry to the uop cache if RAC
is enabled. After writing to the LRU line, the replacement
information of the line containing uop cache entry-PWA is
updated. Though F-PWAC requires an additional read of the
previously compacted entry and an additional write during an
uop cache entry fill, it is infrequent in steady state because it
improves uop cache fetch ratio. F-PWAC compacts more uop
cache entries belonging to the same PW compared to PWAC.

VI. EXPERIMENTAL RESULTS

In this section, we present the results and analysis of our
optimizations. All studies except for the sensitivity studies in
Section VI-B1 assume a maximum of two compacted uop
cache entries per uop cache line.

A. Main Results

Figure 15 shows the normalized decoder power for all
proposed optimizations. CLASP reduces decoder power con-
sumption over the baseline by 8.6% as more uops bypass
the decoder. RAC, PWAC and F-PWAC further reduce the
decoder power on an average by 14.9%, 16.3% and 19.4%,
respectively. Figure 16 presents the improvement in perfor-
mance (Uops Per Cycle or UPC) over the baseline for all
our optimizations. Figure 17 shows uop cache fetch ratio (bar
graph), average dispatch bandwidth (orange line graph) and
average branch misprediction latency (green line graph) for the
proposed mechanisms: CLASP, RAC, PWAC and F-PWAC, all
normalized to a baseline uop cache system with 2K uops. In
RAC, PWAC and F-PWAC, a maximum of two uop cache
entries are compacted per line.

CLASP improves the uop cache fetch ratio by 11.6% on the
average, with a maximum improvement as high as 24.9% for

502.gcc r (bm-cc). CLASP also improves the average dispatch
bandwidth over all workloads by an average of 2.2%, with a
maximum improvement of 5.6% for 502.gcc r (bm-cc). The
average reduction in branch misprediction latency across all
the workloads by CLASP is 2.01%, with 502.gcc r (bm-cc)
showing the maximum reduction at 4.75%. CLASP improves
performance by 1.7%, with a maximum improvement of
5.6% for 502.gcc r (bm-cc). CLASP only optimizes for the
fragmentation due to uop cache entries spanning multiple sets
while still containing a maximum of one uop cache entry per
line. It does not address the fragmentation per uop cache line
due to small OC entries.

RAC, PWAC and F-PWAC improve the uop cache fetch ra-
tio across all the workloads by 20.6%, 22.9%, and, 28.77%, re-
spectively. They also improve the average dispatch bandwidth
by 4.3%, 5.14%, and, 6.3%, respectively. These compaction
based optimizations reduce the branch misprediction latency
by 3.45%, 4.25%, and, 5.23%, respectively. The corresponding
performance improvements caused by RAC, PWAC and F-
PWAC across all workloads are 3.5%, 4.4%, and, 5.45%,
respectively. Note that in F-PWAC compaction technique, we
first apply PWAC. If an uop cache entry can be compacted with
another uop cache entry of the same PW, there is no need to
use F-PWAC. F-PWAC is performed only when an uop cache
entry with the same PW Id as that being installed in the uop
cache is compacted with an uop cache entry of a different PW.
When an uop cache entry being compacted belongs to only
one PW, F-PWAC and PWAC cannot find another uop cache
entry that belongs to the same PW, the fall-back compaction
technique is RAC. Figure 18 shows the percentage of uop
cache entries compacted. On an average, 66.3% of the entries
written to uop cache are compacted without evicting any
other entries. Figure 19 shows the distribution of allocation
techniques used during compaction. On an average, 30.3%
of the uop cache entries are compacted with RAC, 41.4%
are compacted with PWAC, while the remaining 28.3% are
compacted with F-PWAC. All results on compaction enable
CLASP.

B. Sensitivity Results

1) Maximum Compacted Entries per line: The maximum
number of allowable compacted uop cache entries per line is
statically defined because the number of additional offset fields
etc. in the uop cache tag array need to be provided at design
time. While Figures 16 and 17 present results for a maximum
of two allowable uop cache entries per line, Figures 20 and
21 presents the performance improvement and uop cache fetch
ratio for an uop cache that can compact a maximum of three
uop cache entries. Increasing the maximum compacted entries
to three improves the performance by 6.0% as opposed to
5.4% for a maximum of two uop cache entries. The uop cache
fetch ratio allowing a maximum of three compacted uop cache
entries per line is 31.8% while that for two compacted uop
cache entries is 28.2%. The small improvement in performance
and uop cache fetch ratio over the two compacted uop cache
entries is due to the fact that not many lines could compact
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Fig. 17: Normalized uop cache fetch ratio (bar graph), average dispatched uops/cycle (orange line graph), and, average branch
misprediction latency (green line graph) results for baseline, CLASP, RAC, PWAC, and F-PWAC.
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Fig. 18: Compacted uop cache lines ratio.
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Fig. 19: Compacted uop cache entries distribution.

three uop cache entries. This is because, in most cases, two
compacted uop cache entries do not leave enough free space
to compact one additional uop cache entry.

2) Uop Cache Size: Figure 22 shows the performance
improvement over a baseline uop cache containing 4K uops.
F-PWAC improves the performance by 3.08% over a baseline
uop cache. Maximum improvement is for 502.gcc r (bm-cc)
at 11.27%. The corresponding overall improvement in uop
cache fetch ratio is 13.5% with the maximum for redis at
32.47%, while 502.gcc r (bm-cc) incurs an uop cache fetch
ratio increase of 25.3%. The dispatch bandwidth is improved
by 3.75% with maximum 11.2% for 502.gcc r (bm-cc). The
branch misprediction latency is reduced by 4.43% while the
decoder power is reduced by 13.94% overall.

VII. RELATED WORK

Code compression has been investigated as an optimiza-
tion that targets code reduction. It is typically performed at
compile-time, link-time and at the binary level. Code reduc-
tion has been achieved by exploiting ISA-level redundancy
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Fig. 20: Compaction (maximum of three uop cache entries per
line) performance improvement.
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Fig. 21: Uop cache fetch ratio change with a maximum of
three compacted uop cache entries per line.
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Fig. 22: Performance improvement over a baseline uop cache
with capacity for up to 4K uops.

such as register reuse per instruction, narrow displacement
values and shorter instruction opcodes for frequently used
instructions with new ISA extensions by Waterman in [54].
Common instruction sequence repetition and identification of
functionally equivalent code sequences has been proposed by
Debray et al. in [26]. In [25], Cheung et al. extend code
compression with predication and different set of flags to allow
procedures represent different code sequences. In [24], Chen et
al. compact repeating code sequences that form single-entry,
multiple-exit regions. In [30], Fisher describes a code com-
paction technique that reduces the size of microcode generated
in VLIW (statically scheduled) machines. In [28], Drinic et al.
use Prediction Partial Matching (PPM) to compress code by
constructing a dictionary of variable-length super-symbols that
can identify longer sequences of instructions. In [53], Wang et
al. propose modifications to the BitMask algorithm that records
mismatched values and their positions in code sequences,
to enable compression of longer code sequences. With the
exception with the work on compressed ISA extensions in
[54], all code compression methods described above operate
at some level of the software stack with no hardware support.
The work by Waterman in [54] describes new compressed
ISA-level instructions to reduce code size. Our technique does
not attempt to compress micro-ops and can be combined with
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code compression to expand the scope of compaction in the
uop cache.

Cache compaction has been introduced as support for cost-
effective cache compression. Yang et al. in [37], Lee et al.
in [38] and Kim et al. in [43] propose storing two logical
compressed cache lines into one physical one only if each
logical line is compressed to at least half its original size.
Our compaction scheme does not have this limitation and can
compact two uop groups as long as they meet the conditions
required to construct an uop cache entry. Variable sub-block
compaction techniques such as the ones used in the Variable
Size Compression [18], Decoupled Compressed Cache [48]
and Skewed Compressed Cache [47] are tailored for data
accesses because they take into account the compressibility
of data sub-blocks to reduce the overhead or avoid expensive
recompaction. Our technique focuses on compacting together
uncompressed code blocks only, therefore avoiding the need
for recompaction due to dynamically changing compression
ratios. Our technique also differs from other cache compaction
techniques in that it targets a L0 small cache as opposed to
large L2 and L3 caches. Thus, additional tag space needed
to support compaction has a much smaller area overhead
compared to that of the L2 and L3 caches and can be used
to serve the compaction mechanism. Moreover, unlike work
in [18] and [20] which require back pointers to ensure proper
indexing of data sub-blocks, our approach does not require
such metadata because we duplicate tags to index uop cache
entries. Finally, uop cache compaction exploits code spatial
locality to achieve better hit rates by compacting sequentially
fetched uop groups. Similarly, data spatial locality across
cache lines is explored for cache compaction in [48] by
sharing a super-block tag across four data lines. However our
compaction design does not utilize super-block tags, avoiding
complications in the uop cache replacement policy.

Trace caches improve instruction fetch bandwidth by group-
ing statically non-contiguous but dynamically adjacent instruc-
tions [29, 27, 42]. The uop cache design we consider is a
limited form of a trace cache because it stores uops beyond
a predicted not-taken branch but not beyond a (predicted)
taken branch. This design decision greatly simplifies uop
cache tag design and avoids the complexity of traditional trace
cache designs which require multiple tags per cache line. In
addition, our proposed compaction policies are different than
that of trace caches in that we allow statically non-contiguous,
dynamically non-contiguous uops to be placed in the same uop
cache line, based on their size and metadata. Finally, the goal
of our compaction methods is to increase the uop cache hit rate
(which also lowers energy consumption) and not to increase
the peak uop fetch bandwidth by fetching either multiple uop
groups per cycle or beyond (predicted) taken branches.

Another set of techniques that target improved cache effi-
ciency, similar to our proposed uop compaction approach, is
code reordering. In [39, 31, 33, 44] authors present different
compile-time or link-time techniques that exploit subroutine-
level temporal locality to adopt a different placement of
subroutines in the binary and reduce I-cache misses. Authors

in [2, 23, 45, 55] exploit basic block reordering to convert
more branches into not-taken and improve I-TLB and I-cache
hit rate. Ramirez et al. in [46] employ profile guided code
reordering to maximize sequentiality of instructions without
hurting I-cache performance.

Code-reordering work differs from our proposals because
it (a) operates at the compiler or linker level and (b) can
not dynamically detect compaction opportunities. Moreover,
our technique does not change the binary code layout, does
not need profile information or software stack modifications,
operates transparently to the user and improves both per-
formance and power. In addition, our technique takes into
consideration the fragmentation of code due to the presence of
taken branches to improve the placement of sequential code
fragments in uop cache. Finally, please note that our optimiza-
tions are orthogonal to prior code reordering proposals and can
work on binaries that have been rewritten with optimized code
layouts.

VIII. CONCLUSION

In this paper, we demonstrate that x86 uop caches are
fragmented because of the uop cache entry terminating con-
ditions that are used to simplify the uop cache baseline
architecture. To address this fragmentation, we propose two
optimizations: CLASP and Compaction. CLASP reduces uop
cache fragmentation by relaxing the I-cache line boundary
termination condition. Compaction reduces uop cache frag-
mentation by exploiting empty space across possibly unrelated
uop cache entries in the same uop cache set. We evaluate
three compaction policies: RAC, PWAC, and F-PWAC. RAC
compacts temporally correlated uop cache entries in the same
uop cache line, while PWAC compacts uop cache entries from
the same PW in the same uop cache line. F-PWAC optimizes
the best-effort PWAC by forcing the compaction of uop cache
entries from the same PW to the same uop cache line. CLASP
and Compaction (a) improve uop cache utilization/fetch ratio,
dispatch bandwidth, average branch misprediction penalty and
overall performance, and (b) reduce decoder power consump-
tion. These optimizations combined improve performance by
5.3%, uop cache fetch ratio by 28.8% and dispatch bandwidth
by 6.28%, while, reducing the decoder power consumption
by 19.4% and branch misprediction latency by 5.23% in our
workloads.
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[28] M. Drinić, D. Kirovski, and H. Vo, “Ppmexe: Program compression,”
ACM Trans. Program. Lang. Syst. (TOPLAS), 2007.

[29] J. S. E. Rotenberg, S. Bennett, “Trace Cache: A Low Latency Approach
to High Bandwith Instruction Fetching,” in Proceedings of the Interna-
tional Symposium on Microarchitecture, ser. Micro, 1996.

[30] Fisher, “Trace scheduling: A technique for global microcode com-
paction,” IEEE Transactions on Computers (TC), 1981.

[31] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder, “Procedure
placement using temporal ordering information,” in Proceedings of 30th
Annual International Symposium on Microarchitecture (MICRO), 1997.
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