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ABSTRACT
Many GPU applications issue irregular memory accesses to a very
large memory footprint. We confirm observations from prior work
that these irregular access patterns are severely bottlenecked by
insufficient Translation Lookaside Buffer (TLB) reach, resulting in
expensive page table walks. In this work, we investigate mecha-
nisms to improve TLB reach without increasing the page size or
the size of the TLB itself. Our work is based around the observa-
tion that a GPU’s instruction cache (I-cache) and Local Data Share
(LDS) scratchpad memory are under-utilized in many applications,
including those that suffer from poor TLB reach. We leverage this
to opportunistically utilize idle capacity and port bandwidth from
the GPU’s I-cache and LDS structures for address translations. We
explore various potential architectural designs for each structure
to optimize performance and minimize complexity. Both structures
are organized as a victim cache between the L1 and L2 TLBs to
boost translation reach. We find that our designs can increase per-
formance on average by 30.1% without impacting the performance
of applications that do not require additional reach.
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1 INTRODUCTION
GPUs are increasingly important in many domains due to their
superior performance-per-watt for data parallel workloads [33]. As
GPUs become more popular, their feature sets continue to improve.
Today’s GPUs provide many architectural and programmability-
enhancing features that have typically been taken for granted on
the CPU for decades. One such area is support for virtual memory.
Virtual memory support on GPUs significantly eases the relatively
high burden of programming and allows for easier implementation
of unified virtual memory between the host and GPU.

While virtual memory is essential for many programming ab-
stractions, it comes at a cost. Recent work has identified perfor-
mance issues in a GPU’s virtual memory subsystem [23, 47]. This
is especially true for irregular applications that access a very large
virtual memory footprint in an unstructured manner. There are
many reasons that irregular applications impose a large transla-
tion overhead [1, 43, 44]. We observe that the biggest factor is
that the TLB reach is simply inadequate to accommodate irregular
accesses to a large address space, which leads to many performance-
degrading page table walks [47]. While the TLB capacity is under
intense capacity pressure, in this work we observe that a number
of other on-chip SRAM structures are frequently underutilized. We
also observe that this under-utilization can significantly vary on a
kernel-by-kernel basis in an application’s execution.

We use these observations to propose new mechanisms that take
advantage of underutilized on-chip resources to improve the effec-
tive TLB capacity and reach for applications that demand it. The
key principle of our design is to dynamically and opportunistically
reallocate resources from idle on-chip SRAM structures to store
additional TLB entries. Our contributions are:

• Based on real GPU measurements, we show that I-cache
and LDS scratchpad in a GPU are under-utilized in terms
of capacity and bandwidth and the under-utilization varies
between kernels, even within the same application.

• We propose a new mechanism that effectively constructs an
auxiliary victim cache from idle I-cache and/or LDS entries
to opportunistically store additional translations.

https://doi.org/10.1145/3466752.3480105
https://doi.org/10.1145/3466752.3480105
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Figure 1: Baseline GPU architecture derived from AMD’s
Graphics Core Next (GCN) design [2].

• We architect designs to accommodate the unique character-
istics of both the I-cache and LDS, focusing on trade-offs in
implementation complexity, area overhead, and performance.
For the I-cache, we explore naive and instruction-aware re-
placement policies as well as different packing schemes to
store and decode translations in a single way of the I-cache.
We also explore various designs to pack translations and
tags in a monolithic LDS structure that was not originally
designed as a hardware cache.

• We perform a detailed performance evaluation of our de-
sign on a CPU/GPU-based APU system. Our evaluations
show that for GPU applications that suffer from insufficient
TLB reach our micro-architectural solution can improve the
performance by 30.1%, while not negatively impacting appli-
cations that do not require additional TLB reach.

2 BACKGROUND
Figure 1 shows the architecture for a compute optimized GPU,
comprised of Compute Units (CUs), also known as Streaming Mul-
tiprocessors (SMs), each providing a collection of Single Instruction
Multiple Data (SIMD) units. Groups of work-items (or threads)
are dispatched on the CUs in bundles of either 32 or 64 known as
wavefronts (or warps). These wavefronts are further organized into
work-groups (or thread-blocks) that are guaranteed to execute on
the same CU.

2.1 GPU Address Translation
Modern GPUs possess a virtual memory (VM) subsystem similar to
CPUs. GPUs also employ a multi-level TLB hierarchy that caches
recently-used address translations to avoid accessing page-tables
for every memory (load/store) request. Each CU has a private L1
TLB shared by the SIMDs on that CU. A SIMD unit’s memory
accesses targeting the same page are coalesced by the hardware to
minimize the number of accesses to the L1 TLB. Misses from the L1
TLBs are typically serviced by an L2 TLB that is shared across the
entire GPU [37, 38]. L2 TLB misses are either handled using local
GPU page-table walkers or through an IO Memory Management
Unit (IOMMU) [43, 44].

2.2 Local Data Share (LDS)
Work-groups are guaranteed to execute on the same CU and can
therefore make use of a per-CU, application-managed scratchpad
called the LDS. Typically, the LDS is organized as 16 or 32 banks,
each of which can produce a 4-byte value every cycle [2]. AMD
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Figure 2: Page walks vs. L2 TLB capacity.
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Figure 3: Performance improvement with additional L2 TLB
capacity vs a 512 entry baseline.

GPUs contain 64KB LDS per CU, while NVIDIA’s LDS equivalent
component (called shared-memory) are similarly organized and
vary in size from 64KB to 96KB per SM [35]. The LDS can provide
more bandwidth and low latency compared to global memory, but
comes at the cost of being managed by the application programmer.

Resources in LDS are statically reserved by the front-end sched-
uling unit before waves in a work-group are dispatched to the CUs.
LDS allocators reserve LDS capacity in one contiguous block to sat-
isfy the launch requirements for an entire work-group. This policy
can lead to significant fragmentation and under-utilization if work-
groups from different kernels with different LDS requirements are
co-resident on the same CU.

2.3 I-Cache and Instruction Buffers
Each CU contains wavefronts that are statically assigned to SIMD
units. As an example, the AMD GCN architecture supports four
SIMD units that each can contain ten wavefronts [2], but these
numbers can vary across vendors and between micro-architectural
generations. Regardless, each wavefront has a Program Counter
(PC) to hold the address of the next instruction to fetch as well as
an instruction buffer (IB) that holds cache lines each containing
multiple instructions.

A wavefront that cannot service the next instruction from its
local IB requests access to the fetch unit. The fetch units (and their
corresponding instruction caches) are shared by groups of CUs. The
fetch units arbitrate requests and issue them to the L1 I-cache to
fill the instruction buffer for a requesting wavefront. Misses from
the I-cache are serviced from an L2 cache shared across the GPU.

3 MOTIVATION
3.1 GPU TLB Reach Limitations
Recent work has shown that TLB reach (i.e., the amount of virtual
address space that can be translated by the TLBs without incur-
ring a page walk) can be a significant performance issue for GPU
applications [8, 23]. Not only is the working set size and physical
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Figure 4: (a) LDS size in bytes requested by aWorkgroup across benchmark suites.(IQR: Interquartile Range, L.P: Largest Point,
S.P: Smallest Point), (b) Idle cycles at each LDS port. The results in Figure 4(a) are collected on a real system using performance
counters while the ones in Figure 4(b) are from simulator. Please note that the Y-axis in Figure 4(a) maxes out at around 20KB,
while the LDS capacity is 64KB.
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Figure 5: (a) I-cache utilization across benchmark suites, (b) Idle cycles at each I-cache port. The results in Figure 5(a) are
collected on a real system using performance counters while the ones in Figure 5(b) are from simulator.

memory capacity of a single GPU increasing, but new program-
ming paradigms directly map remote GPU memory to the address
space of each GPU to allow efficient data exchanges in multi-GPU
workloads [34]. Additionally, host memory is mapped to a GPU’s
address space to allow for direct, zero-copy access from the GPU.

TLB reach can be especially problematic for a range of emerging
GPU applications that exhibit patterns such as pointer chasing and
random memory accesses, which generate irregular memory access
patterns [43, 44]. Sporadic accesses to a large virtual memory foot-
print tend to miss in all levels of the TLB, generating a large number
of page table walks. While frequent TLB misses negatively impact
performance on any architecture, GPUs are especially sensitive.
Recent work has shown that servicing TLB misses on GPUs can
be an order of magnitude slower compared to CPUs [31, 47]. Also,
because the Single Instruction, Multiple Thread (SIMT) execution
paradigm executes threads in lockstep, a single wavefront might
have to wait for many page table walks to resolve before the wave-
front can make forward progress. In the worst case, each of the 64
(or 32 on depending on the architecture) threads in a wavefront can
access a separate page and generate a unique page-table walk on a
TLB miss.

One simple way to improve TLB reach is to increase the size of
the TLBs. To quantify the performance potential of larger TLBs, we
performed a study using several irregular GPU applications [14, 15,
27] by varying the size of the L2 TLB from 512 to 2M entries for

a standard 4KB page size and observing the performance impact.
Please refer to Section 5 for information on simulator setup and
benchmarks. Additionally, we include an upper-bound Perfect-L2-
TLB configuration where translations always hit in L2 TLB. The
Perfect-L2-TLB configuration incurs zero page walks and hence
delivers the best case performance.

Figure 2 shows how larger L2 TLBs impact the number of page
table walks requested by an application. At the largest L2 TLB size
considered, the number of page-table walks decreases by ∼85% on
average compared to a 512-entry baseline, with SRAD, PRK and
SSSP not benefiting from the additional entries. SRAD does not see
any degradation with increasing L2 TLB size as the number of page
walks in the baseline is ∼0.

Figure 3 shows the impact of larger L2 TLBs on relative perfor-
mance over a baseline with 512 TLB entries. On average, increasing
the L2 TLB size from 512 to 8K entries results in a geometric mean
improvement in performance of 14.7%, and increasing the L2 TLB
size to 2M entries can improve performance by up to 50.1%. We
also observe that ATAX, BICG, GEV, GUPS, MVT BFS, and NW
are particularly bottlenecked by TLB reach while SRAD, PRK and
SSSP are not. These results show that TLB capacity is a significant
performance bottleneck for some GPU applications.
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3.2 Inefficient Utilization of GPU Structures
In addition to the TLBs, GPUs also dedicate significant area to
other structures such as register files, LDS, and instruction and
data caches. In this work, we observe that a number of GPU SRAM
structures are sized conservatively based on the behavior of a few
applications. In this section, we explore the usage characteristics
of two such structures: LDS and the I-cache. Our results in this
section are collected on a system with a single AMD RadeonTM RX
580 GPU [4] using roc-profiler [5] to collect performance counter
data. For this real-system study, we used a diverse set of bench-
marks from various suites including: Rodinia [15], Pannotia [14],
Polybench [27], and SHOC [17], machine learning applications [18],
and high-performance computing proxy applications [11, 28–30].
The LDS capacity requested by each kernel during a kernel invoca-
tion as well as relevant performance counters (e.g., I-cache misses,
prefetches) are collected at kernel granularity. I-cache utilization
is calculated using Equation 1. Because I-cache misses and I-cache
prefetches are the only events that result in an I-cache fill, they help
us to conservatively estimate the number of I-cache cachelines filled
with instructions. In scenarios where I-cache misses and prefetches
are more than the total number of cache lines, the utilization is
considered to be 100%.

%(I cache_U til ization) =
(IC_Misses + IC_pref etches) ∗ 100

(Num . of IC lines)
. (1)

Figure 4a shows the total utilization of on-chip LDS. The dis-
tribution in the box-and-whisker graph was created by sampling
across all kernel launches in an application. We observe that out of
the 54 total applications evaluated, 38 (or ∼70%) do not use LDS at
all. For all the applications that use LDS, none of them are able to
leverage the full 64KB of space that is available per CU with their
current work-group sizes. While it is reasonable to suspect that
some classes of applications make use of all LDS (such as graphics
workloads), our survey of compute applications indicate that these
structures are significantly under-utilized.

Figure 5a makes a similar observation with the I-cache. This
figure plots a distribution of I-cache utilization sampling across all
kernels in a workload. I-cache utilization is computed as shown in
Equation 1. In our results, we observe a wide mix of I-cache uti-
lization across workloads. While not as consistently under-utilized
as LDS, only 17 (or ∼24%) of the workloads make use of the full
I-cache capacity for every kernel. The remaining workloads can be
broken down into two categories; 13 workloads never use the full
I-cache capacity throughout their entire execution, and 24 use the
full I-cache capacity only during some kernel launches.

Additionally, we observe that not only is there space available
in the I-cache and LDS, but there is also bandwidth available at the
ports. Figure 4b shows box-and-whisker graphs sampled whenever
the ports to LDS and I-cache are accessed by the GPU wavefronts,
respectively. For the I-cache, most applications have ∼10-20 idle
cycles between subsequent accesses, with significant upward skew
indicating some periods of even more sporadic utilization. I-cache
ports are not often utilized because most instructions can be ser-
viced directly from a wavefront’s instruction buffer. For the four
applications that use LDS, we observe a similar trend of several tens
of cycles between LDS accesses with significant upward skew. Most

importantly, we observe that the applications that could signifi-
cantly benefit from improved TLB reach, as discussed in Section 3.1,
(i.e., ATAX, BICG, GUPS, GEV, BFS, and MVT ) have idle resources
in both LDS and I-cache in terms of capacity and port bandwidth.

3.3 Why Not Larger TLBs?
Emerging workloads are increasing demands on TLB coverage.
Responding to this demand, recent commercial GPUs [6, 7, 24] have
increased L2 TLB coverage over previous generations. However,
the die sizes of high-performance GPUs are already nearing the
lithographic reticle limit, and so blindly increasing die size via larger
TLBs would be very challenging. The larger structures would also
increase the difficulty of meeting circuit timing and also increases
power consumption.

4 RECONFIGURABLE ARCHITECTURE
4.1 Why I-cache and LDS?
Our main goal is to improve performance for translation-sensitive
workloads while not negatively impacting TLB-insensitive work-
loads, all while incurring minimal area overhead. To that end, the
I-cache and LDS are good potential targets as the data cached in
these structures do not need to track modifications with a ‘dirty’
bit, similar to TLB translations. This enables translations stored in
I-cache and LDS to be evicted without additional writebacks.

We modify the I-cache and LDS to act as a TLB victim cache (as
opposed to a prefetch buffer because the access patterns of irregular
applications are hard to predict). Additionally, there is a synergy
between LDS and virtual memory overheads. That is, since the LDS
is looked up using virtual address, if an application uses a lot of
LDS space, it will tend not to incur address translations and hence
have lower TLB usage. However, if the application does not use LDS
much, the spare LDS capacity can be leveraged for translations.

4.2 Reconfigurable Shared Memory (LDS)
LDS is an application-managed hardware structure (Section 2.2).
The main challenge in caching address translations in LDS is that,
unlike caches, the LDS does not contain separate tag and data arrays.
Therefore, the translation tags that aid in detecting a hit or miss
must also be stored in the LDS itself. The challenges in architecting
LDS to cache translations include:

• How to identify the idle LDS capacity?
• Where to store translation tags within LDS?
• How to effectively support associativity in translations as
the spare LDS capacity varies over time?

• How to efficiently enable overwriting translation tags and
data in case a work-group requests LDS capacity without
any extra data movement?

• How to efficiently lookup and retrieve translation tags and
data from LDS without wasting LDS bandwidth?

4.2.1 Identifying LDS Idle Capacity. As mentioned in Section 2,
LDS allocations are managed by the work-group scheduling unit.
LDS memory is assigned in contiguous chunks to a work-group
by writing a register that points to the base of a work-group’s LDS
allocation for each dispatched wavefront. When a work-group com-
pletes, its entire allocation is returned to the work-group scheduler
for re-assignment to subsequent work-groups.



Increasing GPU Translation Reach by Leveraging Under-Utilized On-Chip Resources MICRO ’21, October 18–22, 2021, Virtual Event, Greece

LDS Bytes 
consumed by 
application

Idle LDS
bytes

LDS 
Banks

(a)

(i) (ii)
32B

8B

Tx-1Tags Tx-2 Tx-3

LDS consumed 
by application

Idle LDS bytes
LDS storing Tx.
Tags

LDS storing Txs. 1 Mode-bit per 32B
1: LDS Mode 
0: Tx. Mode

(b)

Tags/LRU

TX-2

TX-1

LDS 

TX-3

Tags/LRU
TX-1

TX-2

TX-3

Seg-0
01122

Page (4KB) Offset

Segment Index Bits =
log2(LDS Bytes / 32B Segment) =

11 bits for 64KB LDS

LDS Tx Request (VA)

1223N

Tag Bits

Seg-2K

…

(c)

Figure 6: (a) Baseline LDS, (b) Different Reconfigurable LDS Designs, and (c) Reconfigurable LDS set indexing.

VA TAG BITSVM-ID

48-12-11=25
bits2-bits

VRF-ID

2-bits

LRU

2-bits

VALID

1-bit

TOTAL TAG-BITS PER TX = 32-bits

VIRT ADDR: 48; PG OFFSET: 12; SEGMENT INDEX: 11 
VA TAG BITS = 48-12-11 = 25

BASE (16-bits) DELTA BITS (48-bits)

Total LDS TAG-BITS = 16+48 = 64-bits (8B)
1-BASE = 16-bits; 3-DELTAs = 48-bits (3*16)

16-delta bits per Translation

(a)

(b)

Figure 7: (a) Per Translation Tag bits in LDS. (b) Base-delta
Compressed LDS Tag-bits.

Figure 6a shows a baseline LDS system with some unused capac-
ity. As shown in this example, the LDS baseline system is severely
fragmented (see Section 2.2).

4.2.2 Isolated Translation Tags and Data. Motivated by traditional
caches that isolate the tag and data arrays into two different struc-
tures, we explored dividing idle LDS capacity into tag space and
data space as shown in Figure 6b-(i). In such a design, the tags need
to be read out of the LDS first, and then a tag match determines
whether translation data needs to be accessed. This isolated tag
and data design poses several challenges especially when a new
work-group is launched that requests additional LDS capacity. This
design does not enable efficiently overwriting the translations. For
example, in the case that the LDS capacity requested by a newwork-
group fits the entire translation tag capacity depicted by pattern in
Figure 6b-(i), overwriting the tag space would leave the translation
data orphaned and useless. In such a design, to efficiently utilize
idle capacity for translations, before allocating LDS capacity to a re-
questing work-group, the tag and the corresponding data should be
readjusted, thereby consuming additional LDS bandwidth. Hence,
an isolated tx-tag and data design is not desirable as it requires
additional data movement before satisfying a work-group’s LDS
allocation requests.
4.2.3 Co-located Translation Tags and Data. Figure 6b-(ii) presents
an alternative design that co-locates translation tags and data to-
gether. The LDS is divided into smaller 32-byte segments with
co-located tag and data. Figure 6b-(ii) depicts a 32-byte LDS seg-
ment storing three (eight-byte) address translations consuming 24

bytes for translation data and the remaining 8 bytes for the corre-
sponding tags. In such a co-located design, accessing one 32-byte
segment can enable streaming both translation tags and data to-
gether similar to previous DRAM cache proposals [41], allowing
the immediate use of a corresponding address translation upon a
tag match. The co-location design seamlessly enables overwriting
tags and data when a new work-group requests additional LDS
capacity without requiring remapping of tags or data.

4.2.4 Reconfigurable LDS Operation. To identify whether a seg-
ment of LDS is managed by the application or LDS controller (for
translations), each LDS segment of 32-bytes requires an additional
mode-bit. The bit represents whether the 32-byte segment oper-
ates in default LDS mode or Translation (Tx)-mode as shown in
Figure 6b. The LDS-mode segments are managed by applications,
while Tx-mode segments are managed by the LDS controller. The
segment bit is set depending on who initially loads data into the
segment (i.e., regular SIMD data accesses set the segment bit to LDS-
mode, and translation insertions set the segment bit to Tx-mode).
Hence, in an LDS using 32-byte segments, mode-bits account for a
0.4% LDS area overhead per CU (a total of 1-bit for every 32×8 = 256
bits). To preserve the primary LDS functionality as explained in the
design exploration subsections above, an LDS-mode segment can
overwrite a Tx-mode segment to change it back to LDS-mode, but
a Tx-mode segment can never overwrite an LDS-mode segment.

Figure 6c shows how an LDS controller maps the virtual address
translation request using a 4KB-based virtual page number (VPN)
to a 32-byte LDS segment. An LDS structure composed of 32-byte
segments (each containing 8 bytes of tags and 3×8 bytes of transla-
tions) can be architecturally considered as a 3-way set-associative
structure. The LRU information for the three translation ways is
maintained in the tags. Figure 7 shows how virtual address tag
bits from 3 address translations are compressed using Base-Delta
compression [46] in our reconfigurable LDS design. Each address
translation tag, as depicted in Figure 7(a), contains a 48-bit virtual
address [39] resulting in 25 VA tag-bits after removing the page
offset and LDS segment index bits. Additionally, GPUs contains a
2-bit VM-ID that acts as an Address Space Identifier. Single Root
I/O Virtualization (SR-IOV) enabled GPUs also contain a 2-bit VRF-
ID [45] that points to the virtual function identifer when GPUs
are virtualized for multiple users. Finally, there are two LRU-bits
covering the 3-ways and one valid bit. Hence totally, each address
translation in LDS contains 25 + 2 + 2 + 2 + 1 = 32-bits as shown
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1-BASE = 32-bits; 8-DELTAs = 64-bits (8*8)

8-delta bits per Translation
(c)

Figure 10: (a) Instruction-mode I-cache Tag, (b) Tx-mode Tag
in a 16KB I-cache, and, (c) Base-Delta Compressed Tx-mode
Tags in I-cache.

in Figure 7(a). Hence to compress 3×32 = 96-bits from 3 address
translation tag bits into a 64-bit (8B) LDS segment, we compress the
tag-bits using 16-bit base and a total of 48-bits delta (Figure 7(b)).

4.3 Reconfigurable Instruction Cache
4.3.1 Reconfigurable I-cache Design. Figure 8(a) shows an exam-
ple instruction cache where certain (64-byte) cache lines contain
instructions while other lines (indicated by hashed patterning) are
idle. Unlike the LDS, the instruction cache has all the hardware
support required for normal cache operation, thereby requiring
fewer changes. Figure 8(a) shows a basic reconfigurable I-cache
design where each cache way stores one address translation. Similar
to the reconfigurable LDS design, a reconfigurable I-cache design
requires identifying whether a line stores instructions (IC-mode)
or translations (Tx-mode). For that, each tag is augmented with a
mode-bit. Although the basic design of storing one translation per
I-cache way (Figure 8(b)) allows us to leverage I-cache idle space
for translations without significant changes to the tag array, this
design is inefficient as an I-cache line is 64 bytes and a translation
occupies only 8 bytes, wasting the remaining 56 bytes. From our ex-
perimental results presented later in Section 6.1.2, this naive design
hardly affects performance. This is because in the best case, a 16KB
I-cache enables storing 256 (8-byte) address translations, which
does not significantly improve TLB coverage for the large working
sets of our irregular applications. To that end, we propose packing
multiple translations per way. That is, eight (8-byte) translations
are stored in a 64-byte I-cache line as depicted in Figure 8(c). Such
a design increases the number of translations stored in an idle I-
cache way, thereby improving the translation hit rate. However, this
design requires widening the tag space of every way to accommo-
date additional tags for the multiple address translations stored per
cache line. To understand the storage overhead incurred in storing
multiple translation tags in I-cache, we should initially discuss the
tag-bits required for storing a single instruction tag and translation
tag in I-cache. Figure 10 shows the required tag-bits for storing
an instruction vs eight translations in an I-cache. Each translation
stored in an I-cache way would require a total of 39-bits (Figure
10(b)). Hence to store tags of all the 8-translations we first widen
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Figure 11: I-Cache utilization across kernels over time. GEV and SRAD have only one kernel each and hence not shown here.
SSSP graph shows only a portion of the executed kernels as the pattern is similar across ∼10K kernels.

the tags of each I-cache from 6-Bytes to 12-Bytes. This incurs an ad-
ditional overhead of 6 × 8 × 256 = 1.5KB. To fit the 8-tags we employ
Base-Delta compression on I-cache tags using 32-base and total
of 64-delta bits as shown in 10(c). Hence our mechanism includes
a total of 1.5KB per I-cache area overhead required for widening
the I-cache tags. Finally, another design decision that plays a cru-
cial role in the area overhead is the associativity of translations
that must be supported. An I-cache already has some associativity;
for example, an 8-way I-cache already has eight comparators for
parallel instruction tag match. Now with each way storing eight
more translations in Tx-mode, for lower I-cache lookup latency, in
the worst case a possible (8-ways × 8-translations per way) 64 tag
comparisons are required. This requires an additional 56 compara-
tors. Also, additional logic that only considers the I-cache ways
in Tx-mode for tag comparison has to be in-place. To avoid the
need for all of this extra logic, we propose accessing the transla-
tions (for lookup and fill) as if the I-cache were a direct-mapped
cache. This limits reusing the comparators already in-place for com-
paring translation tags without requiring additional comparators.
This also limits the associativity of translations in the I-cache to
eight. That is, a translation can only replace another translation
in the way it is mapped to. Consequently, in our reconfigurable
I-cache design an I-cache set index is calculated traditionally con-
sidering the I-cache ways, whereas a translation request’s set index
is calculated using direct-mapped logic (Figure 9). However, this
design requires connecting all the ways to all the comparators to
ensure we compare all the tags of translations in parallel which
will increase the complexity. To avoid such complexity, similar to
baseline, we allow only one I-cache way to be connected to one
comparator. Hence, to compare all the translation tags in a way, we
incur additional 16-cycles lookup latency along with the 4-cycle
decompression latency (Table 1). Please note that it is still better
to access translations from I-cache with 16-cycles than performing
off-chip page walks.

4.3.2 Replacement Policy. Another design decision that plays a
crucial role in architecting a set-associative reconfigurable I-cache
is its replacement policy. Naively replacing the LRU candidates with

the translation fill entries in a reconfigurable I-cache can lead to sub-
optimal performance. For example, replacing the victim instruction
cache line (IC-mode) with address translations will increase I-cache
misses and can be detrimental to performance as the front-end
bandwidth is reduced, especially if the instruction bytes replaced
contain critical instructions. To address such scenarios, we propose
implementing an instruction-aware LRU replacement policy. The
design principles of this replacement policy is to prioritize the
residency of instructions in the I-cache. To that end, the replacement
policy imposes following rules.

• An instruction line fill should choose the LRU candidate
from the ways containing address translations. If none of
the ways contain translations, it can replace the traditional
LRU instruction cache line. Thus, a cache line operating in
Tx-mode can transition to IC-mode when an I-cache line
replaces translations.

• A translation fill can only replace another translation in
the direct-mapped I-cache line or an idle I-cache line. That
is, it can only be filled in a line that does not contain any
instructions or it can only replace the LRU translation in a
direct-mapped line that is operating in the translation mode
(Figure 8-(c)).

4.3.3 Optimized Reconfigurable I-cache Design. One of the short-
comings of the instruction-aware I-cache design discussed in the
previous subsection is that translations can never replace lines
containing instructions. Such a constraint allows instruction lines
to continue to reside in the I-cache across kernels as long as there
is a victim line containing translations. This is important for small
instruction footprint kernels.

To address this problem, we propose a solution that flushes
the instruction lines in the I-cache upon a kernel completion if
the same kernel is not invoked back-to-back. To achieve this, the
GPU runtime can place a special command packet that flushes the
instruction lines into the GPU’s command stream if two different
kernels are enqueued back-to-back. This will allow the I-cache
to start with invalid lines upon the next kernel’s launch, thereby
allowing the translations to be cached in the invalid lines. Please
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note that the GPU runtime issues these I-cache flush commands if
and only if the same kernel is not going to be launched on the CU.
Note that GPU runtime-issued flush commands already exist for
all levels of the GPU’s cache hierarchy to support coarse-grained
memory model.

Figures 11a, 11b, 11c, 11d, 11e, 11f, 11g and 11h show the I-
cache utilization across kernels profiled on a real GPU using roc-
profiler [5] as mentioned in Section 3. In all these figures, the same
kernel is not executed back-to-back, thereby allowing opportunities
to flush the dead I-cache lines across kernel boundaries to leverage
the I-cache capacity to cache translations. Thus, this optimization
is not beneficial for applications like GEV and SRAD (Table 2) that
contain only one kernel in the entire application as well as for NW
which executes the same kernel (“nw_kernel1”) back-to-back.

4.4 Putting It All Together
Having discussed the architectural support needed to leverage idle
LDS and I-cache capacity to cache translations, we discuss the over-
all translation fill/lookup flows in our proposed system. Figure 12
shows how a translation evicted from the L1 TLB is filled into idle
LDS/I-cache structures. Depending on whether the LDS segment
corresponding to the VPN of the evicted L1-TLB entry is operating
in LDS-mode or not, the translation is filled in LDS or forwarded
to the I-cache. Flow ❶→❷ →❹ represents a scenario where the
LDS segment corresponding to the victim VPN entry is operating
in translation mode and does not incur eviction of another transla-
tion entry in LDS. However, flow ❶→❷→❹→❺→❻ corresponds
to a scenario where the LDS has to evict a translation entry to
accommodate the L1-TLB’s victim entry. However, in a scenario
where the LDS segment corresponding to the L1-TLB’s victim en-
try is operating in LDS-mode, the entry must bypass the LDS to
be inserted in the I-cache as depicted by the flow ❶→❷→❸→❻.
Depending on whether the LDS could accommodate the L1-TLB’s
victim entry, the entry to be installed in the I-cache could be either
the L1-TLB’s victim entry or the LDS victim entry. Depending on
the I-cache way mapped to by either of the VPN’s based on the
direct-mapped indexing depicted in Figure 9, if the target I-cache
way operates in Tx-mode, the entry will be installed in I-cache,
else not. Flow ❶→❷→❸→❻→❼→❽ depicts a scenario where
the corresponding I-cache way is operating in Tx-mode and the
candidate translation is installed in the target way. If a translation
must be evicted from the I-cache to accommodate the candidate
translation entry, the I-cache victim entry will be forwarded to
the L2-TLB, as shown in flow ❶→❷→❸→❻→❼→❽→❶❶. Flow
❶→❷→❸→❻→❼→❾→❿ depicts a case where the candidate
translation entry at I-cache must bypass the I-cache as the corre-
sponding way operates in IC-mode and is forwarded to L2-TLB.

The reconfigurable LDS and I-cache are looked-up in that order
after a L1-TLB miss and before the L2-TLB. LDS is looked-up first
since it is private to a CU and the access latency is low (2-cycles).
The I-cache is looked-up if the LDS lookup results in a miss or when
the segment corresponding to the virtual address is operating in
LDS-mode. If the I-cache way is operating in Tx-mode and the tag
in one of the sub-ways matches that of the virtual address, then
the lookup results in a hit. Else, the address translation request is
forwarded to the L2 TLB. Figures 6c and 9 explain the indexing
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Figure 12: Tx. Fill-flows in our reconfigurable design.

2 GHz, 8 CUs, 10 waves per SIMD
GPU 16 SIMD width, 4 SIMDs per CU,

64 threads per wave
L1-TLB 32-entries, Fully-associative;

Access Latency: 108 cycles
L2-TLB 512-entries, 16-way associative

Access Latency: 188 cycles
16KB, 8-way, shared by 4 CUs
IC-mode Tag Access Latency: 16 cycles

L1 I-Cache Tx-mode Tag Access Latency: 20 cycles
MUX Latency: 1 cycle
Tx-mode Decompression Latency: 4 cycles
16KB, private per CU; 32-byte segments;
3-tx ways; 1-tag way

LDS LDS Tx-mode Access Latency: 35 cycles
LDS-mode Access Latency: 31 cycles
MUX Latency: 1 cycle
Decompression Latency (Tx-mode): 4 cycles

Data Caches L1: 32KB, 8-way; L2: 4MB, 16-way
DDR3-1600 (800MHz),

DRAM 2 channels, 16 banks per rank,
2 ranks per channel

IOMMU [38] 32 PTWs; L1/L2-TLB: 32/256 entries
IOMMU PWCs [10] PGD/PUD/PMD Cache: 4/8/32 entries

Table 1: Simulated Setup (PTW: Page Table Walkers; PWC: Page
Walk Caches)

Suite App Kernels B-2-B L1/L2-TLB PTW- App
per App Kernels? HRs [%] PKI Category

ATAX 2 No (63.1/83.7) 37.68 H
Polybench GESUMMV 1 N/A (27.8/75.1) 90.737 H

(GEV)
MVT 2 No (29.1/83.2) 38.76 H
BICG 2 No (59.1/83.5) 38.05 H
NW 255 Yes (34.6/94.7) 4.92 M

Rodinia SRAD 1 N/A (20.9/99.9) 0.04 L
BFS 24 No (54.8/85.4) 17.23 M

Pannotia SSSP 10504 No (78.8/99.8) 0.17 L
Page Rank 41 No (81.3/99.9) 0.16 L
(PRK)

µ −bm GUPS 3 No (25.1/46.8) 36.65 H

Table 2: Benchmarks (B-2-B: Back-to-Back Kernels; PTW-PKI:
PageTable Walks per Kilo Instructions; HR: Hit Ratio percentage.)

scheme in detail for LDS and the I-cache, respectively. A translation
entry that hits in these structures is promoted to the L1-TLB while
the victim L1-TLB entry proceeds as explained above.

5 EXPERIMENTAL SETUP
We used gem5 [20] to simulate a system similar to an AMD A12-
8870 APU [16] (Accelerating Processing Unit) containing CPU and
GPU to evaluate the benefits of our approach. Our simulated system
employs a shared unified virtual memory in which the CPU and
GPU traverse the same four-level x86 page tables upon a TLB miss.
Since we simulate an application end-to-end, we had to scale down
the simulated GPU configuration significantly and simulate smaller
datasets so that the simulation time would not run in to several
weeks. Our gem5 model accurately models L1/L2 TLB coalescers
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Figure 13: Reconfigurable (a) I-cache, (b) LDS + I-cache performance, and, (c) Normalized DRAM energy results.

and split page-walk caches for intermediate page table translations.
We model a high-performance IOMMU that performs page walks
with multiple concurrent page table walkers employing device-
level L1/L2 TLBs and the split L1/L2 and L3 page walk caches that
reduce the number of levels of a page table walk [10]. More details
of our evaluated configuration are presented in Table 1. For the
evaluation results in Section 6.1, we assume an I-cache is shared by
four CUs, however, the results in Section 6.3.2 presents the results
with varying number of sharers. DRAM energy results presented
in Section 6.1.4 were from DRAMPower [13] tool.

We evaluated OpenCL [21], HC [12] applications from Rodinia
[15], Polybench [27] and Pannotia [14] suites. Apart from these
applications, we also used GUPS [22], a micro-benchmark that
randomly updates a large number of pages. We categorize the ap-
plications in to High, Medium and Low based on the baseline Page
Table Walks incurred Per thousand (Kilo) Instructions (PTW-PKI)
executed as shown in Table 2. Applications ATAX, GEV, MVT, BICG
and GUPS that incur higher than and equal to 20 are categorized
as High, while, applications NW and BFS which incur a PTW-PKI
greater than one but less than 20 are categorized as Medium. Fi-
nally, SRAD, SSSP and PRK that incur less than 1 PTW-PKI are
categorized as Low. Though applications categorized as high and
medium benefit from our schemes, we included applications from
the low category to demonstrate that our proposed scheme does not
degrade performance in this applications. We simulate the applica-
tions end-to-end and report the geometric mean of improvement
over the baseline.

6 RESULTS
6.1 Main Results
6.1.1 Reconfigurable LDS Results. Figure 13b shows the improve-
ment in performance as we store the translations in idle LDS space.
As can be noted, the geometric mean improvement in performance
across all the workloads is 8.6% with a maximum of 128.4% for
ATAX. Since each 8-byte segment out of a block of 32-byte segment
is consumed by the translation tags, one-fourth of the idle LDS ca-
pacity is consumed by the tags. Since applications from Polybench
suite like ATAX, BICG, GEV and MVT do not use LDS (Figure 4a),
out of 16KB of LDS per CU only 12KB is available for translations.
Since LDS is private per CU, translations that are shared across
CUs are replicated across LDS structures. Figure 14a shows the
percentage of translations that can potentially be shared across all
CUs. Except for GEV, NW and SRAD, a significant portion of the
translations are shared across CUs thereby limiting the cumulative

capacity leveraged for translations. Please note that such a duplica-
tion exists in the L1-TLBs as well. We leave optimizations to limit
the translation duplication for future investigations.

6.1.2 Reconfigurable I-cache Results . Figure 13a shows the bene-
fits of various reconfigurable I-cache designs discussed in Section
4.3. The first bar in the graph shows the improvements where only
one translation is stored per I-cache way. The improvements in-
curred are very minimal as one translation per I-cache hardly incurs
any hits. The second bar shows results which allows translations
to replace instructions in the I-cache. As can be noted, the perfor-
mance drops on average by 1.65% as this scheme affects instruction
hit rate which thereby impacts the front-end fetch bandwidth of
GPUs. To avoid such negative degradation in performance, we
proposed an instruction-aware replacement policy as discussed
in Section 4.3. The third bar presents a design which implements
instruction-aware replacement where each I-cache operating in Tx-
mode contains eight translations. Such a design can accommodate
8x more translations and hence the performance improvements are
substantially high with a geometric mean improvement of 12.4%,
with the highest improvement of 251.5% for ATAX. The last bar
in the results show the benefits of the I-cache flush optimization
discussed in Section 4.3.3. As shown in Table 2, applications GEV
and SRAD have only one kernel and hence this optimization does
not give any benefits for these applications. Also, the NW appli-
cation from the Rodinia suite has the same kernel “nw_kernel1"
executed back-to-back, and as a result, the I-cache is not flushed at
the kernel boundary, hence there is no change in performance. The
first kernel flush from ATAX makes ∼6KB of free space available to
store translations thereby incurring an additional improvement of
35.4%. BICG (7.4%), MVT (4.5%) and BFS (4.8%) incur significant im-
provements in performance as the instruction flushes increase the
number of translations cached. Overall, the I-cache flush improved
the performance by an additional 1.2% across all the applications.

6.1.3 Reconfigurable LDS + I-cache Results. Figure 13b shows the
overall performance when both LDS and I-cache idle capacities are
used to cache translations as explained in Section 4.4. Since the over-
all capacity available for translations is cumulative of the idle LDS
and I-cache capacities, the geometric mean improvement in perfor-
mance across all the applications is 30.1%, while ATAX and BICG
incur improvements as high as 443.3% and 442.3%, respectively.
GUPS performance is increased by 9.14%. SSSP, PRK and SRAD
are not bottlenecked by virtual memory and do not see significant
improvement in performance with our optimizations. Consider-
ing only the TLB miss intensive applications that are categorized
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Figure 14: (a) Tx-sharing results, (b) Norm. Page Walks, and, (c) 4KB and 2MB page granularity improvements.
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Figure 15: Additional Translation Entries Gained.

as High and Medium, the overall improvements in performance
acheived by our reconfigurable LDS, I-cache and (IC+LDS) schemes
are 25.9%, 36.5%, and 147.2% respectively. Considering the low TLB
miss intensive applications as well, the respective improvements
in performance are 8.6%, 13.6% and 30.1% as shown in Figure 13b.
From Figure 14b, compared to the baseline, reconfigurable LDS, IC
and IC+LDS schemes reduce the page walks by 33.5%, 40.6% and
72.9%, respectively. Please note that SRAD incurs ∼0 page walks in
the baseline and hence the normalized page walks do not change.
Figure 15 shows the additional translation entries gained. A maxi-
mum of 16K entries can be gained in our config (12K from LDS and
4K frmom I-caches).
6.1.4 DRAM Energy Results. Figure 13c shows normalized DRAM
energy consumption results. As can be noted, leveraging LDS, I-
cache, and LDS + I-cache capacities for translations reduced the
DRAM energy consumption on average by 4.1%, 5.2%, and 9.2%, re-
spectively, as the number of DRAM page walk requests are reduced
substantially due to on-chip translation hits in these structures,
with GEV incurring the highest reduction of 27.3%.

6.2 Page Size Sensitivity Results
Page size plays a crucial role in the virtual memory traffic observed
on both CPUs and GPUs. Figure 14c shows the performance im-
provement of our reconfigurable Icache + LDS design for page size
granularities of 64KB and 2MB. 64KB page size is supported in d-
GPUs and large 2MB page sizes are supported in both d-GPUs and
integrated GPUs like APU. As can be observed, our reconfigurable
Icache + LDS design improves performance by 18.4% for a 64KB
page granularity while it improves performance by 5.6% for a large
2MB page granularity vs. an improvement of 30.1% with a 4KB page
granularity. This shows that our scheme is successful in alleviating
address translation overheads for applications with large footprints
even with large pages.

6.3 Other Results
6.3.1 LDS Segment Size Sensitivity. We have experimented with
increasing the segment size of LDS from 32 bytes to 64 bytes. This

increase in the segment size increases the associativity for transla-
tions from 3 to 6 but reduces the number of segments by half. With
the increased 64B segment size, we did not see any improvement in
performance as the translation misses are mostly capacity misses
and not conflict misses. Increasing associativity without increasing
capacity did not matter much for performance.
6.3.2 I-cache Sharers Sensitivity. In the baseline design, we as-
sumed a GCN-like organization [2] where an I-cache is shared
by four CUs. Figure 16a shows the improvements as the number
of CUs sharing an I-cache is varied from one (private per-CU) to
eight (fully-shared across all the CUs). In these results, the total
I-cache capacity is kept constant and only the number of sharers
vary. As the number of sharer CUs increases from 1-CU to 8-CUs,
the performance increases from 17.3% to 38.4% as the duplication
of translations decreases which improves the translation coverage.
6.3.3 I-cache/LDS Translation Access Latency. The routing/wire
access latency to translations in I-cache and LDS is a function of
the length of the additional datapaths that feed the translations
from these reconfigurable hardware structures to the L1-TLBs. The
wire lengths of the additional datapaths, and hence their total ac-
cess latencies, are a function of the layout employed by a GPU. To
understand the impact of this additional datapath wire latency, we
perform sensitivity studies by adding 10, 50, and 100 cycles of ad-
ditional translation wire latency to LDS/I-cache structures. Please
note that these are additional latencies incurred on top of decom-
pression, SRAM macro access and MUX latencies given in Table
1. Figure 16b presents three sets of results. “IC_only” only incurs
additional wire latencies (10, 50, and 100 cycles) for I-cache trans-
lation lookup, while “LDS_only” incurs additional wire latencies
for translation lookup in LDS. “IC_LDS” shows the performance
as both I-cache and LDS translation lookup incurs additional wire
lookup latencies. The worst-case 100-cycle wire latency for both
IC and LDS show an improvement of 9.4% on average when both
I-cache and LDS store victim translations. These results are not
surprising as GPUs are designed to be latency-tolerant, and as a
result, we still see good improvements in performance as we incur
additional datapath/wire latency. This shows the efficacy of our ap-
proach in averting expensive page walks to memory by leveraging
idle (though farther) structures.

6.3.4 Improvement with DUCATI [23]. Prior work DUCATI [23]
proposed leveraging capacity from last-level cache and carved-
out capacity from GPU device memory to store end-to-end address
translations. Their scheme causes additional contention for capacity
and bandwidth. Figure 16c shows the improvement in performance
when our reconfigurable architecture is employed with DUCATI
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Figure 16: Performance Results with (a) Variable number of CUs sharing an I-cache, (b) Variable access latency to LDS and
I-cache due to layout constraints, and, (c) DUCATI [23].

proposal. Since DUCATI stores translations in data caches and in
memory, it reduces the overall page walks. In DUCATI, address
translations contend for capacity and bandwidth in the last-level
cache and memory. Unlike our scheme they do not opportunis-
tically leverage the free capacity and hence cause contention for
capacity and memory bandwidth. Consequently, DUCATI improves
the geometric mean performance by 4.9%. This low improvement
in performance in DUCATI compared to our scheme is due to the
higher number of off-chip accesses to the translations frommemory.
In conjunction with DUCATI, our hybrid reconfigurable Icache +
LDS design improves the performance by 40.7% compared to our
original design which incurred 30.1% improvement over baseline.
This shows that our reconfigurable design is successful in improv-
ing the translation reach by complementing the DUCATI proposal.

7 DISCUSSION
7.1 Translation Shootdowns
GPU driver initiates a translation shootdown to invalidate stale
translations in the event of a page swap (to disk) or migration
(within memory) or even during the updating of permission bits.
Because our proposal involves caching translations in the I-cache
and LDS, the TLB shootdown process should now include these
reconfigurable data structures in addition to the TLBs. PM4 com-
mand packet is used by AMD GPU driver to communicate with
GPU hardware and configure it [3, 40]. TLB shootdowns are origi-
nally initiated by the GPU driver [36, 47, 49] and can use a similar
command to initiate the GPU TLB shootdown on LDS/I-cache struc-
tures. The packet with a PM4-like command corresponding to TLB
shootdown is enqueued by the driver into the command queue and
the GPU packet processor reads this command packet from the
command queue. After parsing the packet, the packet processor
notifies the virtual page number of the translation to be invalidated
as part of the shoot-down to I-cache/LDS controllers to invalidate
the translation entry if present.

7.2 Multiple-Application Scenarios
Several authors [9, 25] have proposed executing multiple applica-
tions on a GPU concurrently. Traditionally, different applications
are launched on different CUs [9, 25] as they can result in security
issues [32] if they are scheduled on a same CU. Consequently, we
expect our reconfigurable LDS architecture will continue to fare
well as it can leverage the private per-CU LDS to store address trans-
lations of an application mapped to that particular CU. However,

I-cache is a shared structure and the total amount of under-utilized
capacity might reduce in the multi-application scenario. However,
since our approach only opportunistically leverages idle I-cache
capacity, it does not degrade the performance.

8 RELATEDWORK
A number of works have explored techniques to expand TLB reach
by using large pages. Ingens [26] presented techniques to improve
large pages by providing primitives to manage contiguity and im-
prove utilization and fairness. Ausavarungnirun et al. [8] specifi-
cally targeted large page support on GPUs with the Mosaic, which
provides transparent support for multiple page sizes on GPUs. Yoon
et al. [48] proposed virtual caching to reduce the virtual mem-
ory overheads on GPUs. These works are complimentary to our
own.Power et al. [38] propose techniques for hundreds of GPU
lanes to perform x86-64 address translations in a single cycle. Pic-
chai et al. [37] proposed small modifications to both TLBs and
page table walkers to improve virtual memory efficiency. Basu et
al. [43, 44] proposed techniques to improve translation for GPUs
by optimizing page table walks in the IOMMU. The first work [43]
proposes new algorithms to schedule page table walks to optimize
forward progress for SIMT execution. The second work [44] per-
forms coalescing to take advantage of locality during the page walks
themselves. Both works are complementary to our proposals, since
they affect behavior after a TLB miss.

Gebhart et al. [19] proposes combining all of a GPU’s on-chip
storage into a single structure to avoid idle resources on the device.
While such an approach could be extended for TLB entries, such a
drastic design change would be prohibitively difficult to implement
in practice. Finally, some researchers propose methods to improve
TLB reach by storing TLB translations outside of the TLB itself.
Ryoo et al. [42] expand the TLB reach of CPUs by keeping a very
large TLB as a part of main memory, which they refer to as POM-
TLB. As explained in Section 6.3.4, DUCATI [23] stores translations
in last-level cache and memory. Our proposal focuses on increasing
on-chip translation hit rate by leveraging idle LDS and I-cache
on-chip SRAM structures.

9 CONCLUSION
In this work, we make a key observation that a number of statically
allocated GPU SRAM structures are sized for worst-case applica-
tion behavior, and are frequently underutilized. Concurrently, we
observe and note from prior work [8, 23] that emerging classes of
GPU applications exhibit irregular memory access patterns to an
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ever increasing memory space. These applications are frequently
bound by insufficient TLB capacity and suffer from page table walks
that have been shown to be an order of magnitude slower than
their CPU counterparts [47]. To address this issue, we introduce
an opportunistic mechanism that steals idle resources from under-
utilized I-cache and shared memory SRAMs to improve TLB reach.
We show that our scheme is efficient to implement in hardware
and provides a 30.1% speedup over a baseline GPU design across a
variety of important GPU applications.
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