
Eager Memory Cryptography in Caches

Xin Wang§, Jagadish B. Kotra‡, Xun Jian§
§Virginia Tech ‡AMD Research

xinw@vt.edu, Jagadish.Kotra@amd.com, xunj@vt.edu

Abstract—To protect memory values from adversaries with
physical access to data centers, secure memory systems ensure
memory confidentiality and integrity via memory encryption
and verification. The corresponding cryptography calculations
require a memory block’s write counter as input. As such,
CPUs today cache counters in the memory controller (MC).

Due to the large memory footprint and irregular access
patterns of many real-world applications, MC’s counter cache
is too small to achieve high hit rate. A promising solution is also
caching counters in the much bigger Last Level cache (LLC).
As such, many prior works use LLC as a second level cache
for counters to back up the smaller counter cache in MC.

Caching counters in LLC introduces a new problem, how-
ever. Modern server CPUs have a long LLC access latency that
not only can diminish the benefit of caching counters in LLC,
but also can sometimes significantly increase counter access
latency compared to not caching counters in LLC.

We note the problem lies with MC sitting behind LLC; due
to its physical location, MC can only see LLC misses and,
therefore, can only serially access and use counters after data
miss in LLC has completed. However, prior designs without
caching counters in LLC can access and use counters in parallel
with accessing data. If a block’s counter misses in MC’s counter
cache, MC can fetch the counter from DRAM in parallel with
data; if the counter hits in MC’s counter cache, MC can use
counters for cryptography calculation in parallel with data
traveling from DRAM to MC.

To parallelize the access and use of counters with data access
while caching counters in LLC, we observe that in modern
CPUs, L2 is typically the first place that caches data from
DRAM (i.e., L2 and L3 are non-inclusive); as such, data from
DRAM need not be decrypted and verified until they reach
L2. So it is possible to offload some decryption and verification
tasks from MC to L2. Since L2 sits before L3, L2 can access
counter and data in parallel from L3; L2 can also use counters
for cryptography calculation in parallel with data traveling
from DRAM to L2, instead of just from DRAM to MC. As
such, we propose caching and using counters directly in L2
and refer to this idea as Eager Memory Cryptography in
Caches (EMCC). Our evaluation shows that when applied to
the state-of-the-art baseline, EMCC improves performance of
large and/or irregular workloads by 7%, on average.

Keywords-memory encryption and verification; counter-
mode AES; cache hierarchy; network-on-chip

I. INTRODUCTION

Due to the low cost of Cloud computing, companies
are moving more and more computation from onsite to
Cloud. However, moving to Cloud raises security concerns.
Companies can no longer control physical accesses to the
computing facilities; this opens up the possibility of physical

attacks, in which malicious personnel with physical access
can steal sensitive application data and/or tamper with them.

To improve memory security, secure memory systems en-
sure confidentiality and integrity in memory. Confidentiality
refers to hiding data values from attackers; integrity refers
to securely detecting malicious data tampering. Specifically,
when writing back data to DRAM, CPU encrypts the data
to ensure memory confidentiality and protects the data with
a message authentication code (MAC) to ensure integrity;
when fetching data from DRAM, CPU decrypts the data
and verify integrity via the MAC.

Both decryption and verification take as input a block’s
write counter, which is also simply called the block’s
counter. Memory controller (MC) stores counters in DRAM;
on an L3 miss, MC fetches the missing data block’s counter
from DRAM to decrypt and verify the block once the block
arrives from DRAM.

Many steps of decryption and verification (and thus most
of the total latency) do not need data blocks themselves; only
a block’s counter contributes to these steps. As such, MC can
start these counter-only steps for decrypting and verifying a
data block before the data block arrives from memory, as
long as MC has the block’s counter; correspondingly, MC
caches the counters [1]. To maximize the hit rate of counters
in MC’s cache, prior works propose split counter designs
[2][3] to make counters more cacheable.

However, the counter cache in MC is too small for many
large real-world applications. The large memory footprint
and irregular access patterns of many real-world applications
can lead to high counter miss rate in MC’s cache. High
counter miss rate means frequently delaying decryption
and verification and, thus, increasing total memory access
latency. High counter miss rate also translates to high
bandwidth overhead.

To address the low hit rate of counters in caches due to
big workloads, a promising solution is to cache counters in
LLC, like how LLC also caches page table blocks in LLC
in existing CPUs. Prior works [4][5][6][3][7][8] use LLC as
a second level cache for the smaller counter cache in MC.

Caching counters in LLC introduces a new problem,
however. Server CPUs have a long LLC access latency (e.g.,
23ns) that is comparable to DRAM latency (e.g., 16ns and
30ns under row buffer hit and miss, respectively). The long
latency of fetching counters from LLC not only reduces the
benefit of caching counters in LLC, but can significantly

increase the total latency of some memory accesses.
We note the problem lies with MC sitting behind LLC;

due to its physical location, MC can only see LLC misses
and, therefore, can only serially access and use counters
after data miss in LLC has completed. However, prior
designs without caching counters in LLC can access and use
counters in parallel with accessing data. If a block’s counter
misses in MC’s counter cache, MC can fetch the counter
from DRAM in parallel with data; if the counter hits in
MC’s counter cache, MC can use counters to calculate in
parallel with data traveling from DRAM to MC.

To parallelize the access and use of counters with data
access while caching counters in LLC, we observe that in
modern CPUs, L2 is typically the first place that caches data
from DRAM (i.e., L2 and L3 are non-inclusive); as such,
data from DRAM need not be decrypted and verified until
they reach L2. So it is possible to offload some decryption
and verification tasks from MC to L2. Since L2 sits before
L3, L2 can access counter and data in parallel from L3;
L2 can also use counters for cryptography calculation in
parallel with data traveling from DRAM to L2, instead of
just from DRAM to MC. As such, we propose caching
and using counters directly in L2. Later, when the data
block eventually arrives at L2, L2 directly uses the results
computed locally at L2 to finish decrypting and verifying the
data. We refer to this idea as Eager Memory Cryptography
in Caches (EMCC).

Overall, this paper makes the following contributions:
• We explore the problem of long LLC access latency

when caching counters in LLC.
• We propose Eager Memory Cryptography in Caches to

effectively hide the long latency of accessing counters
in LLC for both when counters miss and hit in LLC.

• Our evaluations show that when applied to a state-of-
the-art baseline (i.e., Morphable Counters [2]), EMCC
improves performance by 7%, on average across large
and/or irregular workloads.

II. BACKGROUND

Threat Model: Like prior works [1], [2], this paper
focuses on a threat model where the attackers (e.g., dis-
gruntled Cloud employees) have physical access to a system.
Under this threat model, the CPU-memory bus (and thus off-
chip memory contents themselves) is vulnerable to snooping
and tampering. To assist with system-level integration test
and debugging, many DDR4 memory bus probes [9] can
accurately read all values and commands transmitted over
the bus. An adversary with physical access to the computer
can buy any of the many commercial off-the-shelf DDR4
memory bus probes [9] to read everything from memory.

To provide confidentiality and integrity against a strong
adversary, capable of launching replay attacks via having
physical access, prior works [2], [10] rely on counter mode
encryption, coupled with Message Authentication Codes

µ��
���E�

$GGUHVV�
���E�

:RUG��
LQGH[���E�

&RXQWHU�
���E�

$(6

3ODLQWH[W
�&LSKHUWH[W�
����E�

.H\

273�����E�

&LSKHUWH[W
�3ODLQWH[W�
����E�

µ��
���E�

$GGUHVV�
���E�

&RXQWHU
���E�

$(6

;25�DQG�
7UXQFDWH

273����E�

0DF�
���E�

.H\:RUG��
«

:RUG��

'RW�SURGXFW
��E

.H\��
«

.H\��

'DWD�
EORFN

(a) Encryption and Decryption

µ��
���E�

$GGUHVV�
���E�

:RUG��
LQGH[���E�

&RXQWHU�
���E�

$(6

3ODLQWH[W
�&LSKHUWH[W�
����E�

.H\

273�����E�

&LSKHUWH[W
�3ODLQWH[W�
����E�

µ��
���E�

$GGUHVV�
���E�

&RXQWHU
���E�

$(6

;25�DQG�
7UXQFDWH

273����E�

0DF�
���E�

.H\:RUG��
«

:RUG��

'RW�SURGXFW
��E

.H\��
«

.H\��

'DWD�
EORFN

(b) MAC calculation.

Figure 1: Encryption and MAC calculation. Calculations in
dashed boxes can start without data arriving from DRAM.

(MAC) [2], [10]. Under prior works, CPU’s memory con-
troller (MC) encrypts a memory block and protects it with
a MAC whenever MC writes the block to memory. Later,
when MC reads the block from memory, MC decrypts the
block and uses the MAC to verify the block’s integrity.

Memory encryption and verification relies on cryptog-
raphy calculations, such as Advance Encryption Standard
or AES. AES has a fixed size of 128 bits for both input
plaintext and output ciphertext. AES has different key sizes
with different number of rounds; each round performs four
transformations.

Ensuring Confidentiality: To encrypt data to securely
writes it to DRAM, MC calculates the ciphertext for the
data by using AES to calculate an One-Time Pad (OTP) and
bitwise XORing the OTP with data to produce the ciphertext;
MC writes to DRAM the block’s encrypted ciphertext.
Specifically, OTP is calculated from counter-mode AES;
counter-mode uses a nonce (number only used once), also
known as the write counter, as the input to AES (see Figure
1a). Since each AES calculation always outputs 16B, each
OTP is also 16B; as such, encrypting a 64B data block
requires four OTPs.

To prevent an important vulnerability, where an XOR

of two ciphertexts using the same OTP can leak plaintext
information (i.e., reveal the XOR of the two plaintexts),
state-of-the-art protection techniques use different OTPs
when writing the same data block back to DRAM. A counter
is maintained for each 64B memory block; MC increases a
block’s counter whenever MC writes the block to memory.
MC stores the counters in DRAM.

When fetching a ciphertext block from DRAM, MC
decrypts the block. MC uses AES to recompute the same
OTP previously used to encrypt the block and then bitwise
XOR the recomputed OTP with ciphertext to obtain (and
thus decrypt) the block’s original plaintext.

The most time-consuming calculation under decryption is
AES; the bitwise XOR after AES is fast.

Since only a block’s address and counter contribute to
OTP, OTP calculation can start without data. As such, to
speed up decryption, MC can cache counters in MC to use
them to calculate AES as soon as a data read request arrives
at MC, before the data response arrives at MC. Counters
are more cacheable than data because each data block is
512 bits, while each counter is 56 bits [1].

Verifying Integrity: To detect data tampering, state-of-
the-art techniques use a 56-bit MAC for each data block.
When writing back a block to DRAM, MC calculates
the block’s MAC by xoring an AES result and a Galois
Field (GF) dot product result (see Figure 1b). Later, when
reading a block from DRAM, MC recomputes the MAC
for the block to check if it matches the MAC fetched from
the memory. This MAC verification check securely detects
malicious tampering and ensures integrity.

The most time-consuming calculation under integrity ver-
ification is AES since it requires multiple sequential rounds
of calculation; in comparison, dot product is faster because
all GF multiplications can be in parallel. Therefore, caching
counters, which are the inputs for AES, also speeds up
verification, in addition to speeding up decryption.

Counter Blocks: Counters are stored in DRAM in 64B
blocks, called counter blocks, like 64B data blocks. Each
counter block consists of eight 56-bit counters. Unlike data,
counters are stored in DRAM as plaintext.

To protect against tampering of counter blocks them-
selves, each counter block is also protected with its own
MAC. The MAC calculation for each counter block takes as
input another counter value (i.e., each counter block itself
is protected by another counter). State-of-the-art protection
techniques [2] [10] organize the protecting counters in a tree
called integrity tree.

When receiving from LLC a read request for data, if MC
finds that the requested data block’s counter block is not
currently cached, MC must fetch the counter block from
memory. In this scenario, MC must also use the counter
block’s counter to recompute the counter block’s MAC to
verify the counter block itself. To reduce the overhead of
also fetching and verifying the counter block’s counter, MC

also caches the counter block’s counter like data’s counter.
Improving Counter Hit Rate: To reduce the latency

overhead of memory decryption and verification, many prior
works seek to improve the hit rate of counters in caches.
Prior works [4][5][6][3][7][8] also cache counters in the Last
Level cache (LLC) to use LLC as a second level cache for
the counters to back up MC’s private cache.

To improve counter hit rate, SC-64 [3] increases the
number of data blocks protected by each 64B counter block
from eight to 64 by packing more (i.e., 64 instead of eight)
counters in each counter block. Each counter in SC-64 [3]
occupies only 7 bits instead of 56 bits. The number of data
blocks that each level of integrity tree nodes covers increases
exponentially. For example, the number of data blocks
protected by each node in the first level in the integrity
tree increases from 64 to 4096 - a factor of 82 increase.
To further improve counter hit rate, Morphable Counters [2]
increases the number of memory blocks protected by each
counter block from 64 to 128.

III. CHARACTERIZING THE PROBLEM

As memory system and dataset sizes keep increasing, the
memory footprints of many real-world applications have in-
creased to hundreds of GBs [11][12][13][14]. Huge datasets
in memory are often used by many server workloads such
as databases and data analytics [15][16][17][18][19]. Many
workloads also exhibit irregular memory access patterns.
Both large memory footprint and irregular accesses increase
the rate of TLB misses. Many prior works have studied
the problem of high rate of page table entry miss in TLBs
[11][20][21][22][23][24][25][26].

Although state-of-the-art counter designs (i.e. Morphable
Counters [2]) increases each counter block’s coverage to
8KB, it is still similar to the coverage of a 4KB page
table entry (i.e., 4KB). Because workloads with irregular
access patterns have high TLB miss rates for 4KB page
table entries, counter blocks also suffer from high miss rate
for those workloads.

To improve counter hit rate in caches, a promising solution
is also caching counters in LLC, just like how LLC also
caches page table blocks. Make prior works cache counters
in LLC [4][5][6][3][7][8].

To characterize the benefit of caching counters in LLC,
we model in Pintool [27] Morphable Counters both with and
without caching counters in LLC. We model 1MB of L2 and
2MB of LLC per thread in Pintool.

We examine all workloads used by recent prior works
[11][26] on improving address translation that we can run in
Pintool; when evaluating graphBIG [28], we use Facebook-
like dataset (i.e., 8 5 − fb [29]) and four threads. We
measure total DRAM traffic overhead, including counter
accesses to DRAM and Morphable-specific traffic (e.g.,
overflow traffic), normalized to the total number of normal
data accesses across the whole lifetime of each workload.

Traffic overhead for memory writes
Traffic overhead for memory reads

0%

50%

100%

150%

200%

W/o W W/o W W/o W W/o W W/o W W/o W W/o W W/o W W/o W W/o W W/o W W/o W

pageRank graphCol conCmp degCtr DFS BFS triCnt sssp canneal omnetpp mcf mean

Tr
af

fic
 o

ve
rh

ea
d

Figure 2: DRAM traffic overhead normalized to normal data traffic.

The results show that caching counters in LLC reduces total
DRAM traffic overhead from 105% down to 59% (see Figure
2). As such, caching counters can effectively reduce memory
bandwidth overhead.

The problem with caching counters in LLC, however,
is that that modern server CPUs have long LLC access
latency. This long LLC latency not only can significantly
diminish the benefit of caching counters in LLC, but can
actually sometimes significantly increase counter access
latency compared to not caching counters in LLC.

A. Quantifying LLC Latency in Server CPUs

We conduct real-system experiments to measure average
LLC latency for an Intel Xeon W-3175X CPU with 28 cores.

Real-system Methodology: We write a read-intensive
microbenchmark with 16MB workload size to generate
100% LLC hit rate on a server with 20MB LLC. We fix
the CPU frequency to the CPU’s base frequency 3.1GHz.
To minimize measurement noise, we ensure only one cache
or memory access at a time by turning off all prefetching
and using pointer-chasing in the main access loop. We use
RDTSC to measure the latency for each LLC access. We
repeat the microbenchmark 28 times, each time pinned to a
different core.

Measurement Results: Figure 3 shows our measured
LLC hit latency. It is 23ns, on average. This is close to
the 26ns reported in public references [30][31].

The LLC hit latency shows obvious variations; some LLC
hits can take significantly (e.g., > 10ns) longer than others.
Modern server CPUs have a distributed architecture that
splits LLC into multiple tiles. Each L2 communicates with
different LLC tiles via multiple hops through a network-on-
chip (NoC) that connects multiple LLC tiles. The multiple
hops incur long latency. The number of hops depends on
the distance between the requesting L2 and the destination
LLC tile and, hence, the variation in LLC hit latency. Figure
4 shows an example of how L2 cache communicates with
LLC tiles via the NoC after a L2 miss. The NoC topology

shown in Figure 4 is the NoC topology of the CPU used in
our real-system measurements.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

16 17 18 19 20 21 22 23 24 25 26 27 28 29

%
 o

f L
LC

 h
its

LLC hit latency (ns)

Figure 3: Distribution of LLC hit latency.

C0 L2 LS C1 L2 LS C2 L2 LS C3 L2 LS C4 L2 LS C5 L2 LS

MC1 C6 L2 LS C7 L2 LS C8 L2 LS C9 L2 LS

C10 L2 LS C11 L2 LS C12 L2 LS C13 L2 LS C14 L2 LS C15 L2 LS

C16 L2 LS C17 L2 LS C18 L2 LS C19 L2 LS C20 L2 LS C21 L2 LS

C22 L2 LS C23 L2 LS C24 L2 LS C25 L2 LS C26 L2 LS C27 L2 LS

MC2

Figure 4: NoC traffic for an L2 cache miss. “C” stands for
core; “LS” stands for LLC slice. Core0 executes a load to
data block X. X misses in Core0’s L2. The L2 uses X’s
address and a static mapping function to determine the LLC
slice (i.e., slice 24 in the example) that can cache X. When X
also misses in LLC slice 24, the slice requests X from MC.
Red arrows show requests; green arrows show response.

B. Why Long LLC Latency is a Problem for Counters

Due to the symmetry of NoC topology, fetching counters
from LLC to MC takes the same long latency as fetching
data from LLC to L2. We call the latency of fetching data

from LLC to L2 Direct LLC Latency (i.e., the latency of
directly accessing LLC without the latency of accessing L2).
As such, in a secure memory system that caches counters in
LLC, Direct LLC Latency would be the latency for MC to
access the counter in LLC. Based on our measurements, we
estimate Direct LLC Latency to be 19ns.1 This long Direct
LLC Latency increases the total latency of a memory access
in secure memory systems, which we refer to as Secure
Memory Access Latency; Secure Memory Access Latency
starts from MC receiving a data request and ends at MC
replying decrypted and verified data back to LLC.

When counter misses in LLC, Secure Memory Access
Latency increases by Direct LLC Latency compared to
without caching counters in LLC. Without caching counters
in LLC, MC directly fetches the counter from DRAM when
counter misses in MC’s cache (see Figure 5). With caching
counter in LLC, when a counter misses in MC’s cache,
MC requests LLC for the counter, suffers from LLC miss,
and then fetches the counter from DRAM. Without caching
counters in LLC, counter accesses in MC and DRAM are
on the critical path of Secure Memory Access Latency (see
Figure 5). Caching counters in LLC adds another LLC
access (i.e., counter access in LLC) to the critical path (see
Figure 5); as such, caching counters in LLC increases Secure
Memory Access Latency by 19ns Direct LLC Latency.

DRAM (row miss)
Data-only

DRAM (row miss) Crypt

Secure Mem Access W/o
caching counter in LLC

Data:
Counter:

DRAM (row miss)

Data-only

LLC DRAM (row miss) Crypt

Lookup MC's Private Counter cache

Secure Mem Access W/
caching counter in LLC

Data:
Counter:

Overhead
(19ns)

Figure 5: Timeline of Secure Memory Access Latency under
counter miss in caches. Each bar is drawn proportionally as-
suming the following: accessing counters in LLC takes 19ns;
counter-dependent cryptography computation (i.e., counter-
mode AES) takes 14ns2; MC’s counter cache takes 3ns,
which is between L1 hit latency and L2 hit latency. We
assume MAC is embedded in data [2][4]; as such, MAC
access to DRAM is not shown.

1We measure L2 access time to be 6ns, like the L2 hit latency reported in
public references [30] [31]. As L2 cache is big (i.e., 1MB), we assume data
read only occurs sequential after tag hit. As such, under LLC hit, which
requires L2 miss, we assume L2 access only consists of tag miss without
data read. Assuming L2 data read takes 2ns, L2 access takes 6ns - 2ns =
4ns under L2 miss. Therefore, Direct LLC Latency = LLC hit latency -
4ns = 23ns - 4ns = 19ns.

Increasing Secure Memory Access Latency for counter
misses in LLC is a problem for workloads with significant
counter miss rate in LLC. Many irregular workloads suffer
from frequent counter misses when caching counters in LLC;
on average, 19% of normal block misses in LLC also suffer
from counter misses in LLC (see Figure 6). This is despite
taking careful evaluation measures to minimize counter
miss rate. For example, all of our Pintool experiments run
workloads under 2MB huge pages to maximize counter hit
rate for Morphable Counters. Morphable Counters is sub-
optimal under 4KB pages; while each counter block in
Morphable covers two adjacent 4KB physical pages (i.e.,
128 adjacent physical memory blocks), OS may map two
nearby 4KB virtual pages to two far-apart physical pages
when using 4KB pages. Two far-apart physical pages require
two different Morphable counter blocks, instead of one; this
increases counter misses.

0%
20%
40%
60%
80%

100%
120%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

MC counter hit LLC counter hit LLC counter miss
19%
15%

65%

Figure 6: Counter hits and misses in MC and LLC for read
requests to normal data under an LLC with 2MB/core and
a shared counter cache with 32KB/core. The number of
counter hits and misses are normalized to the number of
normal memory reads.

0%
20%
40%
60%
80%

100%
120%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

MC counter hit LLC counter hit LLC counter miss
14%
18%

67%

Figure 7: Counter hits and misses in MC and LLC for read
requests for normal data under an LLC with 12MB/core
and a shared counter cache with 32KB/core. The number
of counter hits and misses are normalized to the number of
normal memory reads.

Counter miss rates in LLC remain high even under bigger
LLCs. Figure 7 shows that the average counter miss rate

2Cryptography computation typically uses AES-128. The 14ns latency
we assume is faster than the latency of AES-128 under 7nm technology
[32] considering possible future improvements.

Overhead
(8ns)

DRAM (row miss)

Data-only

Crypt

Secure Mem Access
W/ counter hit in MC

Data:
Counter:

DRAM (row miss)

Data-only

LLC Crypt

Lookup MC's Private Counter cache

Secure Mem Access
W/ caching ctr in LLC

Data:
Counter:

Figure 8: Timeline of Secure Memory Access Latency under
counter hit. It assumes the same latencies as Figure 5.

in LLC only reduces from 19% down to 14% when LLC
increases from 2MB per core to 12MB per core.

Even if counter hits in LLC, Secure Memory Access
latency also increases compared to counter hits in MC’s
cache (see Figure 8). When counter hits in MC’s counter
cache, counter-mode AES completely overlaps with DRAM
access so that counter access is not on the critical path of Se-
cure Memory Access Latency (see Figure 8). However, with
counter access in LLC, counter-mode AES only partially
overlaps with DRAM access (see Figure 8) and, therefore,
adds counter access to the critical path and increases Secure
Memory Access latency.

We expect the problem of long counter access latency
to LLC to worsen going forward. First, as the number of
cores increases, the number of hops required to traverse the
NOC also increases; this increases the latency of accessing
LLC. Second, emerging multi-chiplet architectures, which
move MC and subgroups of cores to different chiplets, will
further increase the latency for MCs to access LLC.

IV. EAGER MEMORY CRYPTOGRAPHY IN CACHES

To hide the long latency of accessing counters in LLC, we
note the root problem lies with MC sitting behind LLC; as
such, MC can only see LLC misses and, therefore, can only
fetch counters from LLC serially after data miss in LLC.

A promising solution is to parallelize counter and data
access in LLC. Perfectly parallelizing counter and data
accesses in LLC can achieve the same performance as
idealized zero-latency counter accesses from LLC. This
enables MC to simultaneously receive from LLC a request
for data and either the data’s counter or miss request for the
data’s counter. If MC simultaneously receives a request for
data and the data’s counter, MC can start counter-mode AES
when starting DRAM access for data, just like a hit in MC’s
counter cache. If MC simultaneously receives a request for
data and a miss request for the data’s counter, MC can fetch

data and counter from DRAM in parallel, just like without
caching counters in LLC.

A. Challenges of Parallel Counter & Data Accesses in LLC

Parallezing counter and data Accesses in LLC requires
addressing two key challenges:

Challenge 1): Parallelizing counter and data access in LLC
can significantly increase LLC accesses and NoC traffic.
Parallelly accessing counters in LLC for every data access in
LLC will double or even quadruple LLC accesses and NoC
traffic; note that verifying a data block not only requires the
data’s counter, but sometimes also the counter’s counters.
Such high on-chip overheads are due to two reasons. First,
whether a counter access is necessary is not known until
data access in LLC completes; the parallel counter access to
LLC issued at the start of the data access in LLC becomes
useless if the data access hits in LLC. Second, whether a
counter is already in MC’s counter cache is also not known
at the start of data access in LLC; the parallel counter access
to LLC issued at the start of the data access in LLC becomes
useless if the needed counter block is already in the counter
cache at MC. As such, parallel counter and data accesses in
LLC can cause many useless counter accesses in LLC and
useless NoC traffic.

Challenge 2): Truly parallel lookup is impossible. Due to
the highly non-uniform NoC latency (see Figure 3), the NoC
latency for accessing counters from LLC can sometimes
(e.g., 50% of the time) be longer than accessing data from
LLC. When counter access hits but data access misses in
LLC, accessing counter is also slower than data due to A)
incurring tag + data lookup latency in LLC, instead of just
tag latency, and B) NoC taking longer to transmit actual
counter payload than the data miss request.

B. Key Idea: Moving decryption/verification from MC to L2

In this paper, we address the above two challenges to
extract the full performance benefit of truly parallel lookup
at the cost of minimal on-chip bandwidth overhead.

We observe that in modern CPUs, L2 is typically the first
place that caches new data from DRAM. Unlike Intel’s older
Haswell architecture, where L3 is inclusive of L2, newer
Skylake architecture uses a non-inclusive cache hierarchy
where L3 serves as a victim cache that caches evictions
from L2. Because L2 is the first place that caches data from
DRAM, data arriving from DRAM need not be decrypted
and verified until they reach L2. So it is possible to move
selected memory cryptography tasks from MC to L2. Doing
so provides the following benefits:

1) Because L2 sits before LLC, L2 can issue counter and
data requests to LLC in parallel, just like how MC can issue
counter and data requests to DRAM in parallel.

2) After L2 receives counters from LLC, L2 can naturally
cache the counters. Caching counters in L2 filters out most of
the useless counter accesses to LLC, like how MC’s counter

cache can eliminate all useless counter accesses to DRAM
in prior designs that do not cache counters in LLC.

3) Calculating counter-mode AES in L2 can increase the
overlap between computation and data movement; calculat-
ing in L2 can overlap computation with data traveling from
DRAM back to L2, instead of just overlapping computation
with data traveling from DRAM to MC like prior designs.

As such, we propose moving common-case decryption
and verification tasks from MC to L2. Specifically, we
propose a) caching counters and b) using counters directly
in L2 and refer to this idea as Eager Memory Cryptography
in Caches (EMCC). Figure 9 gives an overview of EMCC.

Data-only

L2 Data’s CountersData Decryption + Verification

Data’s Counters
Counter Blocks’ counters

LLC

MC
Counter Blocks’ Counters

Data’s Counters
Counter Verification Data Encryption and MAC Updating

Controller SRAM

Some Data Decryption + Verification

Private Metadata Cache

SRAM

Controller

Controller

<Unverified Ciphertext, MAC⊕dot product>

Data
Verified
Plaintext

<Unverified Ciphertext, MAC⊕dot product>

Data

Figure 9: Architectural overview of EMCC. New/modified
actions are in green.

The rest of Section IV is organized as follows. Section
IV-C describes how EMCC efficiently caches counters in
L2 to filter out useless counter accesses to LLC. Section
IV-D describes how EMCC uses the counters cached in L2
to decrypt and verify counters directly at L2.

C. Caching counters in L2

EMCC caches counter blocks in L2, like how current
CPUs cache page table blocks in L2. Under EMCC, after
each data miss in an L2, L2 serially looks up the data’s
counter in the L2. If the counter block also misses in L2, L2
issues a request for the counter block and caches the counter
block when it arrives from LLC. As such, EMCC reuses L2
as a small level-one counter cache to filter out most of the
counter accesses to LLC, just like how the counter cache
in MC eliminates unnecessary counter accesses to LLC in
a basic design that serially accesses LLC for counter after
data miss in LLC.

Serially looking up a counter in L2 only after a data block
misses in L2 reduces the degree of overlap between data
access and counter access in LLC. However, the resultant
counter access to LLC can still proceed mostly in parallel
with the data access in LLC (see Figure 10a); as such,
EMCC can still respond to L1 much sooner than the baseline
(see Figure 10b).

When caching counters in L2, one issue is that DRAM
accesses (both reads and writes) require accessing multiple
counters (i.e., not just the counter protecting the data, but
also counters protecting data’s counters). Caching so many

(a) EMCC: memory access timeline under counter miss in LLC.

(b) Baseline: memory access timeline under counter miss in LLC.

Figure 10: Timeline of memory accesses under counter miss
in LLC and row buffer miss in DRAM. ‘J’ is the delay of
counter access in L2 due to sequential access of data and
counter. ‘Y’ is the latency of counter access in MC’s counter
cache. In this scenario, EMCC can respond decrypted and
verified data back to L1 16ns earlier than the baseline.

counters per memory access can pollute the small L2 cache.
Fortunately, only data’s counters are frequently used. As
such, EMCC only caches data’s counters in L2. We also note
that reads are more critical to performance than writes; as
such, L2 only accesses and caches counters for data misses
in L2, but not for writebacks from L2. As such, EMCC
continues to verify counters and cache tree nodes in MC (see
Figure 9). Like all prior works, MC is still fully responsible
for verifying counters when they miss in caches (i.e., not
found in L2, LLC, and MC’s counter cache). MC only
replies to LLC and L2 with a counter block after verifying
the counter block.

Another issue is that at the time of L2 data miss, L2
does not know whether the data will also miss in LLC.
However, to parallelize counter and data accesses in LLC,
L2 must speculatively request LLC for the data’s counter, if
the counter also misses in L2. The parallel counter access
to LLC may be useless if the data access hits in LLC. We
note that even in this scenario, the counter access to LLC
may still be useful if the copy of the counter inserted into
L2 is used for a later data miss in LLC. As such, a parallel
counter access to LLC from L2 is only useless if it is never
used for any data miss in LLC between the time the counter

0%
2%
4%
6%
8%
10%
12%
14%

pa
geR

an
k

gra
ph
Co
lor
ing

con
ne
cte
dC
om
p

de
gre
eC
en
tr DF

S
BF
S

tria
ng
leC
ou
nt

sho
rte
stP
ath

can
ne
al

om
ne
tpp mc

f
me
an

Figure 11: Useless counter accesses to LLC under EMCC,
normalized to total number of L2 data misses. It is only 3.2%
on average, thanks to caching counters in L2. Morphable
Counters is used as the underlying counter design.

0%
20%
40%
60%
80%
100%

pa
geR

an
k

gra
ph
Co
lor
ing

con
ne
cte
dC
om
p

de
gre
eC
en
tr

sho
rte
stP
ath BF

S

tria
ng
leC
ou
nt DF

S

can
ne
al

om
ne
tpp mc

f
me
an

Baseline EMCC

Figure 12: Total counter accesses to LLC under EMCC and
baseline, normalized to total number of L2 data misses.
Here, Morphable Counters is used as the underlying counter.

is inserted into L2 and is evicted from L2.
We model EMCC in Pintool. Figure 11 shows the number

of counter accesses that L2 issues to LLC normalized to
total data accesses to LLC. It is only 3.2%, on average.
As such, caching counters in L2 practically eliminates the
bandwidth overhead due to speculatively accessing counter
in parallel with accessing data in LLC. Figure 12 shows
the total counter accesses to LLC normalized to total data
accesses to LLC under EMCC; it is 35.6%, on average. As
comparison, Figure 12 also shows the total counter accesses
to LLC normalized to total data accesses to LLC under a
baseline design that uses LLC as a conventional second-level
cache for counters; this baseline always serially accesses a
data block’s counter in LLC after the data block misses in
LLC to minimize counter accesses to LLC. EMCC incurs
only 4.2% more counter accesses to LLC than the baseline.

Hardware Overheads: Caching counters in L2 incurs
no SRAM area overhead; EMCC reuses the same L2 to
cache counter blocks, just like how L2 is used to cache data
blocks, instruction blocks, and page table blocks. Caching
counter blocks in L2 requires no changes to existing L2
circuits; it only requires adding a new standalone circuit to
issue counter block requests, like the L2 prefetcher. Another
hardware change is adding a standalone circuit to MC to

issue invalidation requests when MC updates counters while
serving writebacks to DRAM. This is an implementable
change. For example, Intel’s previous Haswell CPUs’ MCs
contain Home Agents to send invalidation requests to caches
to support multi-socket systems [33]; consider a two-socket
system, before Socket A writes to a block owned by Socket
B, A sends an upgrade request to B’s MC, which invalidates
all cached copies in B.

D. Using Counters in L2 for Cryptography Computation

As described in Section IV-A, another challenge with
parallel counter and data access in LLC is that counter
accesses are often slower than data access, even if the two
requests are issued at the same time. Our approach of serially
accessing counters in L2 only after data misses in L2 to
filter out useless counter accesses to LLC (see Section IV-C)
further worsens this problem; it delays the corresponding
counter request to LLC by L2 latency after a data request to
LLC. Contentions in L2 may further delay the serial counter
access in L2; after a data miss in L2, EMCC only looks up
the corresponding counter in L2 during spare L2 cycles.

To address the challenge that counter accesses to LLC are
slower than data accesses to LLC, we note that under prior
designs, MC can overlap counter-mode AES computation
with data traveling from DRAM to MC [34]. However, the
overlap ends when the data block arrives at MC.

We observe that most of the LLC access latencies in
modern server CPUs are due to NoC latencies; using our
real-system measurements in Section III, we calculate aver-
age one-way latency between two NoC nodes on-chip to be
7.5ns; see ‘One-way latency calculation’ in Appendix. As
such, data response takes a long time to travel from MC to
L2; see ‘MC-to-L2 route’ in Appendix for how we calculate
MC-to-L2 NoC latency. Therefore, we propose computing
counter-mode AES for data directly in L2. Computing in
L2 enables computation to overlap with data traveling from
DRAM all the way to L2; this provides significantly more
overlap than overlapping computation with simply data trav-
eling from DRAM to MC. The increased overlap between
computation and data movement can effectively hide the
delayed start of computation due to slower counter accesses
to LLC than data requests to LLC.

Figure 13a “Overlap” shows how EMCC overlaps com-
putation with data traveling from DRAM to L2, assuming
counter hit in LLC and row buffer hit in DRAM. After a
counter miss in L2 following a data miss in L2, L2 issues
a request to LLC to fetch the data’s counter. After counter
arrives from LLC, L2 uses it to start counter-mode AES, in
parallel with waiting for data response from MC. With the
long latency of data traveling from MC to L2, when data
arrive at L2 from LLC, L2 would have finished calculating
AES. L2 uses the locally computed results to decrypt and
verify the data. In the common case, the data is correct;
L2 caches the decrypted data and forwards it to L1. In the

(a) EMCC: memory access timeline under counter hit in LLC.

(b) Baseline: memory access timeline under counter hit in LLC.

Figure 13: Timeline of memory accesses under counter hit
in LLC under EMCC and under the baseline as compari-
son. Red indicates counter access path; Blue indicates data
access path. ‘K’ represents non-uniform NoC latencies that
sometimes make counter requests travel longer than data
request; ‘L’ indicates the latency due to serially looking up
data array after tag match when a counter hits in LLC; ‘M’
is the latency of transmitting actual counters (as opposed to
just counter requests) across NoC.

uncommon case, L2 detects data tampering; L2 incurs a
hardware interrupt to signal the system, just like how L2
incurs ECC hardware interrupt for ECC error.

Even with row buffer miss, EMCC can also overlap
computation with data traveling form DRAM to L2. Figure
14 gives an example of overlap under row buffer miss and
LLC miss prediction. LLC miss prediction like Intel XPT
[35][36][37][38] predictively forwards a miss request from
L2 directly to MC in parallel with accessing LLC. Because
irregular workloads suffer from high LLC miss rate (i.e.,
91% on average across workloads in Section III), we expect
XPT to be used for common-case memory accesses for
irregular workloads.

EMCC only moves data decryption and verification to L2.
EMCC continues to encrypt data and calculate new MAC for
data in MC, just like existing designs because these tasks are
only required for writing back to DRAM; note that L2 only
observes reads from DRAM, but not writebacks to DRAM.
Because AES only takes counter as input but not data (see
Figure 1), L2 uses the counters it caches to calculate AES for
both data decryption and verification. To help L2 to verify
data arriving from MC, MC embeds in the data response

(a) EMCC: memory access timeline under counter hit in LLC.

(b) Baseline: memory access timeline under counter hit in LLC.

Figure 14: Timeline of memory accesses under row buffer
miss in DRAM, counter hit in LLC, and LLC miss pre-
diction. In this scenario, EMCC can respond decrypted and
verified data back to L1 22ns earlier than the baseline.

to LLC the bitwise XOR of data’s MAC from DRAM and
the dot product of data (see Figure 9); as shown in Figure
1b, MAC is the bitwise XOR of this dot product with AES
result. As such, when L2 receives data and the embedded
XOR result, L2 verifies the data by checking if the XOR
result matches the AES result calculated locally at L2.

One issue with calculating the dot product at MC is that
MC only has ciphertext, while the dot product is typically
calculated from plaintext (see Figure 1b). This issue can be
addressed by simply changing the MAC calculation to use
each block’s ciphertext, instead of plaintext.

L2 only verifies data arriving from DRAM; counter blocks
arriving from DRAM are always verified in MC (see Figure
9), like prior designs. MC only sends counters arriving from
DRAM back to LLC after verifying them; this ensures L2
only uses verified counters to verify data. Verifying only
data, but not counters, at L2 minimizes the control logic/area
to add to L2; counter verification is a complex operation
that accesses up to multiple counter blocks, starting from
the lowest integrity tree level that is still cached on-chip.

To minimize area overhead, instead of adding more AES
units to L2, EMCC moves some AES units from MC to
L2s so that the total AES units in the processor remains
unchanged. EMCC distributes half of the AES units in
MC across the L2’s; MC retains the other half to perform
encryption for writebacks and to verify counters accessed
from DRAM. Moving AES units from MC to L2s is feasible

because AES units are small (e.g., 3894um2 per unit under
7nm technology node [32]).

One issue is that each L2 can only get relatively low AES
calculation bandwidth (e.g., see calculations in Section V).
As such, spikes in L2 misses can lead to long queuing delay
to wait for AES calculations.

To address this challenge, EMCC adaptively offloads data
decryption and verification back to MC. When EMCC deter-
mines that the AES queuing time for a new L2 miss exceeds
the latency that can be saved by performing cryptography
computation in L2, L2 gives up cryptography computation
for this L2 miss. Instead, L2 embeds this binary decision in
the miss request that L2 sends to LLC, which propagates
the bit to MC if the request also misses in LLC. When
receiving a LLC miss request with this embedded decision
bit, MC knows to decrypt and verify the requested data after
it arrives from DRAM before responding to LLC, just like
existing MCs.

Another issue is that when a data block hits in LLC,
calculating AES for the data access is useless and wasteful.
As such, L2 only starts calculating AES for a data miss
at L2 after waiting LLC hit latency. At this time, if L2 still
has not received the response to the L2 data miss, L2 knows
the data block likely also misses in LLC and, therefore, can
safely start calculating AES for the data miss without risking
wasting any AES bandwidth at L2.

To further conserve AES bandwidth at L2, EMCC only
decrypts and verifies a data block at L2 when the data
block’s counter hits in LLC or L2. When MC receives a miss
request for a counter block, EMCC decrypts and verifies
the corresponding data access to DRAM in MC (see Figure
10a), instead of L2, and tags the data block as decrypted
and verified while sending the data block back to the cache
hierarchy; this informs L2 to not redundantly decrypt and
verify the data block when receiving the block.

E. Security Analysis

Prior works cache counters in LLC. The only thing that
MC does differently from prior works, as far as security may
be concerned, is also caching counters in L2.

Caching counters in L2 should not open up any new useful
side channels because cached counters are less useful to
attackers than cached data blocks; counter blocks cannot
be explicitly flushed. In the vulnerable scenario of finely
(i.e., at small time windows) sharing cores across multiple
users/processes, attackers can simply use existing/traditional
attacks targeting data blocks in L2, without any motivation
to explore new attacks targeting counters in L2. Caching
counter blocks in L2 makes side-channel attacks more
difficult by adding more uncertainty to cache replacement
and making L2 less controllable. In the converse scenario,
when different processes run on their own cores, caching
counters in L2 has no impact on side-channel vulnerabilities;

security-sensitive users (e.g., ones wanting memory encryp-
tion) typically do not finely share their cores with others as
fine sharing opens up broad side-channel vulnerabilities.

F. Discussion

Inclusive Cache Hierarchy: While EMCC naturally suits
non-inclusive cache hierarchies, EMCC can also be extended
to an inclusive cache hierarchy; however, some changes to
LLC and L2 are required.

For LLC, when an encrypted and unverified block arrives
from DRAM, LLC caches it as usual to ensure inclusivity
but marks it as encrypted & unverified in LLC (e.g., via
a new bit per LLC cacheline). When an L2 miss hits in
LLC, if the LLC copy is currently marked as such, LLC
satisfies the request by fetching a copy from an L2 that owns
(i.e., under MOESI) or shares (i.e., under MSI) the block.
Conversely, LLC resets the new bit to false after receiving a
copy from L2 for any reason; L2 copies are always decrypted
and verified.

For L2, when LLC replies to it a memory block that is
encrypted & unverified in LLC, L2 decrypts and verifies
the block as described in Section IV-D. By adding a new
bit per L2 cacheline, L2 can remember to perform a clean
writeback if evicting the block later in clean state, like the
clean writebacks in non-inclusive caches. L2 also resets an
L2 cacheline’s new bit to false after LLC fetches the copy
in the L2 cacheline for any reason.

Non-memory-intensive Workloads: While speeding up
memory-intensive applications, EMCC should ideally waste
neither precious L2 space nor energy for non-memory-
intensive workloads. For applications with high L2 hit rate,
EMCC wastes little to no L2 space or energy because EMCC
only accesses counters in L2 after regular memory blocks
miss in L2. However, for applications with high L2 miss
rate but high LLC hit rate, accessing and then caching
counters in L2 after L2 miss still wastes L2 space and
energy. As memory has little impact on the performance
of non-memory-intensive applications (e.g., ones with fewer
than one memory access per thousand instructions), L2
may dynamically turn off EMCC (i.e., dynamically offload
all decryption/verification back to MC) when detecting
non-memory-intensive applications; to estimate the memory
intensiveness of the application accessing it, an L2 may
compare how many of its misses are satisfied by DRAM
to how many requests it receives (i.e., periodically sample
memory accesses per thousand L2 accesses).

V. METHODOLOGY

We evaluate the performance of EMCC using Gem5 [39].
We simulate the benchmarks in Section III. In Gem5 full-
system mode, We run graphBIG [28] under multi-threading.
We run SPEC and Parsec as multi-programmed workloads;
each multi-programmed workload has four instances of
the same benchmark. Same as our Pintool experiments in

CPU X86, 4 cores, 3.2 GHz,
4-wide OoO, 192 entry ROB

D-TLB, I-TLB 1536 entries each
Page Walker Cache 2KB
Degree of constant stride prefetcher L1: 1 L2: 2
L1 ICache/DCache 32/64KB,4/8-way,2ns
L2 Cache 1 MB 8-way, 4ns
L3 Cache 8 MB 16-way, 17ns
Counter Cache in MC 128KB 32-way, 3ns
Decoding of Morphable Counters 3ns
AES-128 latency 14ns
NoC Lat Between LLC and MC 17ns
NoC Lat Between L2 and MC 34ns
Memory 128 GB DDR4
Memory Data Rate 3.2 GT/s
tCL, tRCD, tRP 13.75ns
tRFC 350ns
Row buffer policy 500ns timeout
Read/Write queue 256 entries
Channels, Ranks 1, 8
Mapping Function XOR-based like Skylake [41]
Bank-level scheduling policy FR-FCFS-Capped

Table I: Primary microarchitecture parameters. Listed cache
latencies are additive (e.g., total L2 hit lantecy is 2+4 = 6ns.)

Section III, our Gem5 experiments simulate running the
benchmarks under 2MB huge pages. We fast forward each
benchmark deep into the region of interest using Gem5’s
KVM mode in native execution speed. We then use Gem5’
atomic mode to warm up the counter values for 25 billion
instructions, like [2]. Next, we warm up the branch predictor
by running the benchmark for 10ms in detailed mode.
Finally, we evaluate performance during the next simulated
20ms in detailed mode; performance modelling for counter
accesses are turned on during this last stage of simulation.

Table I lists the simulated microarchitecture parameters.
We use 128KB counter cache in MC, like [2]. Similar
to prior works [4][5][6][3][7][8], LLC also caches counter
blocks and integrity tree nodes. In our simulation, EMCC
only caches 32KB worth of counters in L2; limiting the
amount of counters in L2 helps to ensure that our evaluated
performance benefits over the baseline do not simply come
from caching more counters. We use Ramulator [40] to
model 128GB DRAM in Gem5. We use Gem5’s classic
model to simulate the cache hierarchy. We modify the classic
model to simulate non-uniform NoC latency for L3 hit and
L3 miss by adding a non-uniform latency component to
Gem5’s L3 Hit Latency and Gem5’s L3 Miss Response
Latency for individual cache accesses. The modelled non-
uniform NoC latency follows the real-system distribution we
measured in Figure 3.

Simulation Details for Counter-mode AES: To decide
on the AES bandwidth for each L2 cache under EMCC, we
calculate the peak AES bandwidth requirement under Mor-
phable Counters. Since the DRAM transfer rate we model
is 3200MT/seconds, the maximum number of memory ac-
cesses (include reads and writes) per second is 3.2*8B/(64B)
= 400,000,000. Assuming 1:1 memory write to read ratio,

the number of memory reads and writes are 200,000,000
both for reads and writes per second. Each memory read
calls for five AES calculations (i.e., one for verifying data,
four for decrypting data’s four words); each memory write-
backs calls for eight AES calculations (i.e., four for updating
four MACs, four for encrypting data’s four words). As
such, the peak AES bandwidth under Morphable Counters
is 200,000,000*5 + 200,000,000*8 = 2,600,000,000 AES
calculations/second. Providing this AES bandwidth requires
multiple AES units, similar to requiring multiple floating
units to achieve high GFlops. EMCC moves half of the
AES units from MC to four L2s so that the four L2s can
collectively provide half of the peak AES bandwidth. As
such, AES bandwidth in each L2 is (2600000000/2)/4 =
325,000,000 AES calculations/second.

MC fetches MAC for each memory access to verify the
accessed data (see Section II). Like [2], we co-locate data,
its MAC, and error correction code in the same memory
block; this enables data, its MAC, and ECC to be accessed
together in one DRAM access without any traffic overhead.

Baselines: We compare against Morphable Counters [2]
as our primary baseline. Since we choose Morphable Coun-
ters as the primary baseline, EMCC is always applied on
top of Morphable across all evaluations. We also simulate
an older work - SC-64 [3].

Under Morphable Counters, extracting a block’s counter
value from a counter block requires decoding the counter
block. Counter decode first requires extracting the corre-
sponding minor counter from Morphable Counter block;
this can take several cycles because counter blocks contain
a variable and non-power-of-2 (e.g., 36, 42, 51) number
of non-zero minor counters. Second, calculating the end
counter value from a minor counter requires adding two
major counters and the minor counter. We simulate 3ns
counter decoding latency both for the baseline and EMCC.

Morphable Counters and SC-64 are split counter designs.
Split counters require reading and writing entire memory
page(s) to re-encrypt them when a writeback causes a
counter overflow. We simulate at most two outstanding
overflows at a time (i.e., MC rejects all incoming LLC
requests after detecting a writeback that would incur a third
overflow). In the background, MC continuously generates
for outstanding overflow(s) a limited number of 64B requests
at a time to prevent them from occupying more than eight
slots in the read/write queue at any time; this prevents the
64B requests due to overflow(s) from seizing up the entire
read/write queue.

Figure 15 shows the breakdown of bandwidth utilization
for different types of memory accesses under Morphable
Counters during the window of performance evaluation.

VI. RESULTS

Figure 16 shows the performance of EMCC, Morphable
Counters, and SC-64, normalized to a non-secure memory

0%
10%
20%
30%
40%
50%
60%
70%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

meanBa
nd

w
id

th
 u

til
iza

tio
n

data
counters
level 0 overflow
level 1 and higher level overflow

Figure 15: Memory bandwidth utilization due to DRAM data
accesses, counter accesses, and overflows for each bench-
mark under Morphable Counters. Bandwidth is normalized
to the memory channel’s peak physical bandwidth.

system without encryption and verification. EMCC improves
performance by 7%, on average, compared to Morphable.
Canneal gets the most benefit - 12.5%; this is because
canneal has the highest miss rate in MC’s counter cache (see
Figure 6). Since EMCC hides the long latency of accessing
counters in LLC, the benchmark with the most frequent
counter accesses to LLC benefits the most from EMCC.

70%
75%
80%
85%
90%
95%

100%

page
Rank

graphColorin
g

co
nnecte

dComp

degre
eCentr DFS

BFS

tri
angle

Count

sh
orte

stP
ath

can
neal

omnetpp
mcf

mean

N
or

m
al

ize
d

Pe
rf

SC-64 Morphable EMCC

Figure 16: Performance of EMCC, Morphable and SC-64
normalized to a non-secure memory system.

Figure 17 shows L2 miss latency for both baseline and
EMCC. EMCC saves, on average, 5ns on L2 data miss la-
tency over Morphable Counters. Benchmarks with the high-
est savings on L2 miss latency (e.g., canneal, graphColoring)
also benefits from the most performance improvement.

A. Sensitivity to AES Latency
While our primary evaluation assumes 14ns AES latency

for AES-128 (see Section III), AES takes longer when
stronger security is required. Providing stronger security
requires AES to perform more sequential rounds of calcu-
lations. For example, AES-256 has four more rounds and
takes 6ns longer than AES-128 [32].

We perform a sensitivity analysis on AES latency by
evaluating the performance benefit of EMCC under longer
AES latencies. The performance benefit increases with AES
latency. The average improvement increases to 9% when
AES latency increases to 25ns (see Figure 18).

30
40
50
60
70
80
90

100
110

page
Rank

graphColorin
g

co
nnecte

dComp

degre
eCentr DFS

BFS

tri
angle

Count

sh
orte

stP
ath

can
neal

omnetpp
mcf

mean

L2
 m

iss
 la

te
nc

y
(n

s) SC-64 Morphable EMCC Non-secure

Figure 17: Average L2 miss latency of EMCC, Morphable,
SC-64 and non-secure systems.

0%

5%

10%

15%

20%

pageRank

graphColorin
g

connecte
dComp

degre
eCentr DFS

BFS

tria
ngle

Count

shorte
stP

ath

can
neal

omnetpp
mcf

mean

Pe
rf

be
ne

fit

14ns AES 20ns AES 25ns AES

Figure 18: Performance improvement over Morphable Coun-
ters under different AES latencies: 14ns, 20ns, 25ns.

The increasing benefit of EMCC can be explained by dif-
ferent critical paths of Secure Memory Access for baseline
and EMCC. In baseline designs, counter-mode AES is on
the critical path of Secure Memory Access (see Figure 8).
As such, increasing AES latency increases Secure Memory
Access latency. Under EMCC, however, AES for a data
block finishes much earlier than when the data block arrives
at L2 (see Figure 13a); as such, data accesses are not delayed
by AES even when AES takes longer.

B. Sensitivity Analysis on AES Bandwidth at L2

To determine how much AES bandwidth to move from
MC to L2s, we evaluate moving different fractions of AES
bandwidth from MC to L2s. Figure 19 shows what fraction
of DRAM data accesses are decrypted and verified at L2s
when moving different fractions of AES bandwidth to L2s.
When distributing half of the AES bandwidth from MC to
L2s, EMCC decrypts and verifies 76.3% of DRAM data
accesses at L2, on average.

Figure 19 shows that for mcf, EMCC only decrypts and
verifies 50% of DRAM accesses in L2s. This is due to the
high memory access rate under mcf (see Figure 15). mcf’s
high memory access rate causes spikes that exceed the AES
bandwidth that EMCC moves from MC to L2; as such, L2
offloads decryption and verification back to MC for many
memory accesses.

% of AES units moved to L2:

0%
20%
40%
60%
80%

100%

pageRank

graphColorin
g

connecte
dComp

degre
eCentr DFS

BFS

tria
ngle

Count

shorte
stP

ath

can
neal

omnetpp
mcf

mean

%
 o

f L
LC

 m
iss

es

20% 40% 50% 80%

Figure 19: The number of DRAM data accesses decrypted
and verified by L2s under EMCC. The number is normalized
to the total number of DRAM data accesses.

C. Sensitivity Analysis on Counter Cache Size

We also perform a sensitivity analysis on counter cache
size. We increase MC’s counter cache to 256KB and 512KB.
Figure 20 shows the performance benefit of EMCC when
MC uses bigger counter caches. With bigger counter cache,
the benefit of EMCC decreases because bigger counter
caches reduce the number of counter accesses to LLC.
Because the benefit of EMCC comes from hiding the latency
of counter accesses in LLC, fewer counter accesses to LLC
decreases the benefit of EMCC. However, the decrease in
benefit is less than 1%; we find counter cache miss rates
decrease little as counter cache grows in size. Counter cache
miss rate reduces from 35%, on average, down to 31%, on
average, when increasing from 128KB to 512KB.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

Pe
rf

be
ne

fit

128KB counter cache 256KB counter cache
512KB counter cache

Figure 20: Performance benefit over Morphable Counters
under different sizes of counter caches.

D. Sensitivity Analysis on DRAM Bandwidth

To evaluate the benefit of EMCC under higher DRAM
bandwidth, we also evaluate EMCC under eight channels.
As shown in Figure 21, the performance benefit of EMCC
over Morphable Counters increases under eight channels.
When modeling eight channels, we use bits 8 to 10 of the
memory address of each incoming memory request as the 3-
bit channel ID to access the corresponding memory channel.

The increasing benefit is due to faster data access under
higher memory bandwidth. As can be seen in Figure 8,
reducing data access latency (e.g., shrinking the two blue

data access bars in Figure 8) would worsen the overhead
of the baseline (e.g., would lengthen the “Overhead” arrow
in Figure 8). When the baseline incurs more overhead,
EMCC can provide more improvement over the baseline
since EMCC is designed to hide the latency overhead.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

Pe
rf

be
ne

fit

1 channel 8 channel

Figure 21: Performance benefit over Morphable Counters
under single memory channel and eight memory channels.

The shorter DRAM latency under high memory band-
width is due to reduced queuing delay. We measure the
queuing delay of an individual memory request as the
amount of time between when the request enters MC’s
read/write queue and when MC issues the first DRAM
command (e.g., ACT or READ) for the request. Figure 22
shows the queuing delay of data and counter accesses.

1

10

100

1000

Counter
Read

Data
Read

Counter
Write

Data
Write

Counter
Read

Data
Read

Counter
Write

Data
Write

DR
AM

 q
ue

ui
ng

 d
el

ay
 (n

s) 1 channel 8 channels

Figure 22: Queuing delay of different types of memory
accesses under EMCC, on geometric mean across the eval-
uated set of benchmarks. Queuing delay reduces with more
channels. In general, writebacks to memory experiences
higher queuing delay than reads as they are deprioritized
relative to reads (latency of writebacks do not affect program
performance, unlike memory reads).

E. Effect of Cache Coherence on Caching Counters in L2
When writing back a block to DRAM, MC must update

the block’s counter. If an L2 caches a copy of a counter
block, the L2 copy must be invalidated when MC updates
the block; in general, writing to a cacheline in a multi-
core CPU requires invalidating other copies of the cacheline.
Invalidating counter blocks in L2 may reduce counter hit rate
in L2. We measure the number of counter blocks invalidated
in L2 under EMCC. On average, only 1.7% of counter
blocks inserted into L2 are invalidated (see Figure 23).

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%

pageRank

gra
phColorin

g

connecte
dComp

degre
eCentr DFS BFS

tria
ngleCount

shorte
stP

ath

canneal

omnetpp
mcf

mean

%
Co

un
te

rs
 in

va
lid

at
ed

Figure 23: The number of counter block invalidation in L2,
normalized to counter block insertions into L2.

F. Impact on NoC Traffic

EMCC can incur some useless accesses to LLC; they
are few (see Figure 11), however. For completeness, we
also measure the number of useless counter accesses in
LLC for more benchmarks. Figure 24 shows the number of
useless counter accesses in LLC for the other benchmarks
in SPEC 2017 and Parsec 3.0, normalized to the number of
data accesses in LLC. EMCC suffers from only 1% useless
counter accesses in LLC, on average.

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

bla
cks
cho

les

bo
dy
tra
ck
fer
ret

fre
qm
ine

str
ea
mc
lus
ter x26

4

fac
esi
m

flu
ida
nim

ate

bw
ave

s_s

exc
ha
ng
e2
_s

pe
rlb
en
ch_

s

cac
tuB

SSN
_s

de
ep
sje
ng
_s

lee
la_
s

x26
4_
s
me
an

Us
el

es
s C

ou
nt

er
 A

cc
es

se
s

Figure 24: The number of useless counter accesses in LLC
for other benchmarks in SPEC and PARSEC. All numbers
are normalized to the total number of L2 data misses.

VII. RELATED WORK

OTP Pre-computation: To hide the latency overhead of
decryption for memory accesses whose counters miss in
caches, OTP Prediction [42] proposes pre-computing (i.e.,
predictively computing) AES results using predicted counter
values, similar to prefetching (i.e., predictively fetching)
using predicted memory addresses. OTP Prediction uses the
counter block of some data blocks in a page to predict
the counter values for the other data blocks in the same
page. However, split counters, like Morphable, eliminate the
need to predict the counter values of other blocks in a page
because a single counter block covers an entire page.

Pre-calculation for Persistent Memory: Many prior
works [43][44][45][46] hide encryption latency in the con-
text of persistent memory systems. In persistent memory

programs, writes to persistent memory are on the critical
path of program execution. To hide the latency of encryption
for writes to persistent memory, Janus [43] provides a new
software interface for programmers to explicitly initiate
hardware encryption for persistent memory writes sooner.
Our paper, however, focuses on hiding the latency of mem-
ory decryption and verification for reads from DRAM. Also,
we propose purely microarchitecture-level optimizations,
without any changes to software.

Lightweight Ciphers: Emerging lightweight ciphers, like
QARMA [32], are faster than AES. However, trust is impor-
tant to trusted computing; newer ciphers are not as trusted
as AES, which has withstood longer and more scrutiny.
Newer ciphers are typically be used where AES cannot. For
example, ARM uses QARMA-64 to authenticate pointers,
which are 64-bits; AES is undefined for 64-bit inputs.
However, AES remains the standard for most systems.

VIII. CONCLUSION

Due to the large memory memory footprint and irregular
access patterns of many real-world applications, counter
caches are too small to provide high counter hit rate. Caching
counters in LLC is a promising solution to reduce counter
miss rate. However, the long LLC access latency in modern
server CPUs not only can significantly diminish the benefit
of caching counters in LLC, but can actually significantly
increase counter access latency compared to not caching
counters in LLC.

We note that the root problem lies with MC sitting behind
LLC; MC can only see LLC misses and, thus, can only fetch
and use counters serially after data miss in LLC. As such, we
propose Eager Memory Cryptography in Caches to offload
decryption and verification tasks from MC to L2 to enable
parallel fetch and use of counters with data accesses. EMCC
improves performance by 7% when applied to the state-of-
the-art prior work. The maximum benefit is 12.5%.

ACKNOWLEDGMENT

AMD, the AMD Arrow logo, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification
purposes only and may be trademarks of their respective
companies. Authors would like to thank Thomas Woller and
Mike Ignatowski for the feedback on the earlier versions of
this paper. This work was supported by National Science
Foundation (NSF) under grant 1850025. We thank Advanced
Research Computing (ARC) at Virginia Tech for providing
computational resources. We also thank the reviewers for
providing helpful comments to improve the paper.

APPENDIX

One-way-trip latency calculation: Direct LLC Latency
consists the two-way NoC latency between L2 and LLC,
in addition to SRAM latency in LLC. We consider SRAM

latency to be at most 4ns for two reasons. First, SRAM
latency in LLC tile is close to SRAM latency in L2 because
the LLC tile size (i.e., 1.3MB) is close to L2 size (i.e.,
1MB). Second, we use Cacti [47] to estimate the access
latency of an 1MB 32nm SRAM under the slowest setting
(i.e., sequential tag and data lookup, slow LSTP transistor,
conservative interconnection, and optimized for area); Cacti
also reports 4ns. As such, one-way NoC latency = (19ns -
4ns)/2 = 7.5ns.

MC-to-L2 route: As described in Figure 2.6.b in [48],
when an access misses in L2 and then misses in LLC, the
response for L2 miss first travels from MC to an LLC tile,
which then forwards the response to L2. To verify the route
for L2 miss response, we also measured in a real system the
end-to-end per-access latency under DRAM row buffer miss.
To achieve row buffer miss, we write a microbenchmark with
8KB stride and dependent accesses. To avoid row conflicts,
we just run one process of the microbenchmark, with 16
ranks in DRAM. The measured latency is 77ns. Excluding
the 30ns row buffer miss latency, the remaining 47ns = 77ns
- 30ns is nearly twice of 23ns LLC hit latency. Therefore,
we consider this remaining latency to primarily come from
L2-to-LLC access latency and LLC-to-MC access latency.
We reach the same conclusion when using a small-stride
microbenchmark to generate row buffer hits in DRAM.

REFERENCES

[1] S. Gueron, “A memory encryption engine suitable for gen-
eral purpose processors,” Cryptology ePrint Archive, Paper
2016/204, 2016, https://eprint.iacr.org/2016/204.

[2] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao,
and M. Qureshi, “Morphable counters: Enabling compact
integrity trees for low-overhead secure memories,” in 2018
51st Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). IEEE, 2018, pp. 416–427.

[3] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Soli-
hin, “Improving cost, performance, and security of memory
encryption and authentication,” ACM SIGARCH Computer
Architecture News, vol. 34, no. 2, pp. 179–190, 2006.

[4] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and
M. K. Qureshi, “Synergy: Rethinking secure-memory design
for error-correcting memories,” in 2018 IEEE International
Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2018, pp. 454–465.

[5] J. Lee, T. Kim, and J. Huh, “Reducing the memory bandwidth
overheads of hardware security support for multi-core proces-
sors,” IEEE Transactions on Computers, vol. 65, no. 11, pp.
3384–3397, 2016.

[6] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using
address independent seed encryption and bonsai merkle trees
to make secure processors os-and performance-friendly,” in
40th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 2007). IEEE, 2007, pp. 183–196.

[7] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for
inhibiting software piracy and tampering,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2003. MICRO-36. IEEE, 2003, pp. 351–360.

[8] B. Gassend, G. E. Suh, D. Clarke, M. V. Dijk, and S. Devadas,
“Caches and hash trees for efficient memory integrity veri-
fication,” in International Symposium on High Performance
Computer Architecture (HPCA), 2003.

[9] “The nexus difference,” Last accessed on April 13,
2022. [Online]. Available: https://www.nexustechnology.com/
technologies/the-nexus-difference/

[10] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault:
Reducing paging overheads in sgx with efficient integrity
verification structures,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2018, pp. 665–
678.

[11] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot,
“Prefetched address translation,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2019, pp. 1023–1036.

[12] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh,
“Increasing tlb reach by exploiting clustering in page transla-
tions,” in 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2014,
pp. 558–567.

[13] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb
coalescing: Improving tlb translation coverage under diverse
fragmented memory allocations,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture,
2017, pp. 444–456.

[14] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking
tlb designs in virtualized environments: A very large part-of-
memory tlb,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 2, pp. 469–480, 2017.

[15] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer,
and J. Huh, “Perforated page: Supporting fragmented memory
allocation for large pages,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 913–925.

[16] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan,
“Memory hierarchy for web search,” in 2018 IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA). IEEE, 2018, pp. 643–656.

[17] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: a study of emerging scale-
out workloads on modern hardware,” Acm sigplan notices,
vol. 47, no. 4, pp. 37–48, 2012.

[18] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a
warehouse-scale computer,” in Proceedings of the 42nd An-
nual International Symposium on Computer Architecture,
2015, pp. 158–169.

[19] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a
practical binary optimizer for data centers and beyond,” in
2019 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO). IEEE, 2019, pp. 2–14.

[20] G. B. Kandiraju and A. Sivasubramaniam, “Going the dis-
tance for tlb prefetching: An application-driven study,” in Pro-
ceedings 29th Annual International Symposium on Computer
Architecture. IEEE, 2002, pp. 195–206.

[21] D. Lustig, A. Bhattacharjee, and M. Martonosi, “Tlb im-
provements for chip multiprocessors: Inter-core cooperative
prefetchers and shared last-level tlbs,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 10, no. 1,
pp. 1–38, 2013.

[22] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching:
skip, don’t walk (the page table),” ACM SIGARCH Computer
Architecture News, vol. 38, no. 3, pp. 48–59, 2010.

[23] J. Navarro, S. Iyer, and A. Cox, “Practical, transparent
operating system support for superpages,” in 5th Symposium
on Operating Systems Design and Implementation (OSDI
02). Boston, MA: USENIX Association, Dec. 2002. [On-
line]. Available: https://www.usenix.org/conference/osdi-02/
practical-transparent-operating-system-support-superpages

[24] A. Bhattacharjee, “Translation-triggered prefetching,” in Pro-
ceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, 2017, pp. 63–76.

[25] J. Ahn, S. Jin, and J. Huh, “Revisiting hardware-assisted
page walks for virtualized systems,” in 2012 39th Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2012, pp. 476–487.

[26] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-
Schaffer, Every Walk’s a Hit: Making Page Walks Single-
Access Cache Hits. New York, NY, USA: Association
for Computing Machinery, 2022, p. 128–141. [Online].
Available: https://doi.org/10.1145/3503222.3507718

[27] O. Levi, “Pin - a dynamic binary in-
strumentation tool,” 2012. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/
articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

[28] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graph-
big: understanding graph computing in the context of indus-
trial solutions,” in SC’15: Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2015, pp. 1–12.

[29] LDBC Graphalytics, “Datasets,” Last accessed on April 13,
2022. [Online]. Available: https://graphalytics.org/datasets

[30] “Memory and cache latency comparisons.” [Online].
Available: https://pics.computerbase.de/7/9/1/0/2/13-1080.
348625475.png

[31] “Skylake (server) - microarchitectures - in-
tel.” [Online]. Available: https://en.wikichip.org/wiki/intel/
microarchitectures/skylake (server)

[32] R. Avanzi, “The qarma block cipher family. almost mds
matrices over rings with zero divisors, nearly symmetric even-
mansour constructions with non-involutory central rounds,
and search heuristics for low-latency s-boxes,” IACR Trans-
actions on Symmetric Cryptology, pp. 4–44, 2017.

[33] “Skylake mesh architecture.” [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/
technical/xeon-processor-scalable-family-technical-overview.
html

[34] T. S. Lehman, A. D. Hilton, and B. C. Lee, “Poisonivy:
Safe speculation for secure memory,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–13.

[35] “Spec cpu2017 platform settings for supermicro systems.”
[Online]. Available: https://www.spec.org/cpu2017/flags/
Supermicro-Platform-Settings-V1.2-CLX-revB.html

[36] Intel, “Hpc cluster tuning on 3rd genera-
tion intel xeon scalable processors,” 2021,
https://www.intel.com/content/dam/develop/external/us/en/
documents/HPC-Cluster-Tuning-Guide-on-3rd-Generation-
Intel-Xeon-Scalable-Processors.pdf.

[37] “Dell emc poweredge r550 bios and uefi reference guide,”
Last accessed on April 13, 2022. [Online]. Available:
https://www.dell.com/support/manuals/ensg/poweredger550/
per550 bios ism pub/processor-settings?guid=
guid-45a5b59a-2907-44f6-9f14-8d83a15b6969&lang=en-us

[38] “Tuning uefi settings for performance and energy effi-
ciency on intel xeon scalable processor-based thinksys-
tem servers,” [Online] Last accessed on April 13, 2022.
https://lenovopress.lenovo.com/lp1477.pdf.

[39] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The gem5 simulator,” ACM SIGARCH computer
architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[40] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and ex-
tensible dram simulator,” IEEE Computer architecture letters,
vol. 15, no. 1, pp. 45–49, 2015.

[41] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“Drama: Exploiting dram addressing for cross-cpu attacks,”
in Proceedings of the 25th USENIX Conference on Security
Symposium, ser. SEC’16. USA: USENIX Association, 2016,
p. 565–581.

[42] W. Shi, H.-h. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva,
“High efficiency counter mode security architecture via pre-
diction and precomputation,” in 32nd International Sympo-
sium on Computer Architecture (ISCA’05). IEEE, 2005, pp.
14–24.

[43] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and
S. Khan, “Janus: Optimizing memory and storage support
for non-volatile memory systems,” in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2019, pp. 143–156.

[44] A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist level
parallelism: Streamlining integrity tree updates for secure
persistent memory,” in 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE,
2020, pp. 14–27.

[45] Z. Zhang, J. Yue, X. Liao, and H. Jin, “Efficient hardware-
assisted crash consistency in encrypted persistent memory,”
in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 750–755.

[46] M. Alwadi, A. Mohaisen, and A. Awad, “Promt: optimizing
integrity tree updates for write-intensive pages in secure
nvms,” in Proceedings of the ACM International Conference
on Supercomputing, 2021, pp. 479–490.

[47] HP, “Cacti. an integrated cache and memory access time,
cycle time, area, leakage, and dynamic power model.”
[Online]. Available: https://www.hpl.hp.com/research/cacti/

[48] N. E. Jerger, T. Krishna, and L.-S. Peh, “On-chip networks,”
Synthesis Lectures on Computer Architecture, vol. 12, no. 3,
pp. 1–210, 2017.

