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ABSTRACT
Large-scale applications from various domains are becoming in-
creasingly irregular, posing significant strains on virtual memory
performance. On the other hand, increasing hardware SRAM struc-
tures like TLB is becoming challenging due to technology scaling
constraints imposed by the limitations of Moore’s law. This emerg-
ing trend in applications, coupled with the lack of technology scal-
ing in hardware, requires innovations at the hardware level to avoid
expensive memory accesses for traversing page tables to keep page
walk latencies in check.

In this work, we introduce and evaluate Athena, an early-fetch
architecture that reduces the on-chip latency of page walk requests.
More specifically, Athena reduces pagewalk latency by issuing early
fetch without waiting on the Memory Management Unit to initiate
the fetch. Athena improves performance by 6.5% in native non-
virtualized environments, and by 15.6% in virtualized environments.
Moreover, combining Athena with a recent complementary prior
work, leads to further improvements of 16.5% and 23.4% in the
native and virtualized environments, respectively.
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• Computer systems organization→ Architectures; • Hard-
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1 INTRODUCTION
Big Data workloads are increasingly becoming common covering
applications ranging from from irregular graph analytics [21, 22] to
genome sequencing [31]. Since modern processors fail to accommo-
date the working sets of such big workloads in on-chip structures,
we witness significant increases in memory traffic. Unfortunately,
conventional data storage and access strategies are not able to cope
with this increased memory traffic and new approaches are needed.

Virtual memory is a crucial abstraction that ensures per-process
isolation by virtualizing main memory. At the heart of virtual
memory are per-process page tables that are stored in main mem-
ory. Per-process page tables are typically implemented as radix
tree structures that contain virtual-to-physical address mappings.
Modern x86 processors employ 5-level page tables in native non-
virtualized environments [42], whereas the virtualized environ-
ments employ separate host and guest page tables. Consequently, a
page table walk1 can result in a maximum of 5 memory accesses
in non-virtualized environments where as the nested page walk
in virtualized environments can result in up to 35 memory ac-
cesses [35, 42].

Despite sustained efforts to improve the virtual memory perfor-
mance via huge pages [24, 33, 40, 53], translation coalescing/prefetching
and similar techniques [5, 9, 12, 23, 28, 34, 36, 39, 41, 44–46, 49–
51, 53], applications with irregular/sparse data accesses like graph
processing continue to pose significant virtual memory challenges
and bottlenecks as they exhibit low temporal and spatial locality
across accesses. The on-chip structures such as Translation Look-
aside Buffer (TLB) that cache final address translations are ineffec-
tive in capturing the huge working sets of such applications [23, 45].
The non-deterministic access patterns in these applications make
it hard for adapting optimizations like TLB prefetching. This non-
deterministic access patterns result in expensive page walks to
memory that fall on the critical path of data accesses. Virtual mem-
ory traffic accounts from 20% to 40% of the total memory traffic
in large-scale irregular applications [7–9, 11–14, 18], translating
to 20% to 50% of the overall application execution time. Note that

1We use the terms ’page walk’ and ’page table walk’ interchangeably in the rest of the
paper.
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emerging memory technologies like Intel Optane [25] will only
exacerbate this problem due to their longer access latencies.

In this work, based on the observation that page walk latency can
impose significant performance overhead for workloads with high
TLBmisses (e.g., irregular applications), we propose and evaluate an
optimization in cache subsystem to reduce the page walk overhead
and improve the overall system performance. More specifically,
we introduce a Page Walk Aware Early-Fetching (early-fetch) 2

scheme, called Athena, that reduces the overall page walk latency
by initiating the intermediate page walk accesses from the cache
controllers, in contrast to relying on Memory Management Unit
(MMU) to issue page walk accesses.

The main proposal in this work is based on the key insight that,
when a page walk entry ‘N’ hits at a particular cache level ‘X’, it
is highly unlikely that the levels of page walk entries beyond ‘N’
will hit in the cache levels below ‘X’ that are closer to processor.
From our experiments, we observed that 99.8% of the page walk
requests that hit in a cache level will have the subsequent page
walk accesses hit at or beyond the same cache level. This is because
the number of nodes in a page table radix tree increases from root
to leaf levels, and consequently, as we traverse the page table from
root towards leaf, the coverage reduces by 512𝑥 . As an example, if
a Page Upper Directory (PUD) covering a 1GB segment is hitting
in last-level cache (LLC), since the Page Middle Directory (PMD)
covers a 2MB page and Page Table Entry (PTE) covers a finer 4KB
page, it is highly unlikely that PMD and PTEs are found in Page
Walk Cache (PWC) or L2.

Our main contributions in this work include:
• We profile real-world applications to quantify the overheads

imposed by virtual memory, and specifically page walks, in terms
of both memory traffic and performance.

• We note that page walk latency plays a crucial role in the overall
address translation latency experienced by the processor. These
page walk latencies are long because the MMU requires looking
up all the on-chip caches before the page walks are sent to mem-
ory. We further observe that the current MMU-initiated page
walks increase the on-chip latency for page table walks.

• Based on the above observation, to reduce the on-chip page walk
request latency, we propose Athena, a novel architecture that
issues early-fetches to page walks in the cache hierarchy, without
waiting on the MMU to initiate the fetch.

• We evaluate Athena in virtualized environment as well, and show
that it can significantly reduce the overall nested page walk
latency in these systems. This is due to the fact that each nested
page walk is composed of multiple host page walks that are
indeed optimized similar to a native page walk.

• Our evaluations on a variety of benchmark suites show that the
proposed Athena architecture improves workload performance,
on average, by 6.5% in the native non-virtualized environment.
Additionally, we implement and evaluate a previously-proposed
complementary optimization scheme, TEMPO [12], that only

2Note that we propose an ’early-fetching’ scheme that targets initiating early-fetch
of page walk entries. This is not ’pre-fetching’, as page walk prefetching requires
predicting an access to a page for which it requires additional hardware structures to
capture access patterns, etc. In contrast, our early-fetch does not require any additional
hardware structures to track access patterns, as there is no prediction in early-fetch –
unlike prefetching.
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Figure 1: x86 radix page table organization.

initiates the early-fetch of data from memory based on page walk
hints, which can achieve 8.7% performance improvement, on
average. We observe that early-fetching the page walk requests
complements the early data fetch proposed in TEMPO nicely,
and consequently, the Athena + TEMPO combination improves
the performance of the native and virtualized environments, on
average, by 16.5%, and 23.4%, respectively.

2 BACKGROUND
2.1 x86 Address Translation
Modern systems offer virtual memory by providing a per-process
page table which maintains translations from virtual addresses (VA)
to physical addresses (PA). As the page table is a critical component
of the virtual-to-physical address translation process, page table
design and access latency have a significant impact on applications’
execution time, particularly in the case of irregular workloads [7–
9, 11–14, 18] with non-predictable access patterns.

Commercial systems implement page tables as radix tree struc-
tures with 4-levels. Figure 1 depicts the structure of a four-level page
table, which is used in the x86-64 architecture. The page table levels
are known as PGD (Page Global Directory), PUD, PMD, and PTE.
These levels are accessed sequentially Memory-Management-Unit
(MMU) as part of a page walk in which the output of each level is
used to determines the base address of the next level.

To translate VA into PA, the virtual address is divided into virtual
page number (VPN) and page offset (12 bits). The virtual address
is 48-bit long, and its first 36 bits (VPN) are divided into four 9-
bit sections. Each of these 9-bit sections is used as an index to
access a level of the page table during the page walk. MMU uses
the CR3 register as the base address of the PGD table and the first
9-bit section (bits 47-39) as an index for accessing this table A○.
The value in this entry contains the base address of the PUD table,
and the second 9-bit section (bits 38-30) is used as an index for
accessing this level of page table B○. For the traditional 4KB pages,
this process continues until MMU obtains the last-level entry (PTE)
that contains the physical page number (PPN) corresponding to the
virtual page that is under translation C○- D○ . Lastly, this value is
combined with the page offset, and PA is calculated E○. For systems
with huge page support, page walk process may require fewer
steps. For instance, in the case of 2MB pages, PA is calculated right
after C○ by combining page offset with PMD. For 1GB pages, even
step C○ can be skipped and PA is resolved after accessing B○.

2
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Figure 2: Nested page walk.

2.2 Averting Page Walk
As page walks can incur up to four additional memory accesses
for each processor memory (load/store) instruction, processors
cache the recently accessed final address translations (𝑉𝑃𝑁 →
𝑃𝑃𝑁 ) in the per-core private Translation Lookaside Buffers (TLBs),
which are organized as three separate structures: (1) Instruction
TLB (iTLB), which stores the translations for instructions; (2) Data
TLB (dTLB), which stores the translations of data accesses; and
(3) shared TLB (sTLB), which contains both instruction and data
address translations. Upon a memory access, first iTLB/dTLB is
looked up with VPN for instruction/data accesses, and in case of
a miss, sTLB will be looked up. In case of a TLB hit in either of
these structures, the requested PA is calculated by combining the
PPN that is stored in TLB and the corresponding page offset, and
the address translation is completed. On the other hand, upon a
TLB miss, a page walk is performed in hardware (as described in 2.1)
and the instruction execution is delayed until the page walk is
completed.

2.3 Accelerating Page Walk
To improve the performance of page-walks, and eventually address
translation, x86-64 processors cache page table entries in desig-
nated caches in MMU, known as Page-Walk Cache (PWC) [4, 26].
PWC are implemented as partitioned caches where PGD, PUD, and
PMD entries are stored in separate partitions. As PGD, PUD and
PMD have different memory reach, PWC’s hit rate vary across
different levels. For example, each PGD, PUD, and PMD entry is as-
sociated with a 512GB, 1GB, and 2MB contiguous memory regions,
respectively. Consequently, PGDs incur higher hit rates compared
to PUDs, which in turn incur higher hits compared to PMDs. PWC
does not cache PTEs as they generally have low locality. Upon a hit
in PWC, the requested memory address is sent to the MMU, which
subsequently issues the next memory request based on the state of
the page walk. Upon a miss in PWC, the request is forwarded to
L2, last-level cache (LLC), and then memory to complete the page
walk.

2.4 Address Translation in Virtualized Systems
Address translation in virtual machines (VM) involves multiple
page walks. As depicted in Figure 2, upon an address translation in
the virtualized environment, a guest virtual address (gVA) should be
translated to a host physical address (hPA). Translating a gVA to hPA
consists of five different host page walks (each corresponding to a
column in Figure 2, accesses 1-4, 6-9, 11-14, 16-19, 20-24) followed
by a data memory access (5, 10, 15, 20). The host page walks traverse
the host page table that effectively maps the guest’s view of physical
memory to the system’s view of physical memory. This page table
is maintained by the host OS, and the processor initiates each host
page walk by starting from hCR3, which points to the first level of
host page table.

The data memory access after the first four host page walks is
part of the guest page table walk, whereas the data memory access
after the last host page walk is the actual data memory request that
will be issued by the core after the address translation and is not
part of the nested page walk. The four memory accesses in the last
row of Figure 2 are essentially the page walk memory requests that
are performed from the perspective of the guest operating system.

Similar to the native page walks, the nested page walk memory
accesses will also be cached in their designated PWCs. More specifi-
cally, the memory accesses in the first three rows of Figure 2 will be
cached in the PGD, PUD, and PMD page walk caches, respectively.
Accesses 5, 10, and 15 are part of the guest page table walk and will
also be cached in the PGD, PUD, and PMD page walk caches, respec-
tively. In addition to PWC, processors maintain another structure
named nested TLB (NTLB) that caches the translation of one col-
umn in the nested page walk. This structure is beneficial in the first
two host page walks of the nested page walk as the PGD and PUD
entries of the guest page table cover 512GB and 1GB of the guest
OS’s memory. As a result, they have high temporal locality, and a
small NTLB can cache their translation with a high hit efficiency.

Before discussing how our work reduces this page walk latency,
we first delve into the details of how miss requests are handled
in the cache hierarchy and the role of the Miss Status Handling
Registers (MSHRs). Athena interacts with the cache MSHRs and
hence it helps to understand the role of MSHRs in the baseline
system.

2.5 Miss-Status Handling Register (MSHRs)
MSHRs enable non-blocking caches in memory hierarchy, increasing
the memory-level parallelism. For every outstanding miss in caches,
there is an MSHR entry that stores the address of the outstanding
memory request. Upon receiving a response from upper level cache
or memory, all MSHR entries are looked up, and then, (1) outstand-
ing misses regarding the requested cache block are serviced and (2)
a cache block is allocated for this response in cache. As the number
of MSHR entries in a cache is limited, it is possible that all MSHR
entries can be occupied at some point. In such a scenario, the cache
is blocked and does not accept any memory requests from the lower
levels of the cache hierarchy or the core, until at least one of the
outstanding misses is resolved and the corresponding MSHR entry
could be freed. Consequently, MSHRs need to be appropriately sized
to leverage full-parallelism from the cache and memory hierarchy
in processors.

3
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Figure 3: Distribution of the page walk hits across different
levels of the memory hierarchy in native environments.

To reduce the number of the MSHR entries consumed, each
MSHR entry can accommodate multiple outstanding memory re-
quests (targets) to the same cache block from different sources (e.g.,
lower-level caches or prefetchers) in the cache hierarchy. As a re-
sult, it is not necessary to have different MSHR entries for the same
cache block if there are multiple outstanding requests associated
with that cache block and each MSHR can have multiple targets.
An MSHR target refers to the requestor of the corresponding cache
block that experiences a cache miss. The maximum number of
targets can be the maximum number of requestors. The number
of targets in an MSHR entry is also limited based on the design.
Caches allocate multiple MSHR entries for the same cache block if
the number of requests for that cache block exceeds the maximum
number of targets in a single MSHR entry. Figure 7(a) shows an
MSHR architecture with four MSHR entries and a maximum of
two MSHR targets per entry. For example, physical address 𝑥 in
Figure 7a has three outstanding misses, 𝐿21, 𝐿22, 𝐿23 (cache block
𝑥 is requested from private L2 of core 1, 2, and 3), and occupies two
MSHR entries. In comparison, the physical cache block 𝑦 has one
outstanding prefetch (PF) request.

3 MOTIVATION
3.1 The problem
Although employing TLBs and PWCs improve the performance of
the virtual-to-physical address translation process, page walk is
still an expensive operation as on-chip TLBs fail to capture large
working sets. While the majority of page walk memory requests
are resolved in the cache hierarchy, some are forwarded to memory,
and consequently, stall the processor for hundreds of cycles. To
study the distribution of page walk memory requests that end up
accessing memory, we conducted a simulation-based study using a
variety of benchmarks in both native and virtualized systems, as
described in detail in Section 5.

Figure 3 shows the distribution of the page walk hits across
the different levels of the memory hierarchy – PWC, L2, LLC and
memory, in native execution environment. For example, in the CC
benchmark, 46.5%, 47.5%, 6.0% and 0.0% of the PMD requests hit in
the PWC, L2, LLC and memory, respectively. As can be observed
from Figures 3a, 3b, and 3c, the PWC hit rate decreases when mov-
ing from PGD to PMD, since each entry in one level corresponds to
a 512x bigger region of memory compared to the next level. Never-
theless, as most of the PGD, PUD and PMD requests do not need
to be sent to the memory, the latency associated with them do not
contribute significantly to the overall page walk latency.

On the other hand, a large fraction of the PTE requests end up
being serviced from memory, which can take hundreds of clock
cycles. In fact, Figure 3d indicates that 18.1% of the PTE requests
have to access memory, on average. This number can be as high as
58.3% in the HashJoin benchmark. Therefore, reducing the overhead
of accessing the PTE level requests can potentially lead to significant
improvements in performance.

The emerging big data workloads can exacerbate this problem
even further. For example, scientific workloads and graph ana-
lytics frameworks can have up to tens of gigabytes of memory
footprints [7–9, 11–14, 18]. This increase in the application mem-
ory footprints, coupled with the limited number of TLB entries,
results in high TLB miss rates, and eventually a large number of
page walks [14]. The increase in memory footprint also causes the
address translation latency to grow since the PWC and other caches
in the system cannot capture all address translations. Therefore,
the number of requests end up going to memory increases, which
in turn affects the overall performance of the system [11, 45].

The virtualized environments that can incur a maximum of 24
page table walk requests [42] for a single load/storememory instruc-
tion further emphasize the importance of virtual memory traffic in
datacenter environments. To evaluate how each of these 24 memory
requests is serviced in the cache hierarchy, we conduct a similar
study to Figure 3. Figure 4 shows the distribution of the level of the
cache hierarchy that each memory access hits. Note that accesses
#1-4, #6-9, #11-14, #16-19, and #21-24 are for the translation of a
gVA to gPA, and these memory accesses are for five invocations of
a host page table walk. On the other hand, accesses #5, #10, #15, and
#20 are within the guest page table and, from the perspective of the
guest operating system, only these four memory accesses are made,
which is essentially similar to a page walk in the native execution
environment. Here are the key takeaways from this figure:
– The first two host page walks (#1-4 and #6-9) mostly hit in the

nested TLB (NTLB), and each of them requires only one memory
access to the guest page table (accesses #5 and #10). This shows
the effectiveness of NTLB to cache the translations of gVA to
gPA for the first two host page walks. On the other hand, NTLB
is not able to cache most of the next host page table walks, and
MMU needs to perform the host page table walk for each of the
three gVA-to-gPA address translations.

– The PGD and PUD accesses of the last three host page table
walks (accesses #11-12, #16-17, #21-22), which experience a miss
in NTLB, are mostly hit in PWC and have low access latency, as
well as the guest page table PGD and PUD access (accesses #5,
#10).
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Figure 4: Distribution of the page walk hits across different levels of the memory hierarchy in virtualized systems.

– Among the remaining memory accesses, the only accesses that
reach LLC and have higher latency are accesses #15, #19-20, and
#23-24. Moreover, only memory accesses #20 and #24 access
the main memory and experience long latency in some of the
benchmarks.

3.2 Key Insight
Our goal in this work is to reduce the latency of page walks in
native and virtualized systems with lightweight hardware changes.
The first key insight upon which we build our proposal is that the
page walk requests are sequentially issued by MMU, as shown in
Figure 5a, and the coverage of each level of page table gets lower,
as we go from PGD to PTE, by magnitude of 512 after each access.
Consequently, if a page walk request hits in one level of the cache
hierarchy, it is very likely that the next page walk request will hit in
a cache in the same level or the level above. Consequently, we can
start issuing early-fetch of the next page walk request as soon as

we get the response for this level of page walk from this particular
cache level.

Further, in the context of virtualized systems, the 24 memory
accesses for a single address translation can be divided into five
host page table walks (#1-4, #6-9, #11-14, #16-19, #21-24) and a
single guest page table walk (#5, #10, #15, #20) which is interleaved
between these host page table walks. If we look more closely, each
column in Figure 4 is actually a page walk and a subsequent data
access that accesses the guest page table. As a result, our first key
insight still holds true for these individual page walks and their
subsequent memory access. In other words, we can employ the
early-fetch mechanism discussed above to these five page walks
and their subsequent memory access, thereby improving the per-
formance of each host page walk and nested page walk, in overall.

In this work, we propose Athena, a scheme to early fetch the
PTE memory request as soon as the content of the PMD request is
available in the cache hierarchy. Consequently, instead of waiting
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Figure 5: Timeline of a pagewalk and data access in the native
setup for (a) Baseline, (b) TEMPO, (c) Athena, and (d) Athena
+ TEMPO.

for the MMU to issue the PTE request corresponding to the next
level of page walk, Athena detects such accesses and issues an
early-fetch request. As illustrated in Figure 5(c), Athena issues
the next page walk request starting from the level of the cache
hierarchy where the previous access has hit, and consequently,
saves (1) the response time for the previous request to be received
in MMU (𝑃𝑀𝐷𝑅𝑒𝑠 ) and (2) the lookup time of smaller caches for
the next request (𝑃𝑇𝐸𝐴𝑡ℎ𝑒𝑛𝑎 < 𝑃𝑇𝐸𝐵𝑎𝑠𝑒 ). Hence, Athena overlaps
the response of the previous level request in the page walk to core
with the issue of the next level request, thereby reducing the overall
on-chip latency of the page walk request.

Additionally, Athena complements prior work TEMPO archi-
tecture [12]. TEMPO issues the early-fetch requests only for data
based on the hints from page walk. Unlike TEMPO that operates at
the memory-controller level, Athena + TEMPO provides benefits
for all page walk accesses that hit in L2 or LLC or memory. This is
particularly significant as we observe in Figure 3d that, even though
a high percentage of PTE memory accesses require accessing the
main memory, 15.7% and 55.5% of the PTE requests are serviced by
L2 and LLC, respectively, on average. As a result, TEMPO cannot
prefetch the data for these memory accesses, and it can only cap-
ture the performance opportunity of the black portion of Figure 3.
Figure 5(d) shows how Athena reduces the overall memory latency
of a processor load instruction in tandem with TEMPO. This combi-
nation, as will be demonstrated later in the paper, leads to further
improvements in performance.

Furthermore, Athena can improve the performance of virtualized
systems by early-fetching the five separate page walks and their
subsequent memory access without any further changes. Athena
optimizes each of these page walks by early-fetching the last two
accesses of each page walk (the last two rows in Figure 4). Note that
the early-fetching of page walk accesses within a nested page walk
is enabled by the unique design of Athena at the cache-controller
level, and that the prior work (TEMPO) cannot improve the per-
formance of intermediate page walk accesses as it only reduces
the latency of the data memory access after these 24 page walk
memory accesses. One can argue that TEMPO could early-fetch the
intermediate guest memory access at the end of each individual

Core

MMU

L2$ L2$

LLC

Memory

Athena

Baseline

L1$ L1$

Core

MMU

Figure 6: Modifications required for Athena.

host page walk (accesses #4, #9, #14, #19). It is to be noted however
that, since TEMPO operates at the memory-controller level, it can
only early-fetch the memory requests that reach main memory
and miss in the cache hierarchy (which happens only for access 24,
based on Figure 4). As a result, it would not provide benefits for the
intermediate memory accesses within a nested page walk.

4 OUR PROPOSAL
In this section, we explain our design objectives as well as the im-
plementation details of our proposal, and discuss how our approach
reduces the page walk latency.

4.1 Design Objectives
We propose Athena based on two main design objectives:

Exposing Page Walks to Cache Hierarchy:We aim to extend
the memory hierarchy in such a way that it is aware of page walks.
We address the shortcomings of the current systems in which all
memory requests associated with a page walk are issued by MMU
sequentially, as MMU can only issue the next memory access when
it receives the prior response. We overcome this drawback by is-
suing page walk memory requests as soon as the response from
the previous level of the page walk is available in the memory
hierarchy.

Lightweight Hardware Modifications: As caches and TLBs
play significant roles in the performance of address translation in
modern processors, it is crucial that the proposed changes to be
both lightweight and easy-to-adapt. Unlike the prior works [2, 18,
45] that require extensive changes to page table organization, and
subsequently TLBs, which make them difficult to adopt in practice,
we propose a design that avoids these complications.

In the rest of this section, we describe the implementation details
of our proposed optimizations.

4.2 Athena: Page Walk Early-Fetching
Figure 6 shows the overall modifications required for Athena. To
calculate the next address that should be accessed after each level
of the page walk, it is required to maintain a portion of virtual
address that is under translation in the memory hierarchy. As our
observation for the distribution of page walk hits in Figure 3 sug-
gests, page walk requests that reach L2 or LLC are mostly PMD
or PTE accesses. As a result, it is neither necessary nor beneficial
to send the rest of bits of the virtual address to cache controllers
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and maintain them in Athena. The offsets that are required for
early-fetching after PMD and PTE access are bits 20-12 and 11-6,
respectively. Consequently, we only send bits 20-6 from virtual
address to cache controllers upon PMD and PTE accesses, and they
will be stored in the pVA (partial virtual address) field of the MSHR
targets, as shown in Figure 7b. Additionally, Athena stores the level
of page walk that the memory request in MSHR corresponds to in
the S field of MSHR entries, as illustrated in Figure 7b. Note that
this value is only required per MSHR entry since each cache line
can only be in one level of the page table.

Upon receiving the response of a page table request in MSHR,
Athena first detects the level of the page walk request response
using S. Then, it generates the physical address of the next level page
table access in case of a PMD response, for each target. This address
is generated by combining the first 9 bits of the pVA field with the
value of PMD. Athena looks up the generated block addresses in
this cache and simultaneously sends the early-fetch requests to the
next level of the cache hierarchy, and discards this request in case
of a cache hit. Note that this is done in parallel with sending the
response of PMD to each requestor.

Similarly, upon receiving a PTE response in the cache, Athena
can calculate the block address of the data cache line that experi-
enced the corresponding TLB miss and this subsequent page walk,
in order to early-fetch it to LLC. This is similar to TEMPO [12]; how-
ever, it does not require any operating system support to ensure
that the page table and the requested data are on the same memory
channel.

Athena in Action. Figure 8 illustrates how each request is
serviced in MSHR using an example in LLC. Figure 8a shows the
initial state of the MSHR, where there is an outstanding miss sent
to the next level of the cache hierarchy for physical address X. This
MSHR entry is waiting for the response, to forward it to the first
core’s L2 cache.

In the next step, a page walk request for address Y is received
from the second core and a new MSHR entry is allocated for this
outstanding miss, as shown in Figure 8b. Upon the receipt of the re-
quest, the cache controller creates an entry with the corresponding
pVA (B), and the level of the page table request (PTE in this case)
that Athena requires in addition to PA and the target location of
the requested cache line.

Figure 8c illustrates the next step in which the response of the
PMD request arrives and the cache controller initiates two processes
simultaneously – (1) sending responses to the targets and (2) early-
fetching the next level PA address (Z) by using the first 9 bits of
the pVA in this MSHR target (A) and the value of PMD. The only
difference for the new entry is that the MSHR keeps it as an "early-
fetch request", which will not be forwarded to any core upon getting
the response.

Finally, in the last step (Figure 8d), a request from MMU is re-
ceived for the same address (Z), indicating that MMU sends the
next level request after receiving the previous level’s response. In
this case, by comparing with the occupied entries in the MSHR, we
find that there is an early-fetch request currently in the system for
the same request. Therefore, the MSHR updates the target list while
waiting for the result (MSHR hit). Upon receiving the response, the
MSHR forwards the data to the target list (except for early-fetch),
which overlaps the response latency of the current level with the
request latency of the next level, thereby improving the perfor-
mance of the program. Additionally, as this example shows, our
approach does not introduce any additional requests into the LLC
and memory; as a result, it does not have any negative impact on
system performance.

Multiple Page Walks in a Single MSHR Entry. Each MSHR
entry stores multiple requests in a cache line, and consequently, if
two page table walkers are translating virtual addresses in a same
page, the corresponding MSHR entry in the cache needs to store
and process multiple page walks. This requires to store the pVA and
the state of the page walk (S) for each target of MSHR, as shown in
Figure 7b.

The hardware overhead of maintaining the state of the page
walk for each target could be high if the number of outstanding
page walk requests in a cache at each point of time is low. In other
words, we might unnecessarily pay the price of supporting multiple
page walks in one MSHR entry while having only a few page walk
memory requests at each point in time, which is actually the case
in LLC. To reduce this overhead, Athena allocates multiple MSHR
entries if multiple page walks are accessing the same cache line in
LLC, as shown in Figure 7c.With this design choice, we decrease the
overhead and complexity of Athena significantly, without affecting
the performance, as shown in Section 6.3. For more details on the
hardware overheads brought by Athena, refer to Section 6.5.

Prefetch vs Early-Fetch. Data prefetchers are widely used in
commercial processors and they prefetch, speculatively, cache lines
that might be accessed by the processor in the future. Even though
the state-of-the-art prefetchers can improve performance signifi-
cantly, they pollute the on-chip network and memory bandwidth as
they aggressively prefetch cache lines into LLC. In contrast, Athena
early-fetches cache lines non-speculatively, i.e., it early-fetchesmem-
ory addresses that are going to be accessed in the near future (i.e.,
it is 100% accurate).

5 METHODOLOGY
We model a 8-core processor similar to an Intel Skylake Server [52]
with 128GB main memory, as described in detail in Table 1. We use
gem5 (v20) [29] in Full System (FS) mode running Linux Kernel
v4.15 [48] with Transparent Hugepage Support [17] enabled.
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Figure 8: An example illustrating how Athena operates in LLC: (a) An outstanding PMD request in MSHR, (b) An outstanding
PTE request arrives at LLC, (c) The response for physical address X arrives and the PTE request Z is early-fetched, (d) The PTE
request Z is received from MMU after it got the response, and the next request is issued and experienced an MSHR hit. As a
result, the PTE request will not be sent to memory again, and the early-fetch request target can be removed from the MSHR.

Table 1: Important architectural parameters.

Processor Parameters
Processor 8 cores, OoO 192-entry ROB, 2GHz

Per-core TLB/Caches Parameters
I-TLB/D-TLB 64/32 4KB/2MB entries, 4-way, 1 cycle
Unified S-TLB 1536 4KB/2MB entries, 12-way, 6 cycle
PT Walkers 2 walkers, 16-entry NTLB, 2 cycle RT
PWC 2/4/32 entries for PGD/PUD/PMD

fully-associative, 2 cycle RT
L1-I/L1-D 32KB, 64B, 8-way, 4 cycle RT
Unified L2 512KB, 64B, 8-way, 16 cycle RT
LLC (shared) 16MB, 64B, 16-way, 60 cycle RT [52]

Memory Parameters
Memory One per channel, 64-entry read queue,
Controllers 128-entry write queue
Main-Memory 128GB, DDR4-2400 [32], 4 channels,

2 ranks/channel, 16 banks/rank
128K rows/bank, 8KB row

Gem5 does not support virtualized systems and it is not possible
to run a virtual machine inside its OS with KVM enabled. In order
to evaluate virtualized systems with enabled KVM, we assume
gem5 acts as a host OS that is essentially running a guest operating
system, and upon a page walk after a TLB miss, instead of walking a
single-level page table (guest page table) that is handled by the guest
OS, we perform a nested page walk. We maintain a host page table
in gem5 that maps guest physical page #X to host physical page #X.
The host page table is located at the end of physical main memory,
and it is not accessible by the Linux inside gem5 as it is the case in
real-world virtualized systems. Nevertheless, memory accesses to
this page table will be interleaved with the memory accesses from
the guest OS and they both share cache hierarchy and memory
controllers. The guest page table is managed by an unmodified
Linux OS. This is contrary to prior work [35] that emulates both
guest and host page table in gem5.

5.1 Experimental Setup
We implemented Athena in gem5-v20 by extending its MMU unit
to support two-level TLBs, separate PWCs for each of the first three
levels of the page table, and a nested-TLB for virtualized systems,

Table 2: Description of our workloads.

Benchmark PTW-PKI Memory Footprint
Scientific Applications

Canneal[15] 19.4 32GB
Nucmer[3] 23.8 2GB
XSBench-L[47] 15.1 5.6GB
XSBench-XL[47] 16.4 114 GB

Micro-benchmark
HashJoin[1] 113.1 13GB

Graph Applications[10]
BC 78.2 74GB
CC 1.8 74GB
CC-SV 70.3 74GB
SSSP 74.5 87GB

to have a realistic evaluation. The important simulation parameters
are given in Table 1. Our simulations are fast-forwarded using
the X86KvmCPU model in gem5 to reach the region-of-interest
in each application using Sandberg et al’s methodology [43], and
then actual simulations are modeled using gem5’s OoO CPU model.
The CPU micro-architecture and caches are warmed up for 100
million instructions, and following that, we simulate at least 1
billion instructions for each core to report the results. We use two
page-table walkers to not block the core upon a TLB miss, and also
employ a 16-entry NTLB in the virtualized mode. We calculate the
latency of the TLBs and caches using CACTI [6].

We evaluated each benchmark in our experimental suite using
different combinations of the following configurations:

(i) Baseline:MMU page walk without any modification.
(ii) TEMPO [12]:MMU page walk by initiating a data early-fetch

after the page walk in memory controller.
(iii) Athena: MMU page walk with extended support for PTE

early-fetching in caches during the page walk.
(iv) Athena + TEMPO: Athena architecture with the support of

early-fetching data requests at the cache-controller level.

All our evaluations are performed on the CloudLab [20] ma-
chines.
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Figure 9: Normalized performance results.

5.2 Benchmarks
We use a variety of applications with different ranges of PTW-PKIs
to evaluate our design under different scenarios. All our evalu-
ated benchmarks are multi-threaded OpenMP [19] applications (see
Table 2). As can be observed, these benchmarks are diverse and in-
clude scientific applications such as Canneal [15], Nucmer [3], and
XSBench [47]. We use PARSEC netlist generator [38] to generate a
netlist with 100M elements as the input for the Canneal benchmark.
We evaluate the Nucmer benchmark using hs_chr17 [27] input
dataset. We use both the large and XL input sizes for evaluating XS-
Bench. We also evaluate the HashJoin [1] micro-benchmark, which
look-up elements in a hash-table with 1B elements distributed in
100M rows of a hash-table. We also assess our design on four graph
processing applications from GAPBS [10], including Betweenness
Centrality (BC), Connected Components (CC), Shiloach and Vishkin
algorithm for CC (CC-SV), and Single-Source Shortest Path (SSSP).
We run Twitter [16] dataset in all our graph processing applications.

6 EVALUATION
We analyze the performance of our proposals by conducting dif-
ferent studies. Figure 9 shows the overall performance speedup
brought by Athena, TEMPO, and combination of them, with re-
spect to the baseline described in Section 5.1. We also evaluate the
average page walk latency improvement of Athena in comparison
to the baseline, and the results are plotted in Figure 10. The key
takeaways from these studies can be summarized as follows.

Athena Performance Results: It can be observed that Athena
achieves a geo-mean speedup of 6.5% across all benchmarks, in
comparison to the baseline. Athena reduces the execution time as
it overlaps the response access of PMD with the request access of
PTE in the next level, which improves the page walk latency. Note
also that we achieve this speed up, despite we only exploit for early
for page walk requests and not for data (unlike TEMPO).

Athena provides significant improvements for Canneal [15] and
HashJoin [1]. This is because the page walk latency presents a
significant performance overhead in these benchmarks and PWC
cannot hide the latency of the page walk. Figures 3, 10 and the PTW-
PKI field in Table 2 confirm the same. As a result, the processor is
stalled for hundreds of cycles waiting for page walks to be serviced
in these benchmarks. Athena can reduce this overhead and improve
IPC by 9.9% and 4.7% for Canneal and HashJoin, respectively. In
contrast, for benchmarks such as Nucmer [3] and CC [10], the page
walk overheads do not seem to be significant, meaning that the
PWC is effective in reducing the page walk requests to the cache
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Figure 10: Page walk request latency for each level of page
table in Athena.

hierarchy. Consequently, our proposal enhances the performance
by only 1.9% and 1.6% in Nucmer and CC, respectively.

Further, we want to emphasize that Athena does not bring any
performance overheads. This is because, during a workload’s exe-
cution, Athena does not create any additional memory accesses and
improves performance only by early-fetching (not pre-fetching)
addresses from memory before the MMU issues the same request.
Additionally, when MMU issues the early-fetched request, there
will be an MSHR hit and, consequently, this request will not be sent
to the next level of the cache hierarchy. Therefore, Athena does not
hurt performance and only optimizes the latency by overlapping
the requests. This observation is applicable to TEMPO as well, since
it early-fetches requests for data when the corresponding physical
address is available at the end of the page walk.

Athenawith TEMPO:Athena and TEMPO individually achieve,
6.5% and 8.7% speedups, respectively, over the baseline. Since they
are orthogonal, by combining these two approaches, one can fur-
ther improve the performance. This is possible because Athena
focuses on early-fetching the page table cache lines, whereas TEMPO
improves the performance by early-fetching of the data as soon as
the physical address is available. Therefore, by combining these
approaches (Athena + TEMPO), we achieve an average speedup of
16.5% over the baseline. Athena improves the performance of graph
applications by 8%, on average, and its performance improvements
can be up to 12.7% in the CC-SV graph application.

6.1 Virtualized System Analysis
Figure 11 plots the performance improvements brought by Athena
in virtualized systems. As shown in the figure, Athena’s effective-
ness in the virtualized system is higher compared to its effectiveness
in the native execution environment. This is to be expected, as an
address translation in the virtualized environment can result in up
to 24 memory accesses in the worst case. Consequently, Athena has

9



Canneal Nucmer XSBench-L XSBench-XL HashJoin BC CC CC-SV SSSP Average
0.8

1.0

1.2

1.4

1.6
Baseline TEMPO Athena Athena + TEMPO

N
or

m
al

ize
d 

Pe
rf

or
m

an
ce

Figure 11: Performance improvements brought by Athena in the virtualized environment.
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Figure 12: Sensitivity analysis on the percentage of huge
pages in the host page table in a virtualized environment.

more opportunities to overlap the response delays with the next
requests. For example, the performance improvement brought by
the proposed optimizations in Canneal reaches 56.2% in the virtu-
alized environment, while the corresponding improvement in the
native execution for this benchmark was 46.2%. On average, the
combination of Athena and TEMPO improves the performance of
the evaluated benchmarks in the virtualized environment by 23.4%.

We also studied the impact of huge pages in the virtualized envi-
ronment. In this experiment, we promote baseline pages to huge
pages with uniform distribution. We ran this experiment with five
different percentages of huge pages: 0%, 25%, 50%, 75%, and 100%,
while THP is enabled for the guest operating system. Figure 12 plots
the average performance improvements brought by Athena and
TEMPO in the virtualized environment with different number of
huge pages in the host page table. These results reveal that, while
the relative performance improvements decrease when increasing
the number of huge pages, Athena still leads to significant per-
formance improvements in the virtualized environment, primarily
because huge pages can only partially reduce the latency of the
nested page walks.

6.2 Memory Bandwidth Results
Figure 13 compares the average memory bandwidth consumptions
of the baseline, Athena, TEMPO, as well as their combination. We
note that the memory bandwidth consumption increases by up to
20.1% when employing the Athena + TEMPO configuration. This
increase in the bandwidth consumption is mainly because our ap-
proach sends a number of memory requests over a shorter period of
time. Athena may introduce extra memory requests when a transla-
tion is squashed in MMU because of the speculative execution but
the number of such cases is negligible based on our experiments.
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Figure 13: Average memory bandwidth consumption.

6.3 Sensitivity Analysis on MSHRs with
Multiple Page Walks

The MSHR entries can have multiple targets and it is possible that
multiple page walk requests, which are accessing the same cache
line, are under translation in the LLC. In such a scenario, Athena
allocatesmultipleMSHR entries for this cache line, in an attempt to
reduce the required hardware metadata, to enable the early-fetch
of the page walk requests, as discussed earlier in Section 4.2. The
results plotted in Figure 14 indicate that this design choice does
not affect the performance of Athena in any benchmark (except in
HashJoin, by 0.5%), due to the low likelihood of occurrence.

6.4 Sensitivity to Round-Trip Latency
Athena targets reducing the latency of a page walk in both the
request and response paths of the page walk memory request. To
study the impact of LLC latency on the performance improvements
achieved by Athena, we also performed a sensitivity analysis by
varying the round-trip latency. Figure 15 shows the performance im-
provements brought by Athena with different round-trip latencies
from LLC. It can be observed that the performance improvements
are higher for longer round-trip latency values. This is expected as
longer round-trip latency imposes higher performance overheads,
and as a result, Athena can achieve higher performance benefits
by reducing both the request and response latencies of the page
walk memory requests. Note that Athena consistently achieves
performance improvements for address translation in all cases.

6.5 Hardware Overheads
Athena stores the PTE offset (bits 20-12) of the VA under translation
and the state of the page walk request in caches to enable early-
fetching of the page table requests. For each request, Athena also
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Figure 15: Sensitivity analysis on the latency of LLC.

stores 6 most-significant bits of the page-offset of the VA as it early-
fetches the data request when working along with TEMPO. Note
that, the remaining 6 least-significant bits of the page offset are not
required as we early-fetch a cache line. Athena also maintains a
2-bit metadata to capture the state of the page walk request. As a
result, the total overhead brought by Athena is 9+6+2 = 17 bits for
each MSHR entry in the LLC. This overhead will be 2 bit per MSHR
entry and 15 bits for each MSHR target in the L2 cache. The number
of MSHR entries varies at different levels of the cache hierarchy
and across architectures. We evaluated our design with 16 and 128
MSHR entries in L2 and LLC, respectively, and 12 targets per MSHR
entry. This leads to 364 bytes per L2 and 272 bytes in LLC, as L2
maintains per MSHR target metadata and LLC per MSHR entry.
Moreover, since the impact of Athena in virtualized environments
comes primarily from reducing the latency of each host page walk,
which is essentially a native page walk in the perspective of caches,
Athena’s design does not incur any additional hardware overhead
in virtualized environments.

7 RELATEDWORK
7.1 Page Walk Optimizations
Bhattacharjee [12] proposes TEMPO, an approach that early-fetches
data requests that experienced a page walk in memory controller, as
shown in Figure 5b. TEMPO requires OS support to ensure the data
that is going to be accessed after page walk and the corresponding
last-level PTE entry are mapped to the same memory controller.
This requires exposing the memory address-interleaving informa-
tion to the OS so that OS can ensure a PTE and the corresponding
data pages belong to the same memory controller. As discussed
in prior sections, this work is orthogonal to our work and, as pre-
sented in Section 6, our work complements this proposal, and a
combination of Athena and TEMPO generates further performance
improvements over the individual schemes.

Margaritov et al. [30] propose reducing the latency of page walks
by allocating the levels of the radix page table in contiguous physical
memory and storing the entries in a sorted order to establish a direct
mapping between a virtual page number and the physical address
of its corresponding PTE.

This approach requires intrusive changes to system software (OS)
to allocate Page Tables in contiguous physical memory. This is a
significant challenge in long-running datacenter systems [33] that
suffer from fragmentation. Other modules in the system software
(OS) like Kernel Same Page Merging (KSM), compaction, etc., re-
quire marking the already-allocated Page Table pages as immovable
to satisfy the contiguity constraints imposed in [30]. Additionally,
reserving a contiguous physical memory region ahead of time can
lead to under-utilization of memory. Contrary to this approach,
Athena is hardware-only and does not require any intrusive changes
in system software (OS) to reduce expensive page walk latency.

Park et al. [37] propose flattening the page table in order to re-
duce the number of page walk accesses given a contiguous memory,
and relaxes the necessity of contiguous memory as it falls back to
conventional page walk in case of not finding a large region of mem-
ory. Athena can be combined with this approach and early-fetch
the next page table request similar to conventional page walks.

7.2 Page Table Structure Optimizations
Elastic Cuckoo Hashing [45] proposed a new hash table architec-
ture for replacing radix page tables in order to convert sequential
page walk accesses into parallel look-ups while resolving hash col-
lisions. These proposals improve the page walk latency either by
changing the structure of the page tables completely or through
significant modifications to page tables’ current structure (radix
page table). In contrast, our proposal improves the performance
through minor modifications to the MSHR organization, which can
be easily implemented as part of current architectures.

8 CONCLUDING REMARKS
In this paper, we present and evaluate Athena, a novel optimization
for minimizing the page walk latency, to improve the overall system
performance. Athena architecture improves the page walk latency
by issuing early-fetch of page walk requests. Our evaluation results
using a set of scientific and graph analytics benchmark programs
and a cycle-accurate simulation environment show that Athena
improves the performance, on average, by 6.5% and 15.6% for the na-
tive and virtualized environments, respectively. Further, when com-
bined with a recently-proposed complementary work [12], these
savings jump to 16.5% and 23.4%, respectively.
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