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Stacked DRAMs have been studied, evaluated in multiple scenarios, and even productized in the

last decade. The large available bandwidth they offer make them an attractive choice, particularly,

in high-performance computing (HPC) environments. Consequently, many prior research efforts

have studied and evaluated 3D stacked DRAM-based designs. Despite offering high bandwidth,

stacked DRAMs are severely constrained by the overall memory capacity offered.

In this paper, we study and evaluate integrating stacked DRAM on top of a GPU in a 3D manner

which in tandem with the 2.5D stacked DRAM increases the capacity and the bandwidth without

increasing the package size. This integration of 3D stacked DRAMs aids in satisfying the capacity

requirements of emerging workloads like deep learning. Though this vertical 3D integration of

stacked DRAMs also increases the total available bandwidth, we observe that the bandwidth offered

by these 3D stacked DRAMs is severely limited by the heat generated on the GPU. Based on our

experiments on a cycle-level simulator, we make a key observation that the sections of the 3D

stacked DRAM that are closer to the GPU have lower retention-times compared to the farther

layers of stacked DRAM. This thermal-induced variable retention-times causes certain sections of

3D stacked DRAM to be refreshed more frequently compared to the others, thereby resulting in

thermal-induced NUMA paradigms.

To alleviate such thermal-induced NUMA behavior, we propose and experimentally evaluate

three different incarnations of Data Convection, i.e., Intra-layer, Inter-layer, and Intra + Inter-layer,

that aim at placing the most-frequently accessed data in a thermal-induced retention-aware fashion,

taking into account both bank-level and channel-level parallelism. Our evaluations on a cycle-level

GPU simulator indicate that, in a multi-application scenario, our Intra-layer, Inter-layer and Intra

+ Inter-layer algorithms improve the overall performance by 1.8%, 11.7%, and 14.4%, respectively,

over a baseline that already encompasses 3D+2.5D stacked DRAMs.
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1 INTRODUCTION
In the past two decades, 3D integration of silicon dice has revolutionized the semiconductor industry.

Among several contributing factors, the key breakthrough has perhaps been Through-Silicon-Via

(TSV) technology [49]. Since this technology enables stacking different types of dice, multiple

research groups have proposed innovative combinations of compute (CPUs, GPUs, and atomic ALU

units) and memory (DRAM and SRAM) components [13, 41, 56]. Most practical and commercial use

cases for such 3D stacking of memory include High-Bandwidth Memory (HBM) [26, 27], Hybrid

Memory Cube (HMC) [28], and WideIO [30].

3D stacking of memory dice provides an order of magnitude improvement in bandwidth (256GB/s

for HBM v2 vs. 25.6GB/s for DDR4 vs 28GB/s for GDDR5). The reduction in wire length translates

to lower power consumption as well (10.66GB/sec/Watt for GDDR5 vs. ∼35 GB/sec/Watt for HBM)

[27]. While leading processor manufacturers market products with HBM-integrated GPUs in a

2.5D fashion through an interposer [6, 53], state-of-the-art proposals stack multiple memory dice

directly on top of a CPU or GPU die [15, 41, 42, 47, 63]. Though HBMs offer higher bandwidth, the

requirement for more device memory capacity in GPUs limits the benefit in GPUs as emerging

workloads like Deep Learning require higher capacities to accommodate larger models in the GPU

device memory [58]. As neither the die size nor the number of HBM dies are increasing significantly,

emerging workloads are severely bottlenecked by the device memory capacity, resulting in excessive

data movement between the host and device memories [58]. One needs to increase the number of

HBMmodules to increase the memory capacity which would increase the package size significantly

[62].

To address these challenges, in addition to the 2.5D stacked DRAM (HBM), integrating 3D

stacked DRAM vertically on top of a GPU is an option that is studied in recent works [62]. Together,

3D+2.5D stacked DRAMs would not only increase the overall memory capacity but they would also

increase the available memory bandwidth. In particular, bandwidth-intensive applications show

significant improvements in performance [11] [62]. However, in this configuration, we observed

that the overall bandwidth that can be leveraged from the vertically stacked 3D DRAM is severely

limited by the heat generated on the GPU. Additionally, we also observed that the heat generated

from GPU affects the DRAM cell retention-times differently as different regions of the 3D stacked

DRAM are subjected to varying temperatures causing the volatile DRAM cell capacitors to leak

charge at different rates. This variability in temperatures is due to the following reasons:

• As the heat dissipated from compute die escapes vertically, layers of DRAM closer to the compute

die are subjected to higher temperatures compared to ones that are farther from the compute

die, resulting in Inter-layer thermal gradient.

• Since a GPU die contains multiple SRAM hardware structures like caches, the heat dissipated

varies across different parts of the GPU, and hence, DRAM cells within a layer of 3D stacked

DRAM are subjected to different temperatures.

Such variability in temperature causes variable retention times, which necessitate refreshing

DRAM cells at different frequencies to maintain data integrity, thereby making DRAM refresh a

performance bottleneck. This problem is more pronounced in multi-application scenarios where

GPU is virtualized. Note that hardware virtualization has become a norm in Cloud Computing,

where hardware resource sharing is inevitable. Cloud service providers promise a Quality-of-

Service (QoS) to the end-user which in turn determines the monetary cost for the end-user. In such

scenarios maintaining the promised QoS is a critical challenge due to hardware sharing. Even though

cloud providers isolate the execution of applications by isolating the shared hardware resources,

thermal coupling still plays a huge role in causing interference across applications. For example, a

memory-sensitive application, co-residing with a compute-intensive application on a GPU, can
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still experience thermal problems because of the heat dissipated from the computational-intensive

application. Prior works have observed this phenomenon in CPUs as well as GPUs [55, 57].

Although modern-day system software such as OS and hypervisor [36, 40] have non-uniform

access latency (NUMA) aware data placement (allocation/migration) support, their NUMA cog-

nizance is limited to physical proximity. The traditional NUMA paradigms were strongly coupled

to the distance of data from the compute elements. In other words, memories that are closer to the

compute elements incur lower access latencies compared to the ones farther away. In this paper, we

demonstrate a new thermal-induced non-uniformity in access latencies across different sections of

the two stacked DRAMs. Unlike traditional NUMA paradigms, we observe that physical proximity

has a “reversible" effect on the memory access latencies: sections of a vertically stacked DRAM that
are closer to the compute elements (GPUs) have higher access latencies compared to the ones that are
farther from the compute elements and the ones placed on 2.5D DRAM. Based on this key observation,

we expose a novel avenue of NUMA-latencies in different sections of 3D stacked DRAM. To that

end, we propose “Data Convection", a thermal-induced NUMA-aware data placement that targets

GPUs. Specifically, we make the following main contributions in this paper:

• We are the first to demonstrate a novel thermal-induced NUMA paradigm in a system where 3D

stacked DRAMs are mounted vertically on GPUs.

• We demonstrate, using detailed cycle-level simulation, that such NUMA behavior is prevalent

both within and across the layers of a 3D stacked DRAM.

• We identify that modern GPU runtime systems are agnostic to such thermal-induced NUMA

behavior, and demonstrate that the bandwidth lost due to such retention-time agnostic data

placement can hurt performance and energy severely. To address this issue, we propose and

experimentally evaluate “Data Convection", a thermal-induced NUMA-aware data placement

technique that migrates hot-data within a layer, across layers, and across both DRAMs, to balance

both the bank-level and channel-level parallelism.

• Compared to a baseline with 3D+2.5D stacked DRAM with thermal-agnostic data placement, our

Intra-layer, Inter-layer and Intra + Inter-layer Data Convection schemes improve performance

by, on average, 1.8%, 11.7% and 14.4%, respectively.

2 BACKGROUND
2.1 DRAM Refresh
DRAM cells comprise of an access transistor and a leaky capacitor. They are volatile in nature

as the capacitors leak charge over time. To maintain integrity of data, DRAM cells are refreshed
periodically by Memory Controller (MC). The retention time of DRAM cells, often referred to as

“refresh window" (represented by tREFW), is in the order of several milliseconds. MC generates the

refresh commands by using the previous refresh time for each segment, leaving the refresh circuit

to handle refresh operations [51, 54]. The DRAM retention time is a function of the operating

temperature as well as the process variation, and varies inversely with the operating temperature.

The refresh rate usually varies across different manufactures. The typical DRAM retention time for

DDR4 SDRAM chips is 64ms in environments operating in -40
◦
C to 85

◦
C temperature, while it

drops to 32ms in environments operating in > 85
◦
C to 95

◦
C temperature, and it further drops to

16ms at >95◦C to 105
◦
C [48], [12],[9]. As the operating temperature increases, the data retention

time decreases. Depending on the granularity of refresh employed, DRAM refresh can fall on the

critical path of memory accesses. In particular, for a DRAM using per-bank refresh, none of the

rows in the bank being refreshed can be accessed. Consequently, DRAM refreshes increase the

memory access latency [37], and can be detrimental to overall performance and energy, if the hot

data elements are mapped to the frequently-refreshed sections of a DRAM. Increased DRAM chip
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Fig. 1. Memory address mapping in Data Convection.

Fig. 2. Temperatures recorded across different sections of both 3D DRAMs on a GPU executing the Bionomi-
alOptions and ScalarProd benchmarks as part of a workload.

densities coupled with reduced retention times results in DRAM refresh becoming a performance

bottleneck. In addition to the temperature, manufacturing variations also contribute to the DRAM

refresh issue. An example is variations between cells in the same die. This variation can be either

randomly spread out or can be spatially concentrated in a small area of the DRAM chip.

2.2 Data Mapping in 3D Stacked Memories
Memory address interleaving governs the destination channel, rank, bank, row, and even the

location of the DRAM (2.5D or 3D) for each physical address, and it plays a crucial role in governing

where the data corresponding to a physical address is mapped to. When employing two 3D stacked

memories, we need to consider an additional bit for specifying which memory we want to assign

the data. By using a finer-grained address mapping scheme, in which segment offset is divided

into two sections, shown in Figure 1, we try to minimize the ’channel camping’, where a larger

number of requests compete for bandwidth from one channel while the other channel remains

under-utilized. In our address interleaving scheme, shown in Figure 1, DRAM bit (bit 8) specifies

whether segment should be assigned on the 3D stacked DRAM or on 2.5D stacked DRAM. The

channel ID is determined using 3-bits (bits 9-11) and the bank ID is determined using 3-bits (bits

16-18). Further, depending on the granularity of segment size, the segment offset bits are determined.

For example, for a 4KB DRAM segment, the lower 8-bits and bits 12-15 are used to determine the

byte-offset within a DRAM row. In our implementation, since each channel consists of only one

rank, we assume that each channel represents a single DRAM layer.
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(a) (b)

(c)

Fig. 3. (a) Performance improvement achieved by placing an additional 3D memory at top of GPU. (b)
Maximum temperatures recorded for each layer in a 8-layer (8-high) of 3D stacked DRAM placed on top of a
GPU. (c) Percentage of misplaced segments vs epoch duration. The details of our experimental setup and
workloads are given in Section 5 and Table 3. WL is an abbreviation for Workload.

3 MOTIVATION
For our experiments in this section, we only used a small number of benchmarks (14 out of 196)

so we can show the raw numbers for all the results reported in this section. For choosing the

benchmarks, we fixed one of the two programs concurrently running on GPU to ScalarProd[52],

which is a medium memory-intensive application, and choose the other program from all the

workloads mentioned in Table 3. More details on our benchmarks and evaluation methodology are

covered in Section 5.

3.1 Capacity Limitation in State Of the Art Proposals
In state-of-the-art proposals, stacked DRAMs can be packaged in a given GPU die in two con-

figurations, i.e., 2.5D and 3D. In a 2.5D configuration, stacked DRAM and GPU are mounted on

an interposer, and the data from stacked DRAM are fed to GPU via the links going through the

interposer. There are commercially available products for this type of applications. However, one

of the major limitations of 2.5D stacked DRAMs is the lower overall memory capacity they offer,

which results in data movement between host and device memories for emerging workloads like

deep learning [58]. Additionally, integrating more stacked DRAMs in a 2.5D fashion increases the

package size, which is not preferable.

In comparison, in a 3D configuration, the stacked DRAM ismounted vertically on top of a GPU. The

stacked DRAM designs have been explored extensively in the last decade. [2, 18, 21, 22, 25, 47, 65]

are just a subset of the entire body of work. The promise of shorter wire lengths leading to lower

energy per bit, higher package density and worse thermal performance, has been established by

these prior works. However, the limited capacity and attainable bandwidth of the system are still

not addressed using stacked DRAM. To solve these problems, in this work, we evaluate a system

that contains two stacked DRAMs – one mounted in a 3D fashion vertically on top of a GPU and one

in a 2.5D fashion, proposed in [62]. Note that doing so can increase both capacity and bandwidth

while maintaining the same package size. As Figure 3a shows, by integrating additional 3D DRAM
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on the top of the GPU, the performance of the system increases by 27.3%, when memory footprint is

extensive, which indicates that the 3D+2.5D proposal can have a huge advantage in comparison to

the 2.5D system. This improved performance is due to the increased memory capacity that reduces

the data movement between the host and device memories as well as the increased bandwidth

offered by 3D stacked DRAM. However, we would like to emphasize that this package still suffers

from thermal issues for the stacked DRAM mounted vertically on GPU. Our work proposes to

reduce the thermal impact on bandwidth by migrating data dynamically. An additional difference

between prior works and our paper is the use of a GPU, instead of multicore CPUs in the logic die

of the stack. We believe that the thermal management challenge is not vastly different and that the

GPU is merely a vehicle for exploration.

3.2 Thermal Gradient in 3D vs 2.5D stacked DRAMs
Figure 2 shows the temperatures recorded across the edges of both the DRAMs in our system, one 3D

stacked DRAM and one placed in a 2.5D fashion, for a workload executing the BionomialOptions and

ScalarProd benchmarks concurrently on a GPU. As can be observed, there is significant temperature

gradient not just across different layers but within the same layer as well, on the 3D stacked DRAM.

For the 2.5D DRAM, the inter-layer temperature variation is not significant, and does not affect

the overall performance of the system significantly. Additionally, Figure 3b plots the maximum

temperatures recorded on each of the 8 layers of the 3D stacked DRAM across all our evaluated

workloads when one benchmark is fixed to ScalarProd. As can be seen, on average, the peak

temperature gradient between layer-1 (bottom layer) and layer-8 (top layer) of the 3D stacked

DRAM is 18.8
◦
C, while the gradient is very small for 2.5D DRAM (around 2.4

◦
C). This inter-layer

temperature variation occurs because the heat generated on the GPU die escapes vertically, causing

layer-1, which is closest to the GPU die, to be subjected to a higher temperature compared to

layer-8, which is farther from the GPU die. From Figure 2, it can also be noted that, in 3D stacked

DRAM, the temperature variation is not only observed across layers but it is also prevalent within

the same layer. This high Intra-layer temperature variation in 3D stacked memory is due to the

fact that the different parts of a GPU die dissipate different amounts of power spatially. That is,

the section of a GPU die that contains compute units (like ALUs) dissipate more power, compared

to the sections of a GPU die that contain SRAM-based structures like instruction/data caches and

TLBs. This causes significant variations in power density across the different sections of the GPU

die, causing significant thermal-gradient on the GPU die. Since heat escapes vertically, the sections

of DRAM cells that are directly on top of the compute units are subjected to higher temperatures,

compared to the sections that are over SRAM based caches. Besides, the difference in temperatures

recorded on the same layer is maximum in the bottom-most layer (layer-1) and it decreases as the

heat reaches the top-most layer (layer-8). This phenomenon is observed in all of our evaluated

workloads. This temperature variation happens since the primary heat source is at the bottom, and

the heat sink is at the top of our architecture. Consequently, in a steady state, the highest thermal

gradient will be in the upward direction. While there will be lateral thermal gradients, the vertical

gradient will be more significant. This observation is similar to prior works such as [50, 60].

Summarizing the observations from Figures 2 and 3b, it is evident that different sections of a

3D Stacked DRAM mounted on a GPU are subjected to higher temperature variation versus 2.5D

stacked DRAM that will cause different sections of the both DRAMs to have variable retention

times. Consequently, based on the variable retention times, different sections of both DRAMs have

to be refreshed at different frequencies to maintain data integrity for better performance without

conservatively employing the worst-case refresh frequency.
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3.3 Software vs. Hardware Data Remapping1

As demonstrated earlier, using a retention time-agnostic data placement can cause the most fre-

quently accessed data to be stalled by refreshes, resulting in sub-optimal performance. Thus, to

alleviate the stall times caused by DRAM refreshes, one can envision a retention-aware data remap-
ping scheme, implemented in software or hardware, that distributes data across the different sections

of both 3D and 2.5D stacked DRAMs. We now discuss the trade-offs between software vs. hardware

approaches for migrating data.

In a software-based remapping scheme, data remapping is performed by the GPU runtime.

Remapping the data in software involves the following steps:

• Tracking and identifying the most-frequently accessed data to limit the amount of remapped

data.

• Updating the GPU page tables to replace the old physical address with the remapped physical

address.

GPUs, like CPUs, lack sophisticated hardware support to track the access frequency of data and will

have to rely on the access-bit information in the Page Table Entries (PTEs) that indicate whether

the page is accessed or not. This is severely limiting, as the hot vs. cold data cannot be isolated

accurately with a single bit. Even if we have sophisticated support to isolate the hot vs. cold data,

since the process of remapping involves updating the old physical address with the remapped

physical address in the PTEs, a major drawback of the software-based remapping would be the

overheads involved in the remapping itself. Note that updating PTEs with the remapped physical

address requires invalidating all prior address translations in TLBs, warranting an expensive TLB

shootdown process.

Finally, GPU runtime needs to be scheduled on the CPU periodically to remap the mis-placed

data across and within DRAMs so that the most-frequently accessed data are less interfered by

the refresh operations. This increases scheduling overheads on the CPU. It is imperative that

the GPU runtime should only be executed infrequently on a CPU, which causes the mis-placed

data in both DRAMs to be remapped only at coarser microsecond if not millisecond granularities.

Thus, software-based GPU runtime-initiated data remapping will react slowly, compared to the

nimble hardware-based remapping schemes, which can perform data remapping at very fine –

tens-to-hundreds nanosecond – granularities. Figure 3c shows the percentage of requests where

the data are fetched from the mis-placed locations of the memories with varying data remapping

epochs. The mis-placed data correspond to the cases where the most-frequently accessed data

are fetched from sections of memory that are refreshed more frequently, and the least-frequently

accessed data are fetched from sections that are refreshed less frequently. As can be observed from

this figure, for a coarse-grain remapping epoch of 2 Million cycles, about 35% of the requests are

fetched from the mis-placed locations, which reduces to less than 10% for a fine-granular 50K cycles

epoch. This result indicates that a hardware-based remapping policy which can react faster to the

GPU access patterns does a better job at placing the data in a retention-aware fashion.

Hardware-based remapping schemes do not require updating the PTEs with the remapped physi-

cal address. The remapped segments’
2
original-to-updated physical addresses are tracked by an

additional hardware structure. This approach operates by using the original (un-updated) physical

address during the cache lookups and, upon a last-level cache miss, the new updated physical

address is looked up in the remapping table to access the correct location on DRAMs. Consequently,

this approach does not require shooting down the TLB translations during a segment migration.

1
We use the terms ’remapping’ and ’migration’ interchangeably in this paper.

2
"Segment" refers to granularity of remapped data.
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Fig. 4. Segment groups in [38, 59].

Hence, we adopt a hardware-managed remapping scheme in our Data Convection design. Summa-

rizing the observations from Sections 3.1, 3.2, and 3.3, we conclude that, using a thermal-aware

data placement in the 3D+2.5D system can improve the performance and bandwidth utilization of

the system, compared to the 2.5D configuration, 3D stacked DRAM , and 3D+2.5D baseline. 3D

DRAMs mounted on a GPU not only experience inter-layer temperature variances but they also

experience intra-layer temperature variances, which cause the different sections of 3D Stacked

DRAM to be refreshed with different frequencies. Further, a retention-time agnostic data placement

algorithm hurts performance as the most-frequently accessed data segments are stalled by the

DRAM refresh, resulting in sub-optimal performance. Additionally, software-based remapping

schemes are not nimble enough to react to the hardware access patterns and, as a result, they

are not effective in fast data remapping compared to the hardware-based schemes. To alleviate

the sub-optimal performance due to retention time-agnostic data placement, we present Data

Convection, a dynamic data remapping scheme that remaps data across and within 3D DRAMs in a

retention-aware fashion by considering the number of contentions at the same time.

4 DATA CONVECTION
In this section, we present our optimizations that are oriented towards addressing the bandwidth

lost due to sub-optimal data placement in stacked DRAMs. As explained in Section 3, the data

mapped to the regions of DRAMs that have lower retention times due to thermal exposure can hurt

performance, as the high frequency refresh operations interfere with the data accesses. However,

we cannot assign all of the hot segments to the coldest layer of the 2.5D DRAM, because doing

so would affect the performance due to increased bandwidth contention. To address these issues,

we propose Data Convection, our thermal-induced NUMA-aware data remapping strategy, which

takes into account access parallelism while data remapping. More specifically, we propose three

variants of Data Convection, i.e., i) Intra-layer only, ii) Inter-layer only, and iii) Intra + Inter-layer

approaches.

Our Intra-layer Data Convection optimization remaps data only within a same layer in each DRAM.

It targets remapping sub-optimally placed data segments within different sections of the same

layer in a retention-aware fashion. Our second algorithm, Inter-layer Data Convection, remaps

data segments across layers of both DRAMs in a thermal-induced NUMA-aware fashion. Our final

proposal, Intra + Inter- layer Data Convection, takes a combined approach by allowing the data

to be remapped within a layer, across layers, and across both DRAMs. While our Intra-layer Data

Convection strategy remaps data only in a single DRAM, our Inter-layer and Intra + Inter- layer

proposals migrate and distribute data across both the 2.5D and 3D DRAMs. Since the degree of
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freedom in remapping is higher in our Intra + Inter- layer Data Convection algorithm, we expect

this algorithm to perform better than our Intra-layer only and Inter-layer only algorithms.

Before presenting the details of our Data Convection algorithms, it is important to briefly discuss

the prior hardware-managed data remapping techniques proposed in the context of heterogeneous

memories [16, 38, 59] that affect our design. In systems containing regular DDR off-chip DRAM,

these prior hardware-managed proposals enabled efficient integration of stacked DRAMs into the

overall memory hierarchy, with the objective of increasing the overall memory capacity by using

stacked DRAM as part of the main memory (POM). These POM proposals, originally developed for

systems employing heterogeneous stacked and off-chip DRAMs, target increasing the data fetched

from the high-bandwidth stacked DRAM by remapping data in a NUMA-aware fashion. However,

since the NUMA-paradigms arise from heterogeneity in bandwidth, we would like to point out that

these proposals can naturally extend to our thermal-induced NUMA-paradigms as well. The original

POM proposals employed additional meta hardware structures, referred to as “Segment Remapping

Tables" [38, 59] or “Line Location Tables" [16], which contain the remapping information of the

original physical address to the remapped physical address. The granularity of remapping is referred

to as “segment". While the segment granularity was 64B in [16], it was 2KB in [38, 59]. Note that

the segment granularity plays a crucial role in the overall space occupied by the Remapping Table.

Additionally, to reduce the overheads involved in swapping the segments between the different

memory regions, these architectures group certain segments into a Segment Group (or Congruence

Group). Consequently, segments from the same “Segment Group" are allowed to be swapped with

one another, thereby allowing Segment Restricted Remapping.

Figure 4 depicts Segment Groups proposed in prior POM architectures [16, 38, 59]. As can be

observed, the prior POM proposals targeting the heterogeneous stacked and regular off-chip DRAM

systems have a Segment Group comprising segments from the stacked and off-chip DRAMs. This

allows segments to be remapped between the stacked and off-chip DRAMs. Motivated by this

design, in our thermal-aware data remapping architectures, the Segment Groups are spanned across

the different sections of both 3D DRAMs such that each Segment Group consists of sections that

have significant thermal gradient. More details on the Segment Group formation in our proposal

are covered later.

4.1 Hardware Modifications Overview
The first hardware modification required for our hardware-managed Data Convection are Tempera-

ture sensors, which are essential to make our proposal adaptable in 3D DRAM due to dependability

of our proposals on recording the temperature from different sections of DRAM. Although the

physical locations of on-die thermal sensors are typically not disclosed by manufacturers, several

prior articles [1, 17, 43, 46] indicate that, in today’s CPUs and GPUs, we have many thermal sensors

distributed throughout the die area (24 in IBM’s POWER5 [17]), and the number of sensors keeps

increasing over time [46]. Note that, integrating a similar number of sensors on the HBM die area is

not vastly different, and in our proposal, only 8 sensors are required per layer (equal to the number

of banks). They can be implemented as a current sensor with metal layer resistance and will not

impact DRAM capacity. Instead we will observe better performance due to our data migration

algorithms. In the situation where there are fewer sensors on the DRAM layers, we can still estimate

the temperature at different DRAM layers using the temperature measured across the GPU die using

a thermal model similar to HotSpot [24, 29]. Besides, as results in Section 6 shows, our Inter-layer

algorithm can achieve considerable performance improvement using only one temperature number

per layer, which can be achieved using the current formation of temperature sensors.

In addition to temperature sensors, Data Convection approach requires hardware structures to

track the access count per-each segment as well as the remapping information that points the
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(a) (b)

(c)

Fig. 5. Segment Groups in (a) Intra- (b) Inter- and (c) Intra + Inter-layer schemes. DRAMs are aligned for
better visibility of the segments (L-x represents Layer-x; S-x represents Segment-x, while SG-x represents
Segment Group-x).

original physical address to the remapped physical address. To that end, our Data Convection

proposal requires tracking the most frequently accessed segments through a filter cache proposed

in [32]. These most frequently accessed segments are remapped at the end of every remapping

epoch. Since our mechanism proposes remapping segments within and across the stacked DRAMs,

the segment remapping requires swapping the candidate mis-placed segment with the segment at

the destination location. Hence, similar to [16, 38, 59], our approach still requires a remapping table

to track the segments. Similar to the prior proposals [38, 59], to reduce the total remapping table

size, our hardware-based Data Convection approach only allows remapping segments within the

same segment group. That is, a most frequently accessed mis-placed segment from a segment group

can only be swapped with a segment within the same segment group that resides in the region that
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is refreshed less frequently. Additionally, to reduce the overheads of remapping the segments, we

allow the fast-swap based remapping proposed in [59], which reduces the overall number of swaps,

thereby reducing the time spent in swapping the segments. The fast-swap approach reduces the

number of swaps by allowing segments to be entirely remapped within the same segment group.

This is possible as the remapping table entry for each segment group contains additional storage

to store the possible remapping information of every segment (even if the segment is originally

not remapped). By confining the possible number of remapping locations, the Segment Restricted

Remapping reduces the payload for storing the remapped location. For migrating the data, we need

a buffer space in the memory controller to store the segments and forward them to the new loca-

tion during the migration process. In the next subsection, we discuss our thermal-gradient-aware

segment group formation.

4.2 Thermal-Gradient-Aware Segment Groups
As explained before, prior works [38, 59] target remapping the data between the stacked and the

off-chip DRAMs. Consequently, since the segments are remapped only within a segment group,

in their approach, a segment group comprises segments from the stacked and off-chip DRAMs,

spreading across both the stacked DRAM and off-chip DRAM. Unlike the prior proposals, since

our Data Convection proposal targets addressing the thermal-induced NUMA issues within and

across 3D and 2.5D stacked DRAMs, the segment groups in our proposal are spread across different

sections of both 3D and 2.5D stacked DRAMs that exhibit significant temperature gradient. Such

thermal-gradient-aware segment groups enable remapping the mis-placed segments within a

segment group and minimize the swap and remapping table overheads. That is, the segments that

are most frequently accessed and allocated in regions that experience higher temperatures can

be remapped to the regions that are relatively colder, thereby reducing the stall times induced by

refreshes. Additionally, we also consider bandwidth contention when remapping the segments

so as to avoid artificial hotspots created by remapping. Hence our Data Convection algorithms

remap the segments to address thermal-induced NUMA bottlenecks while balancing the access

parallelism at the same time.

Figures 5a, 5b, and 5c show the thermal-gradient-aware segment groups in our Data Convection

proposals. In the Intra-layer Data Convection approach, a segment-group comprises segments

within the same layer of each DRAM, as depicted in Figure 5a. As a result, segments can be remapped

with another segment within a segment group from the same layer. Since each layer is a channel

containing only one rank and multiple banks, assuming a stacked DRAM layout where multiple

banks are subjected to spatial thermal-gradient, an Intra-layer segment group can be formed such

that it spreads across the same row within multiple banks of a layer. Consequently, as depicted in

Figure 5a, a segment-0 from bank-0 and row-‘X’ which is more frequently accessed and is subjected

to higher temperature, can be remapped with another segment (say segment-7) in bank-7 and

row-‘X’ that is subjected to the lowest temperature within that segment group. As can be noted,

this scheme does not allow segments to be remapped across layers, even though there is significant

temperature-gradient across layers.

In Inter-layer Data Convection, as depicted in Figure 5b, a segment group is spread across multiple

layers of both 3D and 2.5D stacked DRAMs. Figure 5b depicts a sample segment-group, formed out

of the bank and row from across layers in our Inter-layer Data Convection approach. Consequently,

since layer-1 of 3D stacked DRAM (which is closest to GPU) is at a higher temperature compared

to layer-8 of the 2.5D stacked DRAM (which is coldest layer on the chip), a segment from layer-1 of

bank-0 and row-‘X’ of the 3D stacked DRAM can be swapped with a segment residing in bank-0 and

row-‘X’ of layer-8 of 2.5D stacked DRAM. As can be noted, this scheme does not allow remapping
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segments within the same layer, even though there is a notable thermal-gradient across the sections

of the 3D stacked DRAM within the same layer.

These Intra- and Inter-layer only approaches restrict remapping of the segments either within a

layer or across layers respectively, limiting the degree of freedom in remapping. These schemes

could potentially result in sub-optimal performance in a scenario where a large data structure like

an array that was mapped to contiguous banks and ranks during the initial allocation is accessed

more frequently compared to the other data structures which cause contentions for most frequently

accessed data. To alleviate such contention, we propose a combined Intra + Inter-layer remapping

scheme, which allows remapping the segments in the two dimensions, that is, within a layer and

across layers of both the stacked DRAMs.

Figure 5c shows an example segment-group formation in our Intra + Inter-layer Data Convection

algorithm. As can be observed, the segment-group in this case spans across multiple banks in the

same layer as well as across the layers of both the stacked DRAMs. As a result, a segment in a bank

can be migrated to the same row in multiple banks within a layer, across layers, and across DRAMs.

Hence, this Intra + Inter-layer Data Convection algorithm allows more degrees of freedom, and

consequently, results in better performance, as will be presented later in Section 6.

4.3 Segment Remapping Algorithms
As mentioned in Section 4.1, the efficacy of our scheme depends on the amount of data migrated

as the remapping overheads can become detrimental to performance. To reduce the remapping

overheads, we propose only migrating the most-frequently accessed segments in an epoch. We

track the most frequently accessed segments through a filter cache structure similar to [32]. More

specifically, the most frequently accessed segments are tracked using the original physical address

and, at the end of each remapping epoch, the segments in the filter cache are sorted by the hardware

before the mis-placed segments are remapped based on the temperature information collected from

the temperature sensors. Consequently, the filter cache size plays a crucial role in capturing the

most-frequently accessed segments in our approach. The advantages of ranking segments based on

the access count from the filter cache at the end of each remapping epoch is two-fold:

• First, it helps us in taking better remapping decisions when dealing with multiple hot segments

per segment group.

• Second, since the segment groups in our techniques are spread across layers, banks, as well

as DRAMs, just remapping segments in a retention-aware fashion would unfortunately create

scenarios where all hot segments are remapped to a single bank or a single channel of a stacked

DRAM, causing signification loss in bank-level and/or channel-level parallelism. Ranking the

segments not only helps us in performing retention-aware remapping of the mis-placed segments

but it also helps us in remapping, taking into account the bank-level and channel-level parallelism.

Algorithm 1 gives the pseudo-code of the routines used in remapping the mis-placed most

frequently accessed segments within their corresponding segment groups. The overall algorithm

contains three main routines that enable remapping.

The MIGRATOR routine in line-11 of Algorithm 1, which is invoked at the end of each epoch,

performs the remapping for all most frequently accessed captured by the Filter Cache by calling

the REMAP_SEGMENT routine.

The REMAP_SEGMENT is the most important routine; it remaps the mis-placed segments

in a thermal-induced retention-aware fashion, taking into account the bank-level and channel-

level parallelism at the same time. Each segments’ segment group number is obtained from the

SEG_GRP_NUM routine. Note that, the position of a segment in a sorted list, which indicates

how frequently a segment is accessed, plays a crucial role in our scheme. The target location
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where a remapped segment will be migrated to (if it is mis-placed) is calculated based on its global

ranking, as shown in line-19. As explained in lines-20 to 22, the target location, by considering the

global ranking automatically, balances the bank-level and channel-level parallelism. The mis-placed

condition check is performed by comparing the refresh rates of the current segment’s location and

the new target location, and the segment is remapped only if the target refresh rate is different

from the current locations’ refresh rate. If the target locations’ refresh rate is the same as the

current locations’ refresh rate, the remapping is skipped as there will not be any improvement in

performance by remapping to a location which is refreshed at the same rate.

Finally, the SEG_GRP_NUM routine returns the segment group number corresponding to the

original physical address of a segment. As the number of segments within a segment group varies

based on the Data Convection scheme employed, the segment group number generated is a function

of the Data Convection scheme as well as the segment granularity itself. For example, assuming

segment granularity to be the same as the DRAM row size, in the Intra-layer scheme, since a

segment group spreads across multiple banks in the same layer consisting of segments with the

same DRAM row-id, the number of segment groups per layer in the Intra-layer scheme is the

same as the number of DRAM rows in a bank. Similarly, in the Inter-layer Data Convection, as the

segment group spreads across multiple layers, again assuming that the segment granularity is the

same as the DRAM row, the number of segments in a segment group is equal to the number of

layers multiplied by the number of DRAMs. Finally, for the Intra + Inter-layer Data Convection, as

the segment group spreads across multiple layers on multiple DRAMs and across multiple banks in

each layer, the number of segments (and hence the segment group number) is a function of the total

number of banks per layer, total number of layers, and number of DRAMs involved in a segment

group formation. The formula for calculating the segment group for the Intra-layer, Inter-layer, and

Intra + Inter-layer schemes are shown in line-36, line-38, and line-40, respectively, in Algorithm 1.

Our REMAP_SEGMENT not only performs retention-aware remapping of segments, but it also

improves the access parallelism in the respective schemes. For example, in the Intra-layer scheme,

the bank-level parallelism is improved during remapping as the segments are remapped across

banks in a round-robin fashion, as indicated in line-20 of Algorithm 1. For example, the Intra-layer

algorithm places the hottest segment into the coldest bank in its segment group, the second-most

hottest segment is remapped to the second-most coldest bank of its segment group, etc. Thus, the

most frequently accessed segments are spread across multiple banks, which helps to ensure that the

overall-bank level parallelism will be higher. In the Inter-layer approach, our algorithm improves

the channel-level parallelism by remapping the segments across the layers of both DRAMs in a

round-robin fashion based on the segments’ position in the sorted list. Thus, the hottest segment

is remapped to the coldest layer of two DRAMs, the second hottest segment is remapped to the

second coldest layer of two DRAMs, and so on. As a result, our Inter-layer approach, by remapping

across layers in a retention-aware fashion, also increases the channel-level parallelism. Our Intra +

Inter-layer approach on the other hand, targets remapping segments in a retention-aware fashion

and improves both bank-level and channel-level parallelism. As shown in line-22, we distribute

the segments across banks and layers of both DRAMs in a round-robin fashion to increase both

the bank-level and channel-level parallelism. For example, in our Intra + Inter-layer algorithm, the

hottest segment will be remapped to the coldest bank of coldest layer in two DRAMs, the second

hottest segment will be remapped to the coldest bank in the second coldest layer of two DRAMs,

and so on.

5 EVALUATION SETUP AND METHODOLOGY
In this section, we describe the evaluation methodology, setup and workloads used in our evaluation.

Unlike a baseline with conservative refresh frequencies based on the hottest layer, we consider
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Algorithm 1 Segment Remapping Algorithm

1: 𝑠𝑒𝑔𝐿𝑜𝑐 [𝑠𝑒𝑔_ 𝑗] ⊲ contains the location of each segment within its group

2: 𝑛𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 8 ⊲ Number of channels(layers) in each DRAM.

3: 𝑛𝑢𝑚_𝑏𝑎𝑛𝑘𝑠 = 8 ⊲ Number of banks in each channel.

4: 𝑛𝑢𝑚_𝑑𝑟𝑎𝑚𝑠 = 2 ⊲ Number of DRAMs in our config (one 3D stacked and one 2.5D stacked.)

5: 𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 ⊲ Set by user in BIOS.

6: 𝑁𝑈𝑀_𝐵𝐴𝑁𝐾𝑆_𝑃𝐸𝑅_𝐺𝑅𝑃 ⊲ Number of banks in the segment group.

7: 𝑁𝑈𝑀_𝐶𝐻𝐴𝑁𝑁𝐸𝐿𝑆_𝑃𝐸𝑅_𝐺𝑅𝑃 ⊲ Number of channels in the segment group.

8: 𝑁𝑈𝑀_𝐷𝑅𝐴𝑀𝑆_𝑃𝐸𝑅_𝐺𝑅𝑃 ⊲ Number of drams in the segment group (1 in Intra and 2 in both

Intra + Inter and Inter)

9: 𝑀𝐴𝑋_𝑆𝐸𝐺𝑀𝐸𝑁𝑇𝑆_𝑃𝐸𝑅_𝑆𝐸𝐺_𝐺𝑅𝑃 = 𝑁𝑈𝑀_𝐶𝐻𝐴𝑁𝑁𝐸𝐿𝑆_𝑃𝐸𝑅_𝐺𝑅𝑃 ∗
𝑁𝑈𝑀_𝐵𝐴𝑁𝐾𝑆_𝑃𝐸𝑅_𝐺𝑅𝑃 ∗ 𝑁𝑈𝑀_𝐷𝑅𝐴𝑀𝑆_𝑃𝐸𝑅_𝐺𝑅𝑃

10: ⊲ Total number of segments in each group( 128 in Intra + Inter, 8 in Intra, and 16 in Inter

algorithm.)

11: function Migrator

12: for All segments in FCache do
13: REMAP_SEGMENT(𝑠𝑒𝑔𝑚𝑒𝑛𝑡 )

14: end for
15: end function
16: function REMAP_SEGMENT(𝑠𝑒𝑔_𝑛𝑢𝑚)

17: 𝑐𝑢𝑟𝑟_𝑙𝑜𝑐 = 𝑠𝑒𝑔𝐿𝑜𝑐 [𝑠𝑒𝑔_𝑛𝑢𝑚]
18: /* tmp_position is the segment ranking based on its access frequency. */
19: 𝑡𝑚𝑝_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = FCacheRanking(𝑠𝑒𝑔_𝑛𝑢𝑚)

20: /* For Intra-layer: target_loc=i→ remaps segment to i-th coldest bank in the seg-group. */
21: /* For Inter-layer: target_loc=i → remaps segment to i-th coldest layer in the seg-group */.

22: /* For Intra + Inter-layer: target_loc=i→ remaps segment to (i/num_channels)-th coldest bank
in (i%num_channels)-th coldest layer in the seg-group. */

23: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑜𝑐 = 𝑡𝑚𝑝_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛%𝑀𝐴𝑋_𝑆𝐸𝐺𝑀𝐸𝑁𝑇𝑆_𝑃𝐸𝑅_𝑆𝐸𝐺_𝐺𝑅𝑃

24: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ_𝑟𝑎𝑡𝑒 = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑜𝑐.𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ𝑅𝑎𝑡𝑒 ()
25: 𝑜𝑙𝑑_𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ_𝑟𝑎𝑡𝑒 = 𝑐𝑢𝑟𝑟_𝑙𝑜𝑐.𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ𝑅𝑎𝑡𝑒 ()
26: if (𝑡𝑎𝑟𝑔𝑒𝑡_𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ_𝑟𝑎𝑡𝑒 ! = 𝑜𝑙𝑑_𝑟𝑒 𝑓 𝑟𝑒𝑠ℎ_𝑟𝑎𝑡𝑒) then
27: 𝑀𝑖𝑔𝑟𝑎𝑡𝑒 (𝑠𝑒𝑔_𝑛𝑢𝑚 → SEG_GRP_NUM(𝑠𝑒𝑔_𝑛𝑢𝑚), 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑜𝑐)
28: 𝑠𝑒𝑔𝐿𝑜𝑐 [𝑠𝑒𝑔_𝑛𝑢𝑚] = 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑜𝑐
29: end if
30: end function
31: function SEG_GRP_NUM(𝑠𝑒𝑔_𝑛𝑢𝑚𝑏𝑒𝑟 )

32: if Algorithm==Intra-layer then
33: 𝑑𝑟𝑎𝑚_𝑖𝑑 = 𝑠𝑒𝑔_𝑛𝑢𝑚𝑏𝑒𝑟%𝑛𝑢𝑚_𝑑𝑟𝑎𝑚𝑠

34: 𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑖𝑑 = (𝑠𝑒𝑔_𝑛𝑢𝑚𝑏𝑒𝑟 ≫ 𝑙𝑜𝑔2(𝑛𝑢𝑚_𝑑𝑟𝑎𝑚𝑠))%𝑛𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

35: 𝑟𝑜𝑤_𝑖𝑑 = (𝑠𝑒𝑔_𝑛𝑢𝑚𝑏𝑒𝑟 ≫ (𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑠𝑖𝑧𝑒 − 𝑙𝑜𝑔2(𝑛𝑢𝑚_𝑟𝑜𝑤𝑠 ∗ 𝑛𝑢𝑚_𝑑𝑟𝑎𝑚𝑠)))
36: return (𝑟𝑜𝑤_𝑖𝑑 ∗ 𝑛𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑖𝑑) ∗ 𝑛𝑢𝑚_𝑑𝑟𝑎𝑚𝑠 + 𝑑𝑟𝑎𝑚_𝑖𝑑

37: else if Algorithm==Inter-layer then
38: return 𝑠𝑒𝑔_𝑛𝑢𝑚𝑏𝑒𝑟 ≫ (𝑙𝑜𝑔2(𝑛𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) + 𝑙𝑜𝑔2(𝑛𝑢𝑚_𝑑𝑟𝑎𝑚𝑠))
39: else if Algorithm==Intra + Inter-layer then
40: return 𝑠𝑒𝑔_𝑛𝑢𝑚𝑏𝑒𝑟 ≫ (𝑙𝑜𝑔2(𝑛𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ∗ 𝑛𝑢𝑚_𝑏𝑎𝑛𝑘𝑠 ∗ 𝑛𝑢𝑚_𝑑𝑟𝑎𝑚𝑠))
41: end if
42: end function
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Temp. (◦C) Retention Time (ms) Temp. (◦C) Retention Time (ms)
70 - 75 128 90 - 95 32

75 - 80 96 95 - 100 24

80 - 85 64 100 - 105 16

85 - 90 48 >105 NA

Table 1. DRAM Retention Time vs. Temperature

a performance-optimized baseline (explained in Section 5.2) that employs "variable refresh rates"
based on the subjected temperature. Table 1 summarizes the retention-times used in our evaluations

at different temperatures. Note that, thermal sensors are already in-place in the commercial systems

to ensure that the processor operates within Thermal Design Power (TDP) [8].

5.1 Experimental Setup
We used GPGPUSim v3.2.2 [10] simulator to model various components in a GPU. More specifically,

we used Mafia [33] framework to model a virtualized GPU that can execute multiple applications

on a GPU concurrently. We modeled 3D and 2.5D stacked DRAMs using Ramulator [23, 35], which

is integrated with Mafia [33]. More details about our simulated configuration can be found in Table

2. GPUWattch [10] is used to obtain the power dissipation values for components of GPU and

DRAMs. These power numbers are then fed to Hotspot v6.0 [29] along with the GPU floor plan

for thermal modeling. Hotspot is modeled in the transient-state mode. We integratedMafia with

Ramulator and Hotspot to create a “closed-loop framework" that enables thermal-feedback to the

GPU hardware modeled in Mafia. For starting temperature, we ran all the benchmarks on GPU to

reach a steady-state, and used the “average" as our ambient temperature.

5.2 Methodology
We performed our experiments in a multi-program environment. We want our proposal to adapt to

datacenter systems since GPU virtualization and multi-programming are becoming more common

in this type of environment. Besides, temperature variations can also occur in a single applica-

tion scenario (like deep learning) since applications can execute multiple kernels with different

characteristics concurrently.

For evaluating our proposal, we execute two applications at the same time. We choose these two

applications from a group of memory-intensive and compute-intensive benchmarks to evaluate the

effects of our Data Convection using different memory access characteristics. In order to simulate

the applications with large footprints, we increased their input datasets to a maximum of 4GB.

Our benchmarks along with their abbreviations, LLC MPKI (Miss Per Kilo Instructions) values,

and their categories (compute-intensive vs memory-intensive) are listed in Table 3. The first nine

workloads are more compute-intensive, and the remaining workloads are more memory-intensive.

Therefore, for each of our experiments, we run 196 (14×14) different combinations of applications

in order to comprehensively evaluate Data Convection. In each experiment, we simulated a two

benchmark-bundle for 20 million instructions. In every 1 million GPU clock cycles, using the power

data generated by GPUWattch[39], we updated the temperature through Hotspot [29]. Furthermore,

after each epoch of 50,000 cycles, we invoked our Data Convection algorithm to remap segments.

For our baseline, we consider a system containing both 3D and 2.5D stacked DRAMs with thermal-

aware variable refreshes with eight refresh rate levels (see Table 1) [9, 12, 48] and without any data

placement optimizations. In addition, as part of our motivational experiments, we also consider

another system with only one 2.5D DRAM and with thermal-aware variable refreshes with eight

refresh rate levels. In both of these systems, our GPUs employ Dynamic Voltage Frequency Scaling

(DVFS) to ensure that they operate within the TDP. We used 8-levels of voltage and frequency

based on prior proposals [64][45][5]. Table 4 gives the voltage and frequency values used in our
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Module Config

G
P
U
C
on

fi
g

SM Details 16 SMs running @ 1000MHz

Cache block size 128B

L1 Data Cache 16KB 4-way

L1 Instruction Cache 2KB 4-way

L1 Texture Cache 12KB 24-way

L1 Constant Cache 8KB 2-way

Shared Memory 48KB

L2 Cache 16-way 128 KB/memory channel (768KB

in total)

Filter Cache MFC[32] with 512KB size and 8 way as-

sociativity. The counter size for each seg-

ment is 8 bits.

St
ac
ke

d
D
R
A
M

C
on

fi
g

Type 2 dice of HBM v2

Capacity per Stacked DRAM 4GB

Channels/Ranks 8 channels/1 rank per channel

Pseudo Channels 2 Pseudo Channels per channel

Banks 8 (4 per Pseudo Channels)

Rate 2000 Gbps

Frequency 1000 MHz

Maximum Bandwidth (Bps) 256GBps

Channel Width (bits) 128

Segment Size 4KB

Refresh Config Single bank refresh 𝑡𝑅𝐹𝐶𝑠𝑏 = 160𝑛𝑠

Po
w
er

C
ha

ra
ct
er
is
ti
c Average energy consumption per bit 3.7 pJ/bit for DRAM and 6.8 pJ/bit for

logic cells [43]

Silicone specific heat 1.75e6 J/(m3 .K)
Silicone thermal conductivity 100 W/(m.K)
Heat sink and heat spreader specific heat 3.55e6 J/(m3 .K)
Heat sink and heat spreader thermal conductivity 400 W/(m.K)
Heat sink thickness 0.0069m

Interface specific heat in 4.0e6 J/(m3 .K)
Interface thermal conductivity 4.0 W/(m.K)

Table 2. Evaluated Configuration.

baseline. We employ a single (per-) bank refresh that incurs lower refresh overheads compared to

all-bank refresh [14, 37].

6 EVALUATION RESULTS
6.1 Performance Results
Figure 6a shows the categorization of benchmarks based on the improvements brought by our three

proposed algorithms, with respect to the 3D+2.5D baseline. Figure 6c shows the different statistics
regarding each result, such as the maximum performance loss and improvement and the average

performance improvement we achieve when using our proposals.

Our Intra-layer migration algorithm improves performance by a geo-mean of 1.8% (maximum of

up to 11.3%) across all workloads, over the 3D+2.5D baseline with default data placement. It is to be

noted that, our Intra-layer migration onlymoves data across different sections of the stacked DRAMs

within the “same layer", based on the “thermal gradient". The thermal gradient in a layer in the 3D

stacked DRAM is due to the different compute intensities across the workloads running on the SMs.

To leverage the shared SRAM structures across SMs, kernels from the same application are generally

mapped to spatially-contiguous sections; this results in power dissipation variance if we have a

compute-intensive application co-running with a memory-intensive application. This variance in

power dissipation transpires to spatial variance in temperatures within a layer. Leveraging this
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Benchmark WL LLC-MPKI Type

Binomial Options[52] WL-1 0.2 C

MaxFlops[19] WL-2 1.2 C

dtc8x8[52] WL-3 0.3 C

dwtHaar1D[52] WL-4 0.8 C

mergeSort[52] WL-5 0.2 C

MonteCarl[52] WL-6 1.2 C

quasirandomGenerator[52] WL-7 0.8 C

SobolQRNG[52] WL-8 1 C

sortingNetworks[52] WL-9 1.3 C

BlackScholes[52] WL-10 1.7 M

FFT[19] WL-11 1.8 M

fastWalshTransform[52] WL-12 2.4 M

radixSort[19] WL-13 1.5 M

scalarProd[52] WL-14 3 M

Table 3. Benchmark Characteristics. (WL: Workload)

Level f(MHz) VDDC(V) Level f(MHz) VDDC(V)

0 300 0.750 4 1251 1.062

1 600 0.825 5 1294 1.100

2 927 0.850 6 1339 1.143

3 1179 0.993 7 1380 1.187

Table 4. DVFS Levels.

(a) (b)

(c) (d)

Fig. 6. (a) Performance Improvement with Data Convection, (b) Energy Consumption Improvement with
Data Convection, (c) Performance Improvement Overall Stats, (d) Energy Consumption Overall Stats.

spatial variance in temperatures, our Intra-layer remapping scheme remaps the most frequently-

accessed segments to segments with lower retention time within the same segment-group, as

explained in Section 4. The maximum temperature gradient we observed in Figure 3b is 6.6◦C
in the bottom layer of the 3D stacked DRAM for WL-1, and this gradient decreases as we move

away from the GPU layer. We see that the Intra-layer algorithm finds small avenues to remap the

most frequently accessed segments with other segments within the same layer over the 3D+2.5D

baseline with default data placement. Note that our Intra-layer scheme also increases bank-level

parallelism by remapping the hot segments in a round-robin fashion within a layer.
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On the other hand, our Inter-layer remapping scheme targets moving segments across the layers of
both the stacked DRAMs, and consequently, it finds more avenues to remap segments across layers

within a segment group as the thermal gradient across layers is quite significant, as discussed in

Section 3. Overall, it improves performance by 11.7% (maximum of up to 31.3%) across all workloads

over the optimized baseline. Note that our Inter-layer scheme increases channel-level parallelism

by remapping the hot segments in a round-robin fashion and only need one sensor per layer.

Finally, in our Intra + Inter-layer remapping scheme, since the segments can be remapped within
and across layers of both the stacked DRAMs, there are more opportunities for remapping the

segments in a thermal-aware fashion. As a result, this algorithm improves performance by 14.4%

(maximum of up to 36.4%) over the optimized 3D+2.5D baseline, as it improves not only bank-level

but also channel-level parallelism. The only downside to this approach is the need for additional

sensors per layer.

Our proposal improves the parallelism of the system by distributing the access across banks/channels.

The improvement due to bank/channel parallelism is dependent on the number of migrations in

each epoch. If the temperature was not an issue, our proposal does not achieve good performance

(13.3% performance reduction) since in each epoch we migrate all the segments in our Filter Cache

according to their hotness (unlike our proposal, which only migrates if there is a difference in

refresh period in destination), which is substantial. However, by swapping the segments when their

number of accesses differ significantly (around 20% of the total accesses to the segment with the

lowest number of accesses) and all the segments are part of one segment group, our Intra+Intra-

layer migration can achieve a geo-mean improvement of 3.4%, compared to the baseline, which

shows that our proposal can effectively improve the channel/bank-level parallelism by decreasing

the number of conflicts if we can control the migration overhead. Still, the dominant improvement

is coming from temperature-aware migration techniques.

To summarize, our Intra-layer Data Convection algorithm brings low performance improvement

due to lower temperature gradient across layers. In comparison, Inter-layer data remapping scheme

benefits from higher temperature gradient across layers. However, it is not optimal as it cannot

leverage the intra-layer variations in temperature. Combining the two approaches, our Intra +

Inter-layer scheme achieves the best performance improvement.

6.2 Energy Consumption Results
Figures 6b and 6d show the categorization and statistical results regarding energy consumption

of our Data Convection proposals, compared to the 3D+2.5D baseline. These results contain

two components – data migration and memory accesses. While our proposals increase the data

migration energy usage due to relocating the hot segments, improvements brought by lower

memory accesses energy consumption (due to smaller number of collisions) and lower execution

time usually surpass the data migration energy usage, which ultimately leads to lower overall

energy consumption. It is important to note that in all experiments, the power consumption from

additional data structures (implemented using DRAM) is considered by using the average energy

consumption values mentioned in Table 2. These results indicate that data migration increases the

energy consumption of Intra + Inter-layer proposal by a geo-mean of 15.3%. However, by improving

the system’s performance and minimizing the collisions, we decrease the memory access energy

consumption by an average of 24.6%, leading to lower overall consumption. As shown in Figure 6d,

over a 3D+2.5D baseline, the overall energy consumption decreases by 9.3% on average, as the

DRAM refresh operations minimally stall the most frequently accessed data. Only in small set of

benchmarks, our proposal increases the energy consumption.
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(a) (b)

(c) (d) (e)

Fig. 7. Results for different (a) filter cache sizes, (b) segment granularities, (c) remapping epochs, (d) starting
temperatures, and (e) banks per DRAM layer.

6.3 Bandwidth Consumption
We also performed an experiment to evaluate the bandwidth consumption increase for our Intra +

Inter-layer proposal. The results indicate, our proposal consumes between 4.3% and 22.1% (with

an average of 12.6%) more bandwidth compared to the 3D+2.5D baseline for migrating the data

both within and between 3D DRAMs. While our proposal can migrate all the segments within

Filter Cache, since we only migrate if the refresh rate is different between source and destination,

the number of migrations is limited, thereby minimizing the incurred bandwidth consumption

overhead.

6.4 Sensitivity Results
In this subsection, we present sensitivity results for various important parameters in our evaluation.

6.4.1 Filter Cache Size Sensitivity. Filter cache plays a crucial role in identifying the hot segments.

Figure 7a shows how the performance changes with various Filter cache sizes. For Filter Cache

sensitivity, we evaluated three different sizes: 128KB, 512KB, and 1MB. It is to be noted that the

Filter Cache size governs the number of mis-placed segments that need to be migrated at the end

of a remapping epoch. In comparison to the 3D+2.5D baseline with the default data placement, our

Intra + Inter-layer Data Convection scheme improves performance by 10.2%, 14.4%, and 12.6% for

the 128KB-, 512KB-, and 1MB-sized Filter Caches, respectively. When the Filter Cache capacity

is set to 128KB, it cannot track many segments, which limits the mis-placed segments that can

be remapped and that in turn limits the potential performance improvement. On the other hand,

increasing the Filter Cache size to 1MB, allows tracking more segments that need to be remapped at

the end of a remapping epoch. However, migrating a large number of segments wastes the precious

memory bandwidth for remapping, which consequently degrades performance by 1.8%, compared

to a 512KB Filter Cache configuration.

6.4.2 Segment Size Sensitivity. Segment size, which is the granularity of tracking and migration,

plays a crucial role in the overall design of our schemes. A smaller segment granularity will

require a lot of filter cache entries to track contiguously allocated most-frequently data structures.

Consequently, filter cache space is exhausted as we store more entries with a smaller segment

granularity. With a larger segment size on the other hand, the number of filter cache entries is

reduced, resulting in tracking a higher number of most-frequently accessed segments. Figure 7b

presents the normalized performance as the segment granularity is varied from 1KB to 128KB (recall
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that our original results used 4KB as the segment granularity). The performance improvements

brought by the Intra + Inter layer algorithm increase from 10.5% to 16.3% when we increase the

segment size from 1KB to 16KB, compared to the 3D+2.5D baseline. This is because, the larger

segment granularities can effectively track more number of hot segments causing the mis-placed

segments to be remapped, thereby improving the performance. After this threshold got exceeded

however, the performance improvements start to diminish since the overhead of migration increases

which surpasses the improvement achieved via data migration. In fact, when employing a segment

size of 128KB, we see an average performance loss of 7.1%, due to the migration overheads incurred.

6.4.3 Remapping Epoch Sensitivity. The default remapping epoch used in our evaluations so far was

50K cycles. We also carried out experiments with two other remapping epochs sizes – 500K and 5K

cycles. Figure 7c shows how the performance improvements vary with different remapping epoch

sizes. We see that the performance improvement drops from 14.4% to 14.3% for 5K cycles, because

the additional re-mappings increase the time spent in remapping. At the end, the performance

improvement does not change significantly. However, for 500K cycles, since we react late to the

access patterns and hence the remapping is not timely (causing the most-frequently accessed

segments to be stalled by DRAM refreshes), the performance improvement drops from 14.4% to

9.7%.

6.4.4 Starting Temperature Sensitivity. As mentioned earlier, we executed all the applications until

they reach a steady-state, and used the average as our starting temperature (referred to as Default).

To show the effect of lower starting temperatures, we ran two experiments with Default-5
◦
C and

Default-10
◦
C as starting temperatures. With starting temperatures of Default-5

◦
C and Default-10

◦
C,

our Intra + Inter-layer Data Convection algorithms improve performance by 13.1% and 10.4% over

the 3D+2.5D baseline vs. 14.4% at the original starting temperature. The lower initial temperature

increases the refresh period of some of the banks, thereby reducing the upper limit for improvement.

However, since the temperature figures we report are based on a scaled-down version of GPU, one

can predict that in commercial GPUs such as Radeon VII [7] with more compute units, temperature

variations can be even worse.

6.4.5 Bank Number Sensitivity. The number of banks per layer plays a significant role in all three

of our algorithms, especially for Intra-layer and Intra + Inter-layer remapping schemes. The default

number of banks per layer used in our evaluations so far was 8 banks per layer. We also run our

experiments using 16 banks and 32 banks per layer, shown in Figure 7e. The result shows that, for

our Intra + Inter-layer migrations, we achieve an average speedup of 14.38%, 13.24%, and 12.05% for

8 banks, 16 banks, and 32 banks, respectively. As the results indicate, the performance improvement

decreases by increasing the number of banks per DRAM layer. The primary reason is that by

increasing the number of banks, we see fewer conflicts in the baseline, thereby decreasing the

maximum potential improvements. In addition, the temperature difference across each layer is

not that significant, causing two nearby DRAM banks to have higher than 5 degrees difference,

needing different refresh rates. Still, the results indicate that in all these cases, we are achieving

speedup since the significant part of our improvement is due to temperature differences across

layers. Therefore, our proposal is valid for all the architectures with different banks and channels.

6.5 Area Overhead
To implement Data Convection, we need two additional data structures and FilterCache [32], for sort-

ing the segments based on the number of accesses. The first data structure is a "remapping table" that

maps the original physical address to a new location. This table contains 2
SegmentsNumber = 2

(
33 − 12)

entries, each entry having 7 bits (to store new Bank, Channel, and DRAM bits), requiring a total
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of 2MB. Data Convection needs another data structure to store the temperature of the different

banks of DRAMs. The total number of entries in this table is equal to the total number of sensors

(which is equal to 128; 64 per DRAM). Since the sizes of these tables are not significant, they can be

implemented using SRAMs. Furthermore, we use FilterCache, a previously-proposed mechanism

for identifying hot pages and sorting the pages based on their rank. This data structure makes use

of 512KB, which can be easily stored in both SRAM and DRAM.

7 RELATEDWORK
We divide the relevant prior research into various categories, and briefly discuss the benefits of our

work.

Physical structure: As described earlier, a full 3D architecture implies that compute and main

memory are integrated into a single package. Furthermore, full 3D architectures can be subdivided

into memory-on-top and processor-on-top (see Agrawal et al. [2] for more details). Thermal herd-

ing [56] proposes moving the hottest datapaths closer to the heat sink for better heat dissipation.

Thermal TSVs [2] are also used as a means to extract heat vertically, with algorithms to opportunis-

tically boost clock frequencies. Zhang et al. [66] report improvements in the performance of a 3D

stacked GPGPU with DRAM, compared against a 2D equivalent system, but they do not discuss

thermal implications. Our work is, in a sense, a more completed version of these papers and more

importantly complements the prior proposals.

Memory architecture: Zhao et al. [67] proposed optimizing energy efficiency by reconfiguring

memory interfaces via bus width, voltage and frequency modulation. Ahn et al. [3] proposed

dynamically disabling the off-chip links of HMCs for reducing energy consumption. In addition,

they also proposed a two-level prefetching mechanism to prevent extra main memory accesses.

There are a couple of design space exploration works [4, 63] that analyzed performance, power and

thermal behavior of 3D DRAMs. Khurshid et al. [34] attempt to reduce the maximum temperature

and its variation by employing data compression at the memory controller of an HMC style 3D

DRAM. In all these five papers, the architecture under consideration is 2.5D, which does not
experience thermal stresses as much as our 3D stacked DRAM evaluated in this paper.

Access parallelism boosting proposals: Ding et al. [20] proposed a compiler-based technique

to increase the performance of the system by enhancing bank-level and memory controller-level

parallelism by identifying the memory banks that will be accessed for each cache miss. Jeong et al.

[31] proposed a hardware technique to combine partitioning the internal memory banks between

different cores with memory sub-ranking to increase performance and reduce power consumption.

Tang et al. [61] explored a compiler/runtime based loop iteration scheduling strategy to improve

bank-level parallelism for the applications that have irregular data access patterns. Lym et al. [44]

proposed ERUCA, a hardware technique to improve the available parallelism in a DRAM chip

by allowing efficient sub-banking and increasing the global-chip interconnect bandwidth. While

all these proposals focused on boosting the access parallelism, they are not triggered by thermal-

gradient. Consequently, these schemes do not consider the thermal-induced NUMA bottlenecks

observed in 3D stacked DRAMs unlike our proposal.

8 CONCLUSION
This paper proposed and evaluated Data Convection, a novel approach that dynamically migrates

data segments to address thermal-induced variable-retention-aware NUMA bottlenecks. We pro-

posed three different incarnations of Data Convection and evaluated their effectiveness using 196

combinations of benchmarks in a system, with respect to a 3D+2.5D stacked DRAM baseline. Our

results indicate that the three proposed data placement algorithms provide average performance



07:22 Soheil Khadirsharbiyani, Jagadish Kotra, Karthik Rao, and Mahmut Taylan Kandemir

improvements of 1.8%, 11.7%, and 14.4% over the 3D+2.5D stacked DRAM baseline with the de-

fault data placement. The paper also presented a detailed sensitivity study with a wide range of

simulation parameters used in our evaluation.
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