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Abstract—In recent years, deep convolutional networks have
been widely used for a variety of visual recognition tasks,
including biomedical applications. In most studies related to
biomedical domain (e.g., cell tracking), the first step is to
perform symmetric segmentation on target images. Such image
datasets usually have the following challenges: (1) they lack
human labeled training data, (2) the locations of the objects
in images are as equally important as classifying them, and
(3) the result accuracy is more critical than that in traditional
image segmentation. To address these challenges, recent studies
employ large deep neural networks to perform segmentation on
biomedical images. However, such neural network approaches
are very compute intensive due to the high resolution and
large quantity of electron microscopy data. Additionally, some
of the efforts that make use of neural network models involve
redundancy as target biomedical images usually contain smaller
regions of interest. Motivated by these observations,in this paper,
we propose and experimentally evaluate a more efficient frame-
work, especially suited for image segmentation on embedded
systems. This approach involves first “tiling” the target image,
followed by processing the tiles that only contain an object of
interest in a hierarchical fashion. Our detailed experimental
evaluations using four different datasets indicate that our tiling-
based approach can save about 61% of execution time on
average, while achieving, at the same time, a slightly higher
accuracy compared to the baseline (state-of-the-art) approach.

Index Terms—attention model, biomedical image segmenta-
tion, cell tracking

I. INTRODUCTION

Image segmentation is a technique predominantly used in

solving challenges from biomedical domain, some of which

include neural structure construction [1], cell tracking [2],

[3], and retina layer segmentation [4]. The advent of high-

throughput electron microscope makes the high resolution

medical data ubiquitous, thereby posing important challenges

on the compute capabilities of the systems performing image

segmentation.

Usually, the first step in executing biomedical image ap-

plications is to segment each image into different parts.

For example, in the cell tracking application, each image is

segregated into foreground and background channels. While

the foreground contains the cells that need to be tracked, the

background information is typically discarded as it contains

This work is supported in part by NSF grants 1439021, 1626251, and
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trivial information. The conventional strategies used in image

segmentation include (1) clustering techniques (e.g., k-means),

(2) edge detection, and (3) region growing. However, these

conventional approaches lack high accuracy segmentation for

complex images.

Machine learning based techniques like Convolutional Neu-

ral Networks (CNNs) have increased the accuracy of biomed-

ical applications in the recent past [5]–[9]. Though the CNNs

provide higher accuracy in image segmentation tasks, the

time spent and energy cost during the training and inference

phases limit the ubiquitous adoption of these neural network

based algorithms in system-on-chips. In order to address

the performance inefficiency issue of these neural networks,

recent studies proposed various attention models [10]–[12].

Those attention models can generate multiple small Regions

of Interest (RoI) before employing segmentation pipelines.

However, existing attention models are not flexible enough

to handle different datasets as they can only employ fixed

sizes and shapes of RoI (e.g., Faster R-CNN can generate

9 types of RoI [11]). This limitation results in the R-CNN

generating thousands of candidate RoI for each image, which

in turn leads to a large amount of redundant computation.

It is important to note that this large mount of redun-

dant computation limits the potential benefits of employing

such application in system-on-chips, due to the increases

in time and energy costs. Inspired by those limitations, in

this paper, we propose a hierarchical framework involving

a novel “tiling” mechanism, which significantly reduces the

inference time and limits the amount of redundant work. More

specifically, we explore three different tiling strategies and

compare them to each other. Based on four cell tracking

datasets, our best tiling strategy can reduce large amounts

of computation and eventually cut the execution time on

an average by 61% over the state-of-the-art segmentation

framework, while maintaining the same levels of accuracy

(and achieving slightly better accuracy in some cases).

The remainder of this paper is organized as follows. We

include a brief primer on CNN architectures in Section II-A,

and then compare our proposal to related works in Section

II-B. In Section III, we present our motivational results. We

discuss our methodology in Section IV. After presenting

our proposed hierarchical framework and our three tiling
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Fig. 1: U-net architecture [8]. Each box represents a feature

map where the number of channels indicated on top (bottom)

of each box. The height and width are specified at the lower

corner of each box.

strategies, we give our experimental results and compare

our approach quantitatively against alternate approaches in

Section V. Finally, we conclude the paper with a summary

of our main observations in Section VI.

II. BACKGROUND AND RELATED WORK

A. Background

Convolutional Neural Networks (CNN) have been success-

fully employed in the context of image classification and

segmentation challenges. The popular classification CNNs

include LeNet [13], Deepyeast [14], VGGNet [15], and

AlexNet [16]. In general, a neural network assigns a single

label for each image, depending on the type of objects

contained in the image. For example, the MNIST [17] dataset

has 10 classes of labels corresponding to digits 0-9. The

image segmentation networks [8], [9], [18], on the other

hand, classify all the pixels in an image, and then assign a

unique class ID to a group of connected pixels. For example,

FCN [9] identifies objects on the image in the PASCAL VOC

dataset [19].

Compared to the traditional neural networks, image seg-

mentation networks in biomedical domain are computationally

more intensive. The main reason is that biomedical tasks

typically lack enough training data and are more sensitive to

accuracy. To achieve high accuracy for image segmentation,

complex network structures have been designed to maintain

more weight inside the network. For example, U-net [8] (Fig-

ure 1) contains a total of 64 layers, including 19 convolution

layers. It also combines the high resolution features with lower

resolution features after several pooling layers.

B. Related Works

Our approach targets at reducing the execution time of the

biomedical image segmentation tasks, where we need to detect

all the objects of interest in a given image. Several prior works

targeted image segmentation. For example, Ciresan et al. [5]

applied a sliding-window on the input image where each pixel

in the image is given a label based on the neighboring chunk

pixels. This strategy is inefficient due to the overlap areas

between each windows, thus all pixels are used redundantly

to train the network multiple times. To address this challenge,

FCN [9] proposed a more detailed network which used

traditional classification neural networks initially to track the

features from the image, and then combined the features with

location information in the last several layers of the network.

Inspired by that, U-net [8], which is mainly designed for

the biomedical image segmentation tasks, refined the FCN

architecture further. An input image in U-net traverses through

several convolution layers, followed by pooling layers to

obtain a low resolution feature map. This low resolution

feature map is then passed to the “top” by the deconvolution

layers, thereby resulting in a “u-shaped” architecture (see

Figure 1). As the low resolution feature from the bottom layers

traverses the upper deconvolution layers, it is concatenated

with the features from the corresponding max-pooling layers.

This concatenation results in a high precision feature in the

result. SegNet [18], similar to U-net, also employs a u-shaped

architecture. In comparison, Hosseini et al. [6] employed a

cascaded hierarchical model in the content of logistic dis-

junctive normal networks. However, these prior approaches

mainly favor on accuracy of segmentation over execution time.

In contrast, our work primarily targets performance without

causing any significant loss in accuracy.

Recently, several attention models were proposed for recog-

nizing the regions of interest inside images. For example, [10]

uses Recurrent Neural Network (RNN) to quickly locate the

text area in the images. Besides this, there are several R-CNN

(Region-based Convolutional Neural Network) based mecha-

nisms [11], [12] that generate candidate regions in an image.

For example, Faster R-CNN [11] applies a sliding window

on the feature map generated from the last convolution layer

of VGGNet. The Mask R-CNN [12] adds another branch to

Faster R-CNN, which provides a segmentation mask for each

detected object in the regions.

However, the R-CNN based works have the following

drawbacks: (1) they typically involve redundant computations

due to the overlap area in the sliding window process, (2)

they generate up to thousands of candidate regions for each

image, (3) they are not flexible when customizing the frame-

work of the segmentation process. This is important because

different datasets are suitable for different frameworks, and

(4) when the image size is large, memory size becomes a

bottleneck when implementing R-CNN, especial for an on-

chip system [20].

Consequently, there is a strong motivation for exploring

a more efficient framework which can reduce the execu-

tion time of the inference phase of the CNN-based image

segmentation applications. In our approach, we first identify

possible locations of the objects (cells) in an image, and

then only focus on the particular locations in the image,

thereby improving the overall execution time. Note that our

approach is oriented towards reducing the execution time

without negatively impacting accuracy.

III. MOTIVATION

In many existing biomedical datasets [2], [3], each image

has nearly one million pixels, which is significantly larger



Datasets Pixel-wise TR Tile-wise TR

PhC-C2DH-U373 6.47% 59.01%

Fluo-C2DL-MSC 6.05% 47.73%

Fluo-N2DH-SIM+ 6.30% 65.83%

Fluo-C3DH-H157 6.83% 38.53%

Average 6.41% 52.77%

TABLE I: Pixel-wise and tile-wise tissue ratios (TR).

Datasets Accuracy U-net time AlexNet time

PhC-U373 99.75% 137.28s 1.09s

Fluo-MSC 99.17% 340.33s 3.47s

Fluo-SIM+ 99.27% 1088.49s 8.78s

Fluo-H157 98.97% 673.73s 7.99s

Average 99.29% 430.24s 4.04s

TABLE II: AlexNet classifier accuracy and execution time.

The accuracy result (second column) indicates how many

tiles the classifier accurately predicts to contain cells or not.

The third column is the execution time of U-net. The fourth

column is the classifier execution time.

than the images in traditional image datasets [17], [21]–

[23] that contain only thousands of pixels. Additionally,

these biomedical datasets lack human labeled training data.

Observing this, prior research focused on designing deeper

and larger neural networks to improve the overall accuracy

during inference. For example, the U-net [8] model has a

total of 101MB weights. The large size of each biomedical

image and the complexity of the neural network itself pose

challenging performance problems to the end-users, especially

when these neural networks are deployed under system-on-

chip environments. Input image agnostic reduction in the size

of the neural network also reduces the end-to-end inference

time. However, such input agnostic model compression might

also result in reduced accuracy [24]. Hence, reducing the end-

to-end execution time of applications without compressing the

neural network is itself an open research challenge.

Contrary to the prior works in the biomedical domain, we

observe that only a small portion of a biomedical image ac-

tually contains objects of interest. In fact, as can be observed

from Table I (Pixel-wise), on average, only a small fraction

(6.41%) of the pixels in an image belong to the cells, while

the other pixels simply represent the background. Such a

small ratio of objects of interest enables us to perform image

segmentation on such useful areas while discarding the not-

so interesting areas. Further, such smaller areas of objects of

interest give us the opportunity of employing “approximate

computing”, when processing these huge biomedical datasets.

In our study, we first tile all the images into 4-by-4 tiles.

From Table I (Tile-wise), one can observe that only 52% of

the tiles among four datasets contain objects of interest (cells).

This suggests that, if we could get a perfect filter for these

tiles, we would be able to avoid a large amount of redundant

computation, thereby reducing the running time. Clearly, the

challenge here is to achieve this without negatively impacting

the accuracy.

As will be discussed in the next section, instead of using

the segmentation framework indiscriminately for the entire

image, we propose a “hierarchical” framework for image

segmentation. In our approach, the first tier neural network
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Fig. 2: High-level view of our tiling-based framework.

performs image classification on the tiles and acts as a “filter”

(also referred to as the “classifier” in the rest of this paper).

The classified tiles containing valid objects (output from the

first tier) are then fed to the segmentation framework, which

forms the second tier of our hierarchical framework. The

classification network employed in the first tier filters the tiles

into two classes, viz., if the tile contains an object or not. More

details of our framework are given in the next section.

IV. METHODOLOGY

Our framework consists of two parts. As shown in Figure 2,

we have a classifier (Alexnet) on the top of the framework and

a segmentation(U-net) framework at the bottom. Note that,

although we use AlexNet as the classifier and U-net as the

segmentation framework in our experiments, it is not neces-

sary that we use these two networks. In fact, different types

of classifier and segmentation networks can be employed,

depending on the dataset characteristics.

A. Tile Classifier and U-net Framework

During the inference phase of our framework, the entire

image is tiled by one of our tiling techniques, and each tile

is then sent to the classifier network for detecting whether

it contains tissue. Based on the classification result, only the

tiles determined as containing tissues are forwarded to the U-

net framework, thereby ensuring the image segmentation is

performed only on the useful tiles.

As the classifier network determines which parts of the

image needs to be segmented further by U-net, we employ

a simple classification CNN for this task where this network

should be accurate and not incur too much overhead (es-

pecially when a system-on-chip environment is considered).

Considering the accuracy and the running time overhead,

we employ AlexNet [16] as our classifier. We observed that

AlexNet achieved nearly 100% of accuracy for all the four

datasets we used in our evaluations, whereas its running

time was negligible compared to the U-net segmentation time

(shown in Table II). This high accuracy can be attributed to

the fact that the decision of whether an object exists or not is

quite a simple task for AlexNet (or similar networks).

The U-net forms the heart of our hierarchical framework,

and handles the image segmentation tasks for all the selected

tiles coming from the classifier. In our hierarchical framework,

only a subset of an image will be fed to the U-net instead of

the entire image. Below, we explain the three tiling strategies

we propose and evaluate in this work.



B. Fixed Tiling

The first tiling strategy we propose is fixed tiling. In this

tiling strategy, as shown in Figure 3a, each image is divided

into tiles of the same size. It is easy to see that, increasing

the tile size will result in fewer tiles to be processed by the

classifier (AlexNet) and can result in only a few tiles to be

discarded as the likelihood of each larger tile to contain a

cell increases. On the other hand, decreasing the size of a

tile will result in many tiles to be discarded while increasing

overall execution time which is not preferable for overall

performance.

C. Adaptive Tiling

It is to be noted that, the fixed tiling strategy will face a

trade-off challenge. If the tile size is too big, then its behavior

comes close to U-net. If on the other hand, the tile size is too

small, the overall execution time will increase. Unfortunately,

it is not trivial to easily determine an “optimal” tile size

to employ, when using the fixed tiling strategy for different

input datasets. Motived by this observation, we next propose

adaptive tiling. As shown in Figure 3b, in this second tiling

strategy, we first divide each image into large tiles and send

those tiles to the classifier. Depending on whether the tile is

detected (by the classifier) to contain a tissue or not, each of

the larger tiles can be further divided into smaller tiles. These

smaller tiles are sent through the classifier once again. And,

this process continues in an iterative manner, where, at each

step, a larger tile is further divided if it is detected to have a

tissue.

However, there is a potential issue which can limit the

execution speed of the adaptive tiling strategy. The output

feature map generated by U-net is smaller in size than its input

size. This is because of the shrinkage during the convolution

layers. For example, the 3*3 convolution kernel in U-net

causes an image size loss of 2 pixels in both height and

width. As shown in Figure 1, we can observe that, to obtain

a segmentation map of size n*n, we need to feed U-net with

a padded tile, which is of size (n+184)*(n+184). Figure 4

illustrates this issue using an example. Hence, as the number

of tiles increases, each tile itself becomes smaller in size;

however, the overhead of the total padded area becomes

relatively larger and this causes an increase in execution time

due to the redundant operations on the overlap areas between

the neighboring tiles. Consequently, it is not clear whether the

adaptive tiling strategy could generate any better result than

the fixed tiling strategy.

D. Scratch Tiling

To address the above mentioned limitation for the adaptive

tiling, we propose a more flexible tiling strategy that scratches

the surrounding area of the objects from the image directly.

We call this strategy scratch tiling. In this tiling strategy, we

first divide the image into very fine-grained tiles and then send

them to the classifier. The classifier generates a “scratch map”

for each image, as shown in Figure 6. In the scratch map, an

entry ‘1’ indicates that the corresponding tile in the image

Algorithm 1 Scratching from the scratch map

Input: A scratch map M with size of n by m and all the entries are 0 or 1

Initialization:

Neighboring region list← ∅;

for each elements M [i, j] in M do

if M [i, j] is not in any connected regions now then
call BSF start from M [i, j] and get a neighboring region R;

Neighboring region list.push back(R);
end

end

Rectangle boxes← ∅;

for each neighboring region R in Neighboring region list do
T1← the largest rectangle box of 1s at the up-left of R;

T2← the largest rectangle box of 1s at the up-right of R;

T3← the largest rectangle box of 1s at the down-left of R;

T4← the largest rectangle box of 1s at the down-right of R;

T5← The remaining area of 1s in R;

Rectangle boxes.push back(T1);

Rectangle boxes.push back(T2);

Rectangle boxes.push back(T3);

Rectangle boxes.push back(T4);

Rectangle boxes.push back(T5);
end

Return Rectangle boxes;

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) This shows the fixed tiling
strategy. In this case, the image
is divided into 4 by 4 tiles.
Among these, tiles 0, 1, 2, 9,
10, and 13 do not contain any
part of any cell, while tiles 3,
4, 5, 6, 7, 8, 11, 12, 14, and
15 contain some parts of the
cells. Consequently, first group
of the tiles will be omitted.

A B

C D

(b) This shows the adaptive
tiling strategy. In this case, for
those tiles which contain some
parts of the cells will be further
divided into 2 by 2 smaller
tiles. For example, tile 15 in (a)
will be divided into tiles A, B,
C, and D. Since only A and C
contain cells while B and D do
not, tile B and tile D will be
discarded.

Fig. 3: Fixed 3a and adaptive 3b tiling strategies.

contains a cell, while a ‘0’ indicates no cell existence in the

tile. We can then scratch some rectangle boxes (the colored

rectangles in Figure 6D) from the scratch map to cover all the

1s in the map, and then send the rectangles boxes to U-net.

Unlike the fixed tiling strategy, the adjacent rectangles here

can be of different sizes depending on the tissue sizes.

To feed all the rectangle boxes containing 1 in the scratch

map to U-net, we apply a scratching algorithm (presented as

Algorithm 1 above). As can be observed from this algorithm,

we employ Breadth First Search (BFS) to accumulate all the

neighboring regions of 1s. Then, in each region, we use a

greedy algorithm to scratch the rectangle boxes from each

corner of the regions as large as possible. In the end, we

reorganize the results of all the chunks together to obtain the

final image segmentation result for the whole image, as we

did in the previous two tiling strategies.

E. False Negative Correction

Although the classifier can achieve a high filter accuracy

(∼99%), this could lead to failure cases if we discard any

tiling area containing tissues (false negative). Observing this,

we also provide a correction method to avoid such false

negative cases. As Figure 5 shows, tile 1 contains cells (true

positive) while tile 2 was incorrectly predicted as not having



Fig. 4: To segment the tile in

the red box, we feed U-net

with the black box as input.

1 2

Fig. 5: Correction for False

Negative issue

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 0
0 1 1 0 0 0 1 0
1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
1 0 0 0 0 1 1 0

C
la

ss
ifi

er

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 0
0 1 1 0 0 0 1 0
1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 1 0 0 1 1 0
0 1 1 0 0 0 1 0
1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
1 0 0 0 0 1 1 0

BF
S

G
re

ed
y 

Al
go

rit
hm

A B C D

Fig. 6: This shows the scratch tiling strategy. First, the raw

image (A) is divided into 8 by 8 tiles, and the resulting tiles

are then sent to the classifier to generate the scratch map (B).

After that, we employ BSF to accumulate all the neighboring

regions as shown in (C). Finally, we use a greedy algorithm

to obtain the rectangle boxes in (D).

cells (false negative). After we get the segmentation result

from U-net, we can correct this mistake since some continuous

pixels at the border between 1 and 2 belong to the cells.

We can then resend tile 2 to the U-net, instead of discarding

it. We want to emphasize that, by applying this correction

strategy, we achieve a 100% classifier accuracy on our four

test datasets.

V. EXPERIMENTAL EVALUATION

We test our framework on four different biomedical image

datasets [2], [3] which come from the ISBI2015 cell tracking

challenge. For each dataset, we trained different models for

both U-net and AlexNet. And, we report both the speedup and

accuracy results with all of our three tiling strategies discussed

in the previous section. The speedup results reported below

represent the “normalized performance” over the baseline U-

net. For the accuracy results, we use IOU (intersection over

union) as our metric, which is also used in several prior

studies. [2], [3], [8], [9], [18].

A. Datasets

We applied our framework to a cell segmentation task of

the microscopic images. Our four datasets are listed below

• PhC-C2DH-U373 (D1): The Glioblastoma-astrocytoma

U373 cells.

• Fluo-C2DL-MSC (D2): Rat mesenchymal stem cells.

• Fluo-N2DH-SIM+ (D3): Simulated nuclei of HL60 cells

which are stained with Hoescht.

• Fluo-C3DH-H157 (D4): GFP-transfected H157 lung

cancer cells embedded in a Matrigel matrix.

B. Experimental Results

To test the effectiveness of our proposed tiling strategies,

we performed experiments on both CPUs and GPUs. The con-

figurations of the architectures we used are listed in Table III.

Figures 8 and 9 show the speedup and accuracy results, for

the fixed, adaptive, and scratch tiling strategies(with different

variants of fixed and adaptive tiling). As can be observed

(a) Raw input im-
age.

(b) Result of base-
line U-net.

(c) Result of tiling-
based framework.

Fig. 7: False-positives in images.

CPU Configuration GPU Configuration

Key Value Key Value

Number of cores 6 Shading Units (Cores) 2496

CPU Frequency (GHz) 2.00 SMX Count 13

Cache size (last level)(MB) 15 GPU Clock (MHz) 706

Memory size (GB) 64 Memory size (MB) 5120

TABLE III: Configuration of Intel(R) Xeon(R) CPU E5-

2620(CPU) and NVIDIA Tesla K20m(GPU).

from these figures, all the three tiling strategies achieve

better accuracy (IOU: 0.796, 0.799 and 0.799, respectively)

compared to the baseline U-net (baseline) (IOU: 0.794). This

is because, in the microscopy images, certain pixels can

cause false-positives like bubble or halo, which are mistakenly

detected as the tissues by U-net. Such false-positives can be

successfully filtered by our AlexNet-based classifier network.

For example, in Figure 7, the region in the upper right portion

of the input image is detected as a cell by U-net, whereas, in

our hierarchical framework, that object is successfully filtered

by the AlexNet classifier. This is because AlexNet has a larger

convolutional kernel size (up to 11*11) which can help the

network cover the context information from a larger group

of neighboring pixels, while U-net has a smaller convolution

kernel size which extracts the context information from a

smaller region.

As can be observed from Figures 8 and 9, amongst all

the four datasets, the fixed tiling strategy achieves a 1.64x

speedup on CPU, and a 1.70x speedup on GPU, on average;

and, the adaptive size tiling strategy achieves a 1.56x speedup

on CPU and a 1.65x speedup on GPU. Lastly, the scratch tiling

strategy achieves 1.68x to 4.12x and an average 2.52x speedup

(61% execution time reduction) which represents a significant

improvement over the previous two tiling strategies.

We further evaluate and compare our scratch tiling with

the naive U-net approach on a system-on-chip environment

(Raspberry Pi 3) to show this work is suited for embedded

computing. From Table IV, we can observe our scratch tiling

achieves a 3.03x speedup over original U-net implementation

among all these four datasets in average.

C. Comparison against Faster R-CNN-based Strategies

As mentioned earlier in Section 2.2, Faster R-CNN involves

redundant work when employing the RPN on the overlap area

of the sliding window. Hence, the RoI proposal stage of Faster

R-CNN is expected to be more time and energy consuming

than our tiling approach. Figure 10 reports the performance

comparison between our fixed tiling strategies and Faster R-

CNN. We can observe from these results that our fixed tiling

strategy (4-by-4 tile size) achieves a better performance (3.7X

in average) than Faster-RCNN. Additionally, Faster R-CNN

proposes 300 candidate regions for each image. If all the
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(b) Adaptive Tiling.

Fig. 8: Speedup and accuracy results with the fix tiling and

adaptive tiling. The bar graph shows speedup, and the line

graph shows accuracy. “n Tile” indicates that the image is

divided into n-by-n tiles. “(n, m) Tile” indicates that the image

is first divided into n-by-n, each tile is further divided into m-

by-m sub-tiles if it contains tissue.
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Fig. 9: Performance and

accuracy results with the

scratch tiling (in Tesla GPU).
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Fig. 10: Speedup of tiling-

classifier over Faster R-CNN

candidate regions are sent to the segmentation framework,

the execution time would be significantly longer since each

image contains only a few tiles. Additionally, since we use

tiling strategies, our images can be easily mapped to system-

on-chip based execution environments with limited memory,

whereas Faster R-CNN works on the entire large images.

VI. CONCLUSION

In this work, we propose a tiling-based two-level hierarchi-

cal framework for biomedical applications involving image

classification and segmentation. More specifically, we explore

three different tiling strategies oriented towards reducing

the execution time of the segmentation framework without

impacting its accuracy. Our best performing tiling strategy,

namely, scratch tiling, improves performance by 61%, while

achieving a similar accuracy as the original U-net implemen-

tation. We believe that our tiling-based strategies are quite

general and can be applicable to other image segmentation

applications as well.
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